表紙:バイオベースフォームの世界市場-2023年~2030年
市場調査レポート
商品コード
1396639

バイオベースフォームの世界市場-2023年~2030年

Global Bio-Based Foam Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 204 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.36円
バイオベースフォームの世界市場-2023年~2030年
出版日: 2023年12月15日
発行: DataM Intelligence
ページ情報: 英文 204 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

バイオベースフォームの世界市場は、2022年に4,350万米ドルに達し、2030年には2億2,640万米ドルに達すると予測され、予測期間2023-2030年のCAGRは22.9%で成長する見込みです。

バイオベースフォームの需要は、世界規模で持続可能性と環境に優しい商品への注目が高まった結果、発展しています。再生可能な資源から作られるフォームは、化石燃料から作られるフォームの代替品を探している企業や顧客の間でますます好まれてきています。この変化は、産業界がより持続可能で環境に優しい製品を使用することへの知識を深め、献身的になっていることの反映です。

バイオベースフォームの市場は、様々な分野での用途拡大により拡大しています。バイオベースフォームは、家具、建築、自動車、包装を含む様々な産業で使用されています。バイオベースフォームの世界の需要は、最終用途産業の成長もあって増加しています。

アジア太平洋は、世界のバイオベースフォーム市場の1/3以上を占める成長地域のひとつです。アジア太平洋地域では、再生可能資源由来の製品に対する需要が増加しています。バイオベースフォームは環境に優しく、再生可能な原材料から生産されるため、特に業界が従来の材料に代わる持続可能な代替品を求めるようになった現在、このニーズを満たすのに好都合です。

力学

最終用途産業からの需要の高まり

バイオベースフォームの製造業者は、建築材料の難燃性、耐湿性、紫外線保護特性を向上させるために様々な材料を使用しています。世界各地の規制機関は、グリーン建築を促進するための様々な取り組みを展開しています。こうした取り組みの結果、衝撃吸収や騒音低減などの用途でバイオベースフォーム断熱材に対する建設業界のニーズは高まると思われます。

例えば、ハンツマンは2022年、自動車分野の成形音響用途向けに、植物油から作られた最大20%のバイオベース含有率を持つ最先端のバイオベース粘弾性フォーム技術であるACOUSTIFLEX VEF BIOシステムを発売しました。現在のハンツマンの方法と比較すると、この新しいアプローチは自動車用カーペットの裏面発泡の二酸化炭素排出量を最大25%削減することができます。さらに、この方法はホイールアーチやダッシュの断熱にも使用できます。

eコマース産業の急拡大

電子機器、自動車、その他の製品の包装に使用されてきたバイオベースの発泡包装の需要は、eコマースの成長により増加すると予想されます。eコマース産業の著しい成長により、バイオベースフォーム包装の市場は予測期間を通じて成長すると予測されています。

例えば、2022年、B2B eコマースプラットフォームのUdaanは、2,200万件の注文を通じて17億点以上の商品の取引に成功しました。同社は、食品、FMCG、エレクトロニクス、ライフスタイル、雑貨、医薬品など、さまざまな分野で力強い成長を報告しました。特筆すべきは、Udaanが必需品カテゴリーで89%を超える驚異的なリピート購入率を記録したことで、このセグメントにおける同プラットフォームの好調な業績と顧客ロイヤルティが浮き彫りになっています。

限られた原材料の供給

バイオベースフォームの市場は、原料の安定性と入手可能性によってさらに制限されます。バイオベースフォームの多くは、トウモロコシ、サトウキビ、大豆などの特定の原料に依存しており、これらの原料は季節や天候によって変化します。燃料の入手可能性の変動はサプライチェーンに影響を及ぼし、生産レベルの不安定やコスト上昇の可能性につながる可能性があります。

安定的かつ持続可能な供給を確保することの難しさは、食糧生産やバイオ燃料など、他のセクターとのバイオベース原料の競合によってさらに悪化します。バイオベースフォーム業界の企業は、供給不足のリスクを軽減するために、強固なサプライチェーンを構築し、代替原料を検討することによって、こうした複雑な問題に対処しなければならないです。

技術的・性能的制約

従来の同等品と比較した場合のバイオベースフォームの性能と技術的限界は、世界のバイオベースフォーム産業にとってのもう一つの障壁です。バイオベースの材料では、高い耐久性、難燃性、特定の機械的性質といった特定の性能を達成することが難しい場合があります。このため、高性能基準を満たす必要がある経済分野によっては、バイオベースフォームの使用が制限される可能性があります。

このような技術的制約があるため、バイオベースフォームの性能特性を改善し、より幅広い用途への適応性を高めるためには、継続的な研究開発が必要です。バイオベースフォームをより広く市場に受け入れてもらうためには、これらの材料の利点と欠点についてエンドユーザーを教育することがさらに不可欠です。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • エンドユーザー産業からの需要の高まり
      • eコマース産業の急拡大
    • 抑制要因
      • 原材料の入手可能性の制限
      • 技術的・性能的制約
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 製品別

  • ポリウレタン(PU)フォーム
  • ポリスチレン(PS)フォーム
  • ポリエチレン(PE)フォーム
  • ポリプロピレン(PP)フォーム
  • フェノールフォーム
  • ポリオレフィンフォーム
  • メラミンフォーム
  • その他

第8章 タイプ別

  • 硬質
  • 軟質

第9章 原料別

  • 大豆ベース
  • トウモロコシベース
  • サトウキビベース
  • その他

第10章 エンドユーザー別

  • 建築・建設
  • 包装
  • 自動車
  • 家具・寝具
  • 履物
  • その他

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • ロシア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • BASF SE
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Cargill, Inc.
  • Huntsman Corporation
  • Dow Inc.
  • Braskem
  • Woodbridge Foam Corporation
  • BEWI Group
  • INOAC Corporation
  • Trocellen GmbH
  • Sinomax USA

第14章 付録

目次
Product Code: MA7539

Overview

Global Bio-Based Foam Market reached US$ 43.5 Million in 2022 and is expected to reach US$ 226.4 Million by 2030, growing with a CAGR of 22.9% during the forecast period 2023-2030.

Demand for bio-based foams is developing as a result of the increased focus on sustainability and eco-friendly goods on a globally scale. The foams, which are made from renewable resources, are becoming more and more well-liked among businesses and customers looking for foam substitutes made from fossil fuels. The change is a reflection of industry' increasing knowledge of and dedication to using more sustainable and environmentally friendly products.

The market for bio-based foam is expanding as a result of more applications across various sectors. Bio-based foams are being used in a variety of industries, including furniture, construction, automotive and packaging. Global demand for bio-based foams is rising, partly due to the growing end-use industries.

Asia-Pacific is among the growing regions in the global bio-based foam market covering more than 1/3rd of the market. The Asia-Pacific is seeing an increase in demand for products derived from renewable resources. Given their environmental friendliness and sourcing from renewable feedstocks, bio-based foams are well-positioned to satisfy this need, particularly as the industry became for sustainable substitutes for conventional materials.

Dynamics

Growing Demand from End-Use Industries

A variety of materials are used by producers of bio-based foam to improve the fire-retardant, moisture-resistant and UV-protective properties of building materials. Regulating bodies globally have developed a variety of initiatives to promote green construction. The construction industry's need for bio-based foam insulation for uses including shock absorption and noise reduction will rise as a result of these initiatives.

For Instance, in 2022, Huntsman launched the ACOUSTIFLEX VEF BIO system, a cutting-edge bio-based viscoelastic foam technology with up to 20% bio-based content made from vegetable oils for molded acoustic applications in the automobile sector. When compared to current Huntsman methods, this novel approach can reduce the carbon footprint of automobile carpet back-foaming by up to 25%. Additionally, the method may be used for wheel arch and dash insulation.

Rapid Expansion of the E-Commerce Industry

The demand for bio-based foam packaging, which has been used to package commodities like electronics, automobiles and other products in predicted years, is expected to increase due to growing e-commerce. Due to the significant growth in the E-Commerce industry, the market for bio-based foam packaging is anticipated to grow throughout the projected period.

For Instance, In 2022, Udaan, a B2B e-commerce platform, successfully transacted over 1.7 billion products through 22 million orders. The company reported robust growth across various sectors, including food, FMCG, electronics, lifestyle, general merchandise and pharmaceuticals. Notably, Udaan highlighted a remarkable repeat purchase rate exceeding 89% in the essentials category, underscoring the platform's strong performance and customer loyalty within this segment.

Limited Availability of Raw Materials

The market for bio-based foam is further limited by the consistency and availability of raw ingredients. A lot of bio-based foams depend on certain feedstocks, such as maize, sugarcane or soybeans, which change depending on the seasons and weather. Variations in fuel availability might have an effect on the supply chain, leading to erratic output levels and potential cost increases.

The difficulties in ensuring a steady and sustainable supply are further exacerbated by competition for these bio-based feedstocks from other sectors, such as food production or biofuels. Businesses in the bio-based foam industry must manage these complications by building robust supply chains and looking into substitute feedstocks to reduce the risk of scarce supply.

Technical and Performance Restrictions

The performance and technical limitations of bio-based foams in comparison to their traditional equivalents are another barrier to the global bio-based foam industry. With bio-based materials, achieving certain performance attributes like high durability, flame resistance or particular mechanical qualities might be difficult. The may restrict the use of bio-based foams in some sectors of the economy where high-performance standards must be fulfilled.

Because of these technological constraints, ongoing research and development are needed to improve the performance characteristics of bio-based foams and increase their adaptability for a wider variety of applications. Further essential to promoting broader market acceptability of bio-based foams is educating end users about the benefits and drawbacks of these materials.

Segment Analysis

The global bio-based foam market is segmented based on product, type, raw material, end-user and region.

Rising Polyurethane Foam Due to Increasing Plant-Based Components

The polyurethane (PU) foam segment is among the growing regions in the global bio-based foam market covering more than 1/3rd of the market. Bio-based PU foams often include plant-based or soy-based components as renewable source materials. The availability of these renewable resources supports the environmentally beneficial attributes of bio-based PU foam and is in line with the globally movement towards more ecologically conscious and sustainable production methods.

For Instance, in 2022, The National Research Council of Italy, a partner of BIOMAT, was present at the 5th National Conference of Rigid Polyurethane Foam in Italy to promote the project. On May 12, the Centro Congressi Citta della Scienza in Naples hosted the event. The event highlighted BIOMAT and the creation of the Project's Open Innovation Test Bed. The Project aims to change the construction industry by replacing conventional PUR foams with a biobased, affordable, sustainable and nano-enabled substitute.

Geographical Penetration

Increasing Demand for Green Sustainable Products and Developments of Bio-Based Foams in Asia-Pacific

The Asia-Pacific has emerged as a dominant force in the global bio-based foam market, fueled by the increasing desire for environmentally friendly and sustainable products across the region. Consumers' and businesses' growing desire for bio-based foams derived from renewable resources signals a move away from conventional foams based on petrochemicals. The change is consistent with more general globally sustainability trends and awareness of the environment.

For Instance, in 2021, Stora Enso expanded its packaging range with new bio-based foams, Fibrease and Papira, made from Forest Stewardship Council-approved wood. The FSC-certified products, tested at recycling facilities, are fully recyclable and designed for protective and thermal packaging. Papira, a biodegradable and compostable fiber-based monomaterial and Fibrease, recyclable in any paper or board stream, represent renewable and climate-friendly alternatives in the protective packaging segment for the Finnish paper and packaging company.

Asia-Pacific's construction and packaging industries are expanding rapidly as a result of rising customer demand, infrastructural expansion and urbanization. Bio-based foams are used in both sectors and provide environmentally friendly options for packaging, insulation and other uses. Therefore, the demand for bio-based foams in the area is being driven by the growing construction and packaging sectors.

According to World Bank statistics, Bangladesh witnessed a remarkable increase of 70%-80% in total e-commerce revenues within a few months in 2020. The surge in online transactions has become a pivotal factor in the growth potential of small-sized businesses in South Asia. The significant trend, fueled by the swift digitalization and the expanding production hubs, is expected to provide momentum to the growth of the regional bio-based foam market over the forecast period.

Additionally, as small businesses increasingly turn to online services to sell their products, the demand for sustainable packaging solutions, such as bio-based foams, is likely to rise, contributing to the overall growth of the global bio-based foam market.

COVID-19 Impact Analysis

The globally bio-based foam market has been impacted by the COVID-19 pandemic in several ways. The pandemic's early stages caused delays in production across several industries, including the creation of bio-based foam, by upsetting industrial processes, supply networks and logistics. Lockdowns, travel bans and labor shortages presented major obstacles for bio-based foam firms, making it difficult for them to satisfy demand and quickly complete orders.

The market for bio-based foams was further constrained by a decline in consumer expenditure on luxuries like furniture and automobile components. A change in customer preferences and behavior was also brought about by the epidemic. Interest in eco-friendly and sustainable products, such as bio-based foams, has surged due to growing consciousness of health and environmental issues.

The market for bio-based foam has new prospects as a result of this change in customer perception and the increased focus on circular economy ideas. In response to shifting customer expectations for sustainable and environmentally friendly options, businesses in the industry are putting a greater emphasis on innovation and product development.

However, the market for bio-based foam has had to contend with issues including unstable finances, postponed projects and interrupted supply chains. Notwithstanding the difficulties, the pandemic has highlighted the value of sustainability and resilience in several industries, opening up a possible path for the bio-based foam industry to recover and flourish in the post-pandemic environment as international markets recuperate and place a higher priority on sustainable practices.

Russia-Ukraine War Impact Analysis

The conflict with Russia and Ukraine has had a significant effect on the globally bio-based foam industry, affecting several areas of supply chains, market dynamics and manufacturing. The interruption in the availability of essential raw ingredients for the production of bio-based foam is one important cause.

The majority of agricultural goods, including sunflower oil and soybeans, are produced and exported by both Russia and Ukraine and are essential to the manufacturing of bio-based foams. Any disruption in the flow of these vital raw ingredients might result in higher costs and even shortages for producers of bio-based foam throughout the world.

Additionally, the conflict's geopolitical tensions and uncertainties may have an impact on investor confidence and international trade relations, which may cause market swings. Businesses in the bio-based foam industry might experience difficulties with project delays, strategic planning and financial stability. Furthermore, the conflict's effects on the world economy, including trade restrictions and sanctions, may have an impact on the demand for bio-based foams generally in a variety of industries, including the packaging, building and automotive sectors.

By Product

  • Polyurethane (PU) Foam
  • Polystyrene (PS) Foam
  • Polyethylene (PE) Foam
  • Polypropylene (PP) Foam
  • Phenolic Foam
  • Polyolefin Foam
  • Melamine Foam
  • Others

By Type

  • Rigid
  • Flexible

By Raw Material

  • Soy-Based
  • Corn-Based
  • Sugarcane-Based
  • Others

By End-User

  • Automotive & Transportation
  • Aerospace & Defense
  • Building & Type
  • Chemical
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On September 25, 2023, BASF is expanding its bio-based monomer portfolio with a new proprietary process for producing 2-Octyl Acrylate (2-OA). The product highlights BASF's commitment to sustainability, featuring a remarkable 73% 14C-traceable bio-based content according to ISO 16620 standards. Additionally, the company introduced 2-Octyl Acrylate BMB ISCC Plus, which is ISCC PLUS certified for remaining carbon content and employs BASF's biomass balance (BMB1) approach, further reducing the product's carbon footprint.
  • On September 27, 2021, Cargill entered into a deal to acquire Arkema's epoxides business, which includes a plant in Blooming Prairie, Minnesota, as the need for bio-based industrial solutions keeps rising. The investment is going to provide Cargill with full production capabilities for bio-based polyols and plasticizers, allowing the business to better serve its industrial clientele by providing naturally derived additives as an alternative to conventional petroleum-based additives.

Competitive Landscape

The major global players in the market include: BASF SE, Cargill, Inc., Huntsman Corporation, Dow Inc., Braskem, Woodbridge Foam Corporation, BEWI Group, INOAC Corporation, Trocellen GmbH and Sinomax USA.

Why Purchase the Report?

  • To visualize the global bio-based foam market segmentation based on product, type, raw material, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of bio-based foam market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global bio-based foam market report would provide approximately 69 tables, 75 figures and 204 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Product
  • 3.2. Snippet by Type
  • 3.3. Snippet by Raw Material
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Regions

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Demand from End-Use Industries
      • 4.1.1.2. Rapid Expansion of the E-Commerce Industry
    • 4.1.2. Restraints
      • 4.1.2.1. Limited Availability of Raw Materials
      • 4.1.2.2. Technical and Performance Restrictions
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Product

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 7.1.2. Market Attractiveness Index, By Product
  • 7.2. Polyurethane (PU) Foam*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Polystyrene (PS) Foam
  • 7.4. Polyethylene (PE) Foam
  • 7.5. Polypropylene (PP) Foam
  • 7.6. Phenolic Foam
  • 7.7. Polyolefin Foam
  • 7.8. Melamine Foam
  • 7.9. Others

8. By Type

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 8.1.2. Market Attractiveness Index, By Type
  • 8.2. Rigid*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Flexible

9. By Raw Material

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 9.1.2. Market Attractiveness Index, By Raw Material
  • 9.2. Soy-Based*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Corn-Based
  • 9.4. Sugarcane-Based
  • 9.5. Others

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Building & Construction*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Packaging
  • 10.4. Automotive
  • 10.5. Furniture & Bedding
  • 10.6. Footwear
  • 10.7. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Russia
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. BASF SE*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Cargill, Inc.
  • 13.3. Huntsman Corporation
  • 13.4. Dow Inc.
  • 13.5. Braskem
  • 13.6. Woodbridge Foam Corporation
  • 13.7. BEWI Group
  • 13.8. INOAC Corporation
  • 13.9. Trocellen GmbH
  • 13.10. Sinomax USA

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us