市場調査レポート
商品コード
1390180

風力発電用ブレードの世界市場-2023年~2030年

Global Wind Blade Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 181 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
風力発電用ブレードの世界市場-2023年~2030年
出版日: 2023年12月05日
発行: DataM Intelligence
ページ情報: 英文 181 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

世界の風力発電用ブレード市場は、2022年に223億米ドルに達し、2023~2030年の予測期間中にCAGR 7.3%で成長し、2030年には385億米ドルに達すると予測されています。

風力発電用ブレードの開発は、風力エネルギー産業の成長と、効果的で信頼性が高く環境に優しい風力タービンブレードに対する需要の高まりを支える、相互に関連するさまざまな変数によって推進されてきました。風力発電用ブレード市場は、規制の後押し、環境問題、経済動向など、こうした要因の結果として拡大することは間違いないです。

アジア太平洋地域は、世界の風力発電用ブレード市場の1/3以上を占める成長地域のひとつであり、アジア太平洋地域は急速に都市化が進み、経済的にも成長しているため、エネルギー需要が高まっています。この電力需要の増加に対応する持続可能な方法は、風力タービンを含む風力エネルギーの利用です。

アジア太平洋には、特に中国、インド、オーストラリア、韓国といった国々で豊富な風力資源があります。この資源は、風力エネルギーを捕捉し、風力発電所の建設を促進する大きな可能性を秘めており、風力タービンブレードの必要性を高めています。

力学

電力需要の増加

風力発電用ブレード市場を牽引しているのは、電力需要の高まりです。風力発電は現在、信頼できる発電方法として認識されています。予測期間中、風力タービンブレードの市場は、様々な商業、住宅、産業の理由による電力需要の高まりにより、急速に成長すると予想されます。

さらに、陸上風力発電技術は、風速の低い場所をさらに保護し、過去数年間に建設されたメガワット容量あたりの発電量を最大化するために開発されてきました。Wind Energy Councilのデータによると、世界の陸上風力発電市場は2021年に72.5GWに達し、2020年から18%減少しました。

この減少は、世界の2大陸上風力市場である中国と米国の成長が鈍化したことに起因しています。しかし、2021年には、欧州、アフリカ、中東が飛躍的な伸びを示し、陸上新設はそれぞれ19%、27%、120%増加しました。

陸上風力エネルギー用途の増加

風力発電用ブレード市場は、陸上風力エネルギー用途の増加によって大きく牽引されています。陸上風力発電は、再生可能エネルギー分野の様相を変化させ、風力タービンブレードの需要に影響を与えています。陸上風力発電プロジェクトは、人口密集地に近い広大な土地を利用できることから利益を得ています。

国家エネルギー管理局(NEA)によると、中国は2021年に4,750万kWの陸上風力発電容量を接続し、陸上設置の合計は3,1062万kWになると報告しています。加えて、中国の陸上風力発電市場は今後数年間で急速に拡大し、国内市場と輸出市場の両方で必要不可欠な部品や材料の需要を押し上げると予想されています。

さらに、中国では火力エネルギーが発電量の約70%を占めています。中国では、火力発電による公害が増加しているため、よりクリーンで再生可能な電源の割合の拡大に力を入れています。

最新技術で手ごろなコストで発電できる風力発電所

Energy Efficiency &Renewable Energyによると、現代の風力発電所は数メガワット級にまで規模が拡大し、信頼性とコスト効率がますます向上しています。ブレードの平均生産能力は1999年以来上昇しており、2016年の設置ブレードの平均生産能力は2.15MWでした。より長く、より軽いローターブレード、より高いタワー、より信頼性の高いドライブトレイン、性能を向上させる制御システムの開発を通じて、WETOの研究はこの変革に貢献してきました。

風力エネルギー技術室(WETO)は、次世代風力発電技術の機能性と信頼性を高めながら、風力エネルギーコストを削減するために商業パートナーと協力しています。同事務所の調査活動の結果、平均稼働率(発電所の生産性を示す指標)は上昇し、1998年以前に建設された風力タービンの平均稼働率は2000年の30%から、現時点では約35%に上昇しています。

風力発電用ブレードにおける再生可能エネルギー源の利用拡大

風力発電用ブレードは、風の力学的エネルギーを利用して発電機を動かし、電気を生産します。風力エネルギーは、米国で最大の再生可能エネルギー源であり続け、化石燃料への依存を減らすのに役立っています。風力エネルギーは、年間3億2,900万トンの二酸化炭素排出量を削減するのに役立っています。これは、7,100万台の自動車が排出する量と同じであり、酸性雨、汚染、温室効果ガス排出の原因となっています。

Energy Efficiency &Renewable Energyによると、米国の風力産業では50州全体で12万人以上が働いており、その数は増え続けています。米国労働統計局によれば、風力発電用ブレードのサービス技術者は、今後10年間に米国で2番目に急速に拡大する職業です。風力産業は2050年までに、資産管理からブレード製造まで幅広い職種で、数十万人の労働者を支えるかもしれないです。

高い製造コスト

世界の再生可能エネルギー産業に不可欠な部品である風力発電用ブレードの市場は、高い製造コストによって大きな制約を受けています。この問題は、技術革新や市場成長など、市場のさまざまな側面に大きな影響を与えています。風力タービンブレードの製造は、特殊な材料、最先端技術、熟練した労働力を必要とする、複雑で資源集約的な作業です。

これらの要素が相まって初期コストが上昇し、風力発電プロジェクトのコスト構造全体に大きな影響を与えます。さらに、風力エネルギーのバリューチェーン全体が、製造価格の高騰によって悪影響を受ける可能性もあります。投資収益が不透明なため、開発業者はプロジェクトのための資金調達が困難になり、投資家はより慎重になる可能性があります。

遠隔地や沖合への大型風力発電用ブレードの輸送の難しさ

風力タービンブレードの市場にも、いくつかの点で限界があります。大型の風力発電用ブレードを遠く離れた場所や沖合に届けることは、物流と輸送の大きな問題です。ブレードの大きさと重さのため、輸送は困難でコストがかかり、特殊なインフラと機械が必要となります。

さらに、風力発電用ブレードの製造には高額な初期費用と高度な製造工程が必要で、これが収益性を損ない、市場の拡大を抑制する可能性があります。さらに、騒音排出や環境への影響に関する厳しい規制は、風力発電用ブレード製造業者に困難をもたらし、厳格な基準やガイドラインを遵守する必要があります。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 業界分析影響要因
    • 促進要因
      • 電力需要の増加
      • 最新技術により手頃なコストで電力生産が可能となったウインドファーム
      • 陸上風力エネルギー利用の増加
      • 風力発電用ブレードにおける再生可能エネルギー源の使用増加
    • 抑制要因
      • 高い製造コスト
      • 遠隔地や沖合への大型風力発電用ブレードの輸送が困難
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析

第6章 COVID-19分析

第7章 材料別

  • ガラス繊維
  • 炭素繊維
  • その他

第8章 ブレードサイズ別

  • 30メートル未満
  • 30-60メートル
  • 60メートル超

第9章 用途別

  • オンショア
  • オフショア

第10章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第11章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第12章 企業プロファイル

  • Vestas Wind Systems
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • LM Wind Power
  • Siemens Gamesa
  • Suzlon Energy
  • Enercon
  • Nordex Group
  • GE Renewable Energy
  • ACCIONA Windpower
  • Goldwind
  • WINDAR Renovables
目次
Product Code: EP7508

Overview

Global Wind Blade Market reached US$ 22.3 billion in 2022 and is expected to reach US$ 38.5 billion by 2030, growing with a CAGR of 7.3% during the forecast period 2023-2030.

The development of wind blades has been driven by a variety of interrelated variables that, taken together, support the growth of the wind energy industry and the rising demand for effective, dependable and environmentally friendly wind turbine blades. It is certain that the market for wind blades will expand as a result of these causes, which also include regulatory backing, environmental concerns and economic trends.

Asia-Pacific is among the growing regions in the global wind blade market covering more than 1/3rd of the market and the Asia-Pacific is rapidly urbanizing and growing economically, which is driving up the demand for energy. A sustainable way to meet this rising need for electricity is through the utilization of wind energy, which includes wind turbines.

The Asia-Pacific has a wealth of wind resources, especially in countries like China, India, Australia and South Korea. The resources present tremendous potential for capturing wind energy and promoting the construction of wind farms, which increases the need for wind turbine blades.

Dynamics

Increasing Demand for Electricity

The rising demand for electricity is what is driving the wind blade market. Wind energy generation is now recognized as a reliable method of power generation. Over the course of the projected period, it is anticipated that the market for wind turbine blades would grow faster due to the rising need for power for various commercial, residential and industrial reasons.

Additionally, onshore wind energy power generation technology has been developed to protect additional locations with lower wind speeds and to maximize the amount of electricity produced per megawatt capacity constructed during the past few years. According to data from the Wind Energy Council, the world's onshore wind market reached 72.5 GW in 2021, an 18% decrease from 2020.

The decline can be attributed to a slowdown in the growth of the two largest onshore wind markets in the world China and US. However, in 2021, Europe, Africa and the Middle East saw exponential growth, with new onshore installations growing by 19%, 27% and 120%, respectively.

Increasing Use of Onshore Wind Energy Applications

The market for wind blades is significantly driven by the rising use of onshore wind energy applications. The approach has become more popular for a number of compelling reasons, changing the face of the renewable energy sector and affecting the demand for wind turbine blades. Onshore wind energy projects profit from the availability of enormous land areas that are frequently close to populous areas.

According to the National Energy Administration (NEA) reported that China connected 47.5 GW of onshore wind capacity in 2021, bringing its total onshore installations to 310.62 GW. In addition, it is anticipated that the Chinese onshore wind market would expand rapidly over the next few years, driving up demand for essential parts and materials for both domestic and export markets.

In addition, thermal energy sources account for around 70% of the electricity generated in China. The nation has been concentrating on expanding the percentage of cleaner and renewable sources in electricity generation as a result of rising pollution from thermal sources.

Modern Technologies Allow Wind Farms to Produce Electricity at an Affordable Cost

According to Energy Efficiency & Renewable Energy, Modern wind farms are increasing in size to multi-megawatt power ratings and are getting more and more reliable and cost-effective. The average blades producing capacity has risen since 1999, with installed blades in 2016 having an average capacity of 2.15 MW. Through the creation of longer, lighter rotor blades, taller towers, more dependable drivetrains and performance-enhancing control systems, WETO research has aided in this transformation.

The Wind Energy Technologies Office (WETO) collaborates with commercial partners to reduce wind energy costs while enhancing the functionality and dependability of next-generation wind technologies. The average capacity factor (a metric of power plant productivity) has grown as a result of the office's research operations, rising from 30% in 2000 for wind turbines erected before 1998 to an average of about 35% at this time.

Rising Use of Renewable Energy Sources in Wind Blades

Wind blades use the mechanical energy of the wind to power a generator and produce electricity. Wind energy continues to be the largest source of renewable energy in US, which helps to reduce our reliance on fossil fuels. Annually, wind energy helps save 329 million metric Tons of carbon dioxide emissions, which is the same amount of emissions produced by 71 million cars and contributes to acid rain, pollution and greenhouse gas emissions.

According to Energy Efficiency & Renewable Energy, over 120,000 people work in U.S. wind industry throughout all 50 states and that number is rising. Service technicians for wind blades are the second fastest expanding occupation in U.S. during the next ten years, according to U.S. Bureau of Labour Statistics. The wind industry might support hundreds of thousands of workers, with positions ranging from asset management to blade producer by 2050.

High Manufacturing Costs

The market for wind blades, an essential component of the globally renewable energy industry, is significantly constrained by high manufacturing costs. The issue has a significant effect on a number of facets of the market, including innovation and market growth. Wind turbine blade production is a complex and resource-intensive operation that requires specialized materials, cutting-edge technology and expert labor.

The elements work together to raise upfront costs, which have a considerable impact on the entire cost structure of wind energy projects. Furthermore, the entire wind energy value chain may be negatively impacted by high manufacturing prices. Due to uncertain returns on investment, developers may have trouble acquiring finance for projects and investors may be more cautious.

The difficulty of transporting large wind blades to remote or offshore places

The market for wind turbine blades also has limitations in several ways. Delivering big wind blades to far away or offshore locations is a major logistical and transportation problem. Due to the size and weight of the blades, shipping is difficult and expensive, requiring specialized infrastructure and machinery.

Furthermore, wind blade production requires expensive up-front expenses and advanced manufacturing processes, which may harm profitability and restrain market expansion. Additionally, rigorous restrictions concerning noise emissions and environmental effects provide difficulties for wind blade producers and the need for adherence to rigid standards and guidelines.

Segment Analysis

The global wind blade market is segmented based on material, blade size, application and region.

Rising Demand for Carbon Fiber Used in Fabrication of Wind Blade

The carbon fiber segment holds a major share of around XX% in the global wind blade market. Composites constructed from carbon fiber have great durability and fatigue resistance. Carbon fiber wind turbine blades have longer operational lifespans because they are better able to handle rigorous operating circumstances, such as cyclic loading and weather exposure.

For Instance, Gurit acquired a 60% stake in Fiberline Composites A/S, a world-class producer of pultruded glass and carbon fiber components used in the fabrication of wind turbine blades. With the addition of significant and structurally important pultruded carbon and glass goods, Gurit's current tooling, core materials and core kitting product offerings for the wind energy sector are enhanced by the acquisition of Fiberline Composites A/S.

Additionally, In contrast to infused glass alternatives, the core technology of carbon fiber pultrusion significantly reduces weight, allowing wind turbines to have larger, stiffer and lighter wind blades. A new Gurit business unit identified as Structural Profiles will be formed from the Fiberline Composites operations.

Geographical Penetration

Asia-Pacific Growing Government Initiatives and Policies in the Marine Applications

The Asia-Pacific wind blade market has witnessed significant growth and popularity covering 1/3th share in 2022. The is a consequence of expanding government initiatives and policies supporting the use of wind turbine blades in marine applications, which are pushing the market in this region. The Indian wind blade market was the one in the Asia-Pacific with the quickest rate of growth and China's wind blade market had the largest market share.

According to the Global Wind Energy Council, A total of 22,893 wind turbines with a combined capacity of 63,076 MW were installed by about 33 wind turbine manufacturers in different parts of the world in 2019. Twenty of the 33 suppliers come from APAC. Asia-Pacific, which is also the location of the world's largest wind turbine manufacturing base, erected 12,784 wind turbines in 2019, accounting for 55.8% of the total number produced globally.

Competitive Landscape

The major global players include: Vestas Wind Systems, LM Wind Power, Siemens Gamesa, Suzlon Energy, Enercon, Nordex Group, GE Renewable Energy, ACCIONA Windpower, Goldwind and WINDAR Renovables.

COVID-19 Impact Analysis

The COVID-19 pandemic presented significant challenges for the global wind energy sector, a key actor in the switch to sustainable energy sources. The pandemic, which started in late 2019 and turned into a global emergency in 2020, set off a chain reaction of disruptions that reverberated across the wind blade business and its related industries.

Components including wind blades, towers and nacelles must arrive on schedule for wind farm construction to begin. The epidemic, however, made it difficult to relocate people and equipment, which led to delays in project timetables. Due to the aforementioned uncertainty brought on by the pandemic's effect on the world economy, several projects were even delayed or abandoned.

The COVID-19 pandemic's effects on the wind turbine blade market were conflicting. Even if the pandemic originally caused project delays and supply chain hiccups, the market's prognosis is still favorable in the long run. Following the epidemic, the industry for renewable energy, which includes wind energy, is anticipated to be essential to programs for green stimulus.

Investments in wind energy projects are rising as a result of the growing need for sustainable and clean energy sources. In the post-COVID scenario, it is anticipated that the wind blade market will experience significant development as economies recover and nations concentrate on decarbonization.

Russia-Ukraine War Impact

The ongoing conflict between Russia and Ukraine at the time had the potential to have an effect on a number of industries, including that of renewable energy and, consequently, the market for wind turbine blades. For parts like wind blades, the wind energy industry depends on a global supply chain.

The availability of wind turbine parts, particularly blades, could have been affected if the war resulted in delays or shortages in transportation routes or trade restrictions. Economic uncertainty, which can undermine investor confidence and finance for renewable energy projects, including wind farms, can be brought on by geopolitical tensions and conflicts. The demand for wind turbine blades and the growth of new wind energy projects may be impacted by this matter.

By Material

  • Glass Fiber
  • Carbon Fiber
  • Others

By Blade Size

  • <30 meters
  • 30-60 meters
  • >60 meters

By Application

  • Onshore
  • Offshore

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On May 2, 2023, Suzlon Group the second order of the 3 MW product series was obtained, India's largest provider of renewable energy solutions, for Juniper Green Energy Private Limited's development of a 69.3 MW wind power plant. 22 wind turbine generators (WTGs) with a Hybrid Lattice Tubular (HLT) tower of Suzlon's new product, each with a 3.15 MW rating, will be constructed.
  • On June 3, 2021, CS Wind Corp. of South Korea acquired Vestas the largest tower manufacturing factory in the world, which is located in US. CS Wind and Denmark's Vestas Wind Systems A/S agreed to a transaction under which CS Wind will pay US$ 150 million for a 100% share in Vestas' wind tower manufacturing.
  • On April 30, 2020, Siemens Gamesa Renewable Energy acquired all of the shares of Ria Blades, S.A., the company that owns and runs the onshore wind turbine blade manufacturing facility in Vagos, Portugal, as well as other necessary operating assets. With the completion of this transaction, the business will have fully acquired certain Senvion assets.

Why Purchase the Report?

  • To visualize the global wind blade market segmentation based on material, blade size, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of wind blade market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • product mapping available as excel consisting of key products of all the major players.

The global wind blade market report would provide approximately 62 tables, 56 figures and 181 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Material
  • 3.2. Snippet by Blade Size
  • 3.3. Snippet by Application
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Industry Analysis Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing Demand for Electricity
      • 4.1.1.2. Modern Technologies Allow Wind Farms to Produce Electricity at an Affordable Cost
      • 4.1.1.3. Increasing Use of Onshore Wind Energy Applications
      • 4.1.1.4. Rising Use of Renewable Energy Sources in Wind Blades
    • 4.1.2. Restraints
      • 4.1.2.1. High Manufacturing Costs
      • 4.1.2.2. Difficulty of Transporting Large Wind Blades to Remote or Offshore Places
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Material

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material
    • 7.1.2. Market Attractiveness Index, By Material
  • 7.2. Glass Fiber*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Carbon Fiber
  • 7.4. Others

8. By Blade Size

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Blade Size
    • 8.1.2. Market Attractiveness Index, By Blade Size
  • 8.2. <30 meters*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. 30-60 meters
  • 8.4. >60 meters

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Onshore*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Offshore

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Blade Size
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Blade Size
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Russia
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Blade Size
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Blade Size
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Blade Size
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Vestas Wind Systems *
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. LM Wind Power
  • 12.3. Siemens Gamesa
  • 12.4. Suzlon Energy
  • 12.5. Enercon
  • 12.6. Nordex Group
  • 12.7. GE Renewable Energy
  • 12.8. ACCIONA Windpower
  • 12.9. Goldwind
  • 12.10. WINDAR Renovables

LIST NOT EXHAUSTIVE

  • 12.11. About Us and Services
  • 12.12. Contact Us