表紙:EV用バッテリー管理システム(BMS)市場-世界の市場規模、シェア、動向分析、機会、予測レポート、2019-2029年
市場調査レポート
商品コード
1301788

EV用バッテリー管理システム(BMS)市場-世界の市場規模、シェア、動向分析、機会、予測レポート、2019-2029年

Electric Vehicle Battery Management System Market- Global Size, Share, Trend Analysis, Opportunity and Forecast Report, 2019-2029, Segmented By Vehicle ; By Configuration ; By Design ; By Topology ; By Voltage ; By Cell Balancing Method ; By Region

出版日: | 発行: Blueweave Consulting | ページ情報: 英文 400 Pages | 納期: 2~3営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.95円
EV用バッテリー管理システム(BMS)市場-世界の市場規模、シェア、動向分析、機会、予測レポート、2019-2029年
出版日: 2023年06月19日
発行: Blueweave Consulting
ページ情報: 英文 400 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

EV用バッテリー管理システム(BMS)の世界市場規模は2029年までに288億2,000万米ドルに達する

EV用バッテリー管理システム(BMS)の世界市場は、二次電池の採用増加とプラグインハイブリッドEV(PHEV)の需要拡大で活況を呈している

戦略コンサルティングと市場調査の大手企業であるBlueWeave Consultingは、最近の調査で、2022年のEV用バッテリー管理システム(BMS)の世界市場規模を42億5,000万米ドルと推定しました。2023年から2029年にかけての予測期間中、BlueWeaveは世界のEV用バッテリー管理システム(BMS)市場規模がCAGR 31.6%という著しい成長を遂げ、2029年には288億2,000万米ドルに達すると予測しています。世界のEV用バッテリー管理システム(BMS)市場の主な成長促進要因としては、EVの普及拡大、環境問題への関心の高まりとクリーンな輸送を促進する政府の取り組み、電動モビリティ用の急速充電バッテリーへの需要の急増、効率と性能を向上させたバッテリーパックへのニーズの高まりなどが挙げられます。また、より高いエネルギー密度を持つEV用バッテリーの開発や新しいセル化学の探求を目的とした研究開発投資が活発化しているため、同市場は同業界の企業にとって有望な成長機会となっています。EVの普及促進に政府が力を入れるようになり、補助金やインセンティブも相まって、EVの需要が高まり、その結果、EV用バッテリー管理システム(BMS)産業が活性化すると予想されます。例えば、カリフォルニア州は2026年までに自動車販売台数の35%をゼロエミッション車とすることを義務付けており、2021年には同州で販売された自動車の12%がゼロエミッション車でした。コネチカット州、メイン州、オレゴン州など他の州も同様の規制を採用しています。政府によって様々なレベルで実施されているこれらの厳しい規則や法律は、分析期間中の市場全体の収益成長に寄与しています。

本レポートの詳細な分析により、世界のEV用バッテリー管理システム(BMS)市場の成長可能性、今後の動向、統計に関する情報を提供します。また、総市場規模の予測を促進する要因も取り上げています。当レポートは、世界のEV用バッテリー管理システム(BMS)市場の最新技術動向や、意思決定者が戦略的な意思決定を行う際に役立つ業界インサイトを提供することをお約束します。さらに、市場の成長促進要因・課題・競争力についても分析しています。

目次

第1章 調査の枠組み

第2章 エグゼクティブサマリー

第3章 世界のEV用バッテリー管理システム(BMS)市場の洞察

  • 業界のバリューチェーン分析
  • DROC分析
    • 成長促進要因
      • プラグインハイブリッド電気自動車(PHEV)の需要の増加
      • 充電式バッテリーの採用が拡大
    • 抑制要因
      • EV用バッテリー管理システム(BMS)に関連するコストの上昇
      • 充電ステーションの数が少ない
    • 機会
      • EVの増加傾向
      • 高エネルギー密度のEV用バッテリー開発に向けた研究開発投資の拡大
    • 課題
      • バッテリー管理システム(BMS)の開発に関する標準化された規制の欠如
  • 技術の進歩/最近の開発
  • 規制の枠組み
  • ポーターのファイブフォース分析

第4章 世界のEV用バッテリー管理システム(BMS)市場概要

  • 市場規模と予測、2019~2029年
    • 金額別
  • 市場シェアと予測
    • 車両別
      • EV
      • 小型商用車
      • 大型商用車
      • 電動スクーター・オートバイ
      • 電動自転車
    • 構成別
      • 36セル以下
      • 48セル~84セル
      • 96セル~108セル
      • 144セル~180セル
      • 180セル以上
    • 設計別
      • 保護回路モデル
      • バッテリー管理システム(BMS)
    • トポロジー別
      • 集中型BMS
      • 分散型BMS
      • モジュール型BMS
    • 電圧別
      • 低電圧BMS
      • 高電圧BMS
    • セルバランシング方式別
      • アクティブセルバランシング
      • パッシブセルバランシング
    • 地域別
      • 北米
      • 欧州
      • アジア太平洋(APAC)
      • ラテンアメリカ(LATAM)
      • 中東・アフリカ(MEA)

第5章 北米のEV用バッテリー管理システム(BMS)市場

  • 市場規模と予測、2019~2029年
    • 金額別
  • 市場シェアと予測
    • 車両別
    • 構成別
    • 設計別
    • トポロジー別
    • 電圧別
    • セルバランシング別
    • 国別
      • 米国
      • カナダ

第6章 欧州のEV用バッテリー管理システム(BMS)市場

  • 市場規模と予測、2019~2029年
    • 金額別
  • 市場シェアと予測
    • 車両別
    • 構成別
    • 設計別
    • トポロジー別
    • 電圧別
    • セルバランシング方式別
    • 国別
      • ドイツ
      • 英国
      • イタリア
      • フランス
      • スペイン
      • ベルギー
      • ロシア
      • オランダ
      • その他欧州

第7章 アジア太平洋地域のEV用バッテリー管理システム(BMS)市場

  • 市場規模と予測、2019~2029年
    • 金額別
  • 市場シェアと予測
    • 車両別
    • 構成別
    • 設計別
    • トポロジー別
    • 電圧別
    • 国別
      • 中国
      • インド
      • 日本
      • 韓国
      • オーストラリア・ニュージーランド
      • インドネシア
      • マレーシア
      • シンガポール
      • ベトナム
      • その他のAPAC

第8章 ラテンアメリカのEV用バッテリー管理システム(BMS)市場

  • 市場規模と予測、2019~2029年
    • 金額別
  • 市場シェアと予測
    • 車両別
    • 構成別
    • 設計別
    • トポロジー別
    • 電圧別
    • セルバランシング方式別
    • 国別
      • ブラジル
      • メキシコ
      • アルゼンチン
      • ペルー
      • その他のLATAM

第9章 中東・アフリカのEV用バッテリー管理システム(BMS)市場

  • 市場規模と予測、2019~2029年
    • 金額別
  • 市場シェアと予測
    • 車両別
    • 構成別
    • 設計別
    • トポロジー別
    • 電圧別
    • セルバランシング方式別
    • 国別
      • サウジアラビア
      • アラブ首長国連邦
      • カタール
      • クウェート
      • 南アフリカ
      • ナイジェリア
      • アルジェリア
      • その他のMEA

第10章 競合情勢

  • 主要企業とその製品のリスト
  • 世界のEV用バッテリー管理システム(BMS)企業の市場シェア分析、2022年
  • 動作パラメータによる競合ベンチマーキング
  • 主要な戦略的展開(合併、買収、パートナーシップなど)

第11章 世界のEV用バッテリー管理システム(BMS)市場に対するCOVID-19の影響

第12章 企業プロファイル(会社概要、財務マトリックス、競合情勢、主要な人材、主要な競合、連絡先住所、戦略的展望、 SWOT分析)

  • Leclanche SA
  • Sensata Technologies Holding PLC
  • Nuvation Energy
  • Renesas Electronics Corporation
  • Eberspaecher Vecture Inc.
  • STMicroelectronics N.V.
  • Panasonic Corporation
  • LION Smart GmbH
  • Ewert Energy Systems, Inc.
  • Navitas Systems LLC.
  • NXP Semiconductors N.V.
  • Analog Devices, Inc.
  • Merlin Equipment Ltd.
  • BMS PowerSafe
  • Maxim Integrated
  • Other Prominent Players

第13章 主要な戦略的推奨事項

第14章 調査手法

目次
Product Code: BWC23479

Global Electric Vehicle Battery Management System Market Size Set to Touch USD 28.82 billion by 2029

Global electric vehicle battery management system market is flourishing because of an increasing adoption of rechargeable batteries and growing demand for plug-in hybrid electric vehicles (PHEVs)

BlueWeave Consulting, a leading strategic consulting and market research firm, in its recent study, estimated Global Electric Vehicle Battery Management System Market size at USD 4.25 billion in 2022. During the forecast period between 2023 and 2029, BlueWeave expects Global Electric Vehicle Battery Management System Market size to grow at a significant CAGR of 31.6% reaching a value of USD 28.82 billion by 2029. Major growth drivers for the global electric vehicle battery management system market include an increasing adoption of electric vehicles, growing environmental concerns and government initiatives to promote clean transportation, surging demand for rapid charging batteries for electric mobility, and growing need for battery packs that offer enhanced efficiency and performance. Also, the market presents promising growth opportunities for companies operating in the industry due to the escalating research and development investments aimed at developing electric vehicle batteries with higher energy density and exploring new cell chemistries. The increasing government focus on promoting electric vehicle adoption, coupled with subsidies and incentives, is expected to drive demand for electric vehicles, consequently boosting the electric vehicle battery management system (EVBMS) industry. For example, California has mandated that 35% of automobile sales by 2026 must be zero-emission vehicles, and in 2021, 12% of cars sold in the state were zero-emission vehicles. Other states, such as Connecticut, Maine, and Oregon, have also adopted similar regulations. These stringent rules and laws implemented by governments at various levels are contributing to the revenue growth of the overall market during the period in analysis.

Global Electric Vehicle Battery Management System Market - Overview:

The global electric vehicle battery management system (BMS) market refers to the industry segment that focuses on the design, development, and implementation of systems and technologies for managing and controlling the batteries used in electric vehicles (EVs). The BMS plays a critical role in monitoring, protecting, and optimizing the performance, efficiency, and lifespan of EV batteries. It encompasses various components, including sensors, electronic control units, and communication interfaces, that work together to monitor battery parameters such as temperature, voltage, and state of charge. The primary objective of an electric vehicle BMS is to ensure the safe and efficient operation of the battery pack, maximize its performance, and extend its overall lifespan. With the increasing adoption of electric vehicles and the need for advanced battery technologies, the global electric vehicle BMS market is experiencing significant growth and innovation.

Impact of COVID -19 on Global Electric Vehicle Battery Management System Market

COVID-19 pandemic adversely impacted global electric vehicle battery management system market. This resulted in the enforcement of stringent lockdown measures by governments worldwide to curb the virus's spread and led to a significant decline in global car sales, with a 15% year-on-year decrease. The trading sector experienced a substantial impact, with a notable decline in sales revenue. The implementation of restrictions and lockdown measures resulted in the suspension of research and development initiatives, thereby halting progress in upcoming innovations and product development. However, the global electric vehicle (EV) market showed resilience during the lockdown period due to robust policy support, particularly in Europe, where 2020 marked an important year for meeting emissions standards. Many European countries, especially Germany, increased purchase incentives to stimulate EV adoption. Furthermore, the declining cost of batteries per kilowatt-hour enabled EV original equipment manufacturers (OEMs) to offer improved product options and performance. Major fleet operators like Walmart, Amazon, and United Parcel Services also accelerated their transition to EVs, further bolstering the EV market's growth. Additionally, governments worldwide implemented COVID-19 stimulus packages, which included financial incentives to encourage electric vehicle purchases. The strong sales growth in these markets contributed to the expansion of the EV battery management market.

Global Electric Vehicle Battery Management System Market - By Cell Balancing Method:

Based on cell balancing method, the global electric vehicle battery management system market is split into Active Cell Balancing and Passive Cell Balancing segments. The active cell balancing segment is expected to hold the highest market share during the forecast period. The active cell balancing technology offers superior performance compared to passive balancing methods. It actively redistributes energy among individual battery cells to ensure uniform cell voltages and optimal battery pack performance. This helps in maximizing the overall battery capacity, extending battery life, and improving the efficiency of the electric vehicle. Secondly, active cell balancing systems provide real-time monitoring and control of cell voltages, allowing for precise and accurate balancing. This ensures safe and reliable operation of the battery pack. Also, active cell balancing systems can adapt to different battery chemistries and configurations, making them suitable for a wide range of electric vehicle applications. These advantages contribute to the expected dominance of the active cell balancing segment in the global electric vehicle battery management system market.

Competitive Landscape:

Major players operating in the Global Electric Vehicle Battery Management System Market include: Leclanche SA, Sensata Technologies Holding PLC, Nuvation Energy, Renesas Electronics Corporation, Eberspaecher Vecture Inc., STMicroelectronics N.V., Panasonic Corporation, LION Smart GmbH, Ewert Energy Systems Inc., Navitas Systems LLC, NXP Semiconductors N.V., Analog Devices Inc., Merlin Equipment Ltd., BMS PowerSafe, and Maxim Integrated. To further enhance their market share, these companies employ various strategies, including mergers and acquisitions, partnerships, joint ventures, license agreements, and new product launches.

The in-depth analysis of the report provides information about growth potential, upcoming trends, and statistics of Global Electric Vehicle Battery Management System Market . It also highlights the factors driving forecasts of total market size. The report promises to provide recent technology trends in Global Electric Vehicle Battery Management System Market and industry insights to help decision-makers make sound strategic decisions. Furthermore, the report also analyzes the growth drivers, challenges, and competitive dynamics of the market.

Table of Contents

1. Research Framework

  • 1.1. Research Objective
  • 1.2. Vehicle Overview
  • 1.3. Market Segmentation

2. Executive Summary

3. Global Electric Vehicle Battery Management System Market Insights

  • 3.1. Industry Value Chain Analysis
  • 3.2. DROC Analysis
    • 3.2.1. Growth Drivers
      • 3.2.1.1. Increase in demand for plug-in hybrid electric vehicles (PHEVs)
      • 3.2.1.2. Growing adoption of rechargeable batteries
    • 3.2.2. Restraints
      • 3.2.2.1. Higher costs associated with electric vehicle battery management system
      • 3.2.2.2. Presence of lesser number of charging stations
    • 3.2.3. Opportunities
      • 3.2.3.1. Increasing trend of electric vehicles (EVs)
      • 3.2.3.2. Growing R&D investments for developing high energy density EV batteries
    • 3.2.4. Challenges
      • 3.2.4.1. Lack of standardized regulations for developing battery management systems
  • 3.3. Technology Advancements/Recent Developments
  • 3.4. Regulatory Framework
  • 3.5. Porter's Five Forces Analysis
    • 3.5.1. Bargaining Power of Suppliers
    • 3.5.2. Bargaining Power of Buyers
    • 3.5.3. Threat of New Entrants
    • 3.5.4. Threat of Substitutes
    • 3.5.5. Intensity of Rivalry

4. Global Electric Vehicle Battery Management System Market Overview

  • 4.1. Market Size & Forecast, 2019-2029
    • 4.1.1. By Value (USD Million)
  • 4.2. Market Share & Forecast
    • 4.2.1. By Vehicle
      • 4.2.1.1. Electric Cars
      • 4.2.1.2. Light Commercial Vehicles
      • 4.2.1.3. Heavy Commercial Vehicles
      • 4.2.1.4. E-scooters & Motorcycles
      • 4.2.1.5. E-bikes
    • 4.2.2. By Configuration
      • 4.2.2.1.1. Up to 36 Cells
      • 4.2.2.1.2. 48 Cells to 84 Cells
      • 4.2.2.1.3. 96 Cells to 108 Cells
      • 4.2.2.1.4. 144 Cells to 180 Cells
      • 4.2.2.1.5. More Than 180 Cells
    • 4.2.3. By Design
      • 4.2.3.1. Protection Circuit Model
      • 4.2.3.2. Battery Management Systems
    • 4.2.4. By Topology
      • 4.2.4.1. Centralized BMS
      • 4.2.4.2. De-centralized BMS
      • 4.2.4.3. Modular BMS
    • 4.2.5. By Voltage
      • 4.2.5.1. Low Voltage BMS
      • 4.2.5.2. High Voltage BMS
    • 4.2.6. By Cell Balancing Method
      • 4.2.6.1. Active Cell Balancing
      • 4.2.6.2. Passive Cell Balancing
    • 4.2.7. By Region
      • 4.2.7.1. North America
      • 4.2.7.2. Europe
      • 4.2.7.3. Asia Pacific (APAC)
      • 4.2.7.4. Latin America (LATAM)
      • 4.2.7.5. Middle East and Africa (MEA)

5. North America Electric Vehicle Battery Management System Market

  • 5.1. Market Size & Forecast, 2019-2029
    • 5.1.1. By Value (USD Million)
  • 5.2. Market Share & Forecast
    • 5.2.1. By Vehicle
    • 5.2.2. By Configuration
    • 5.2.3. By Design
    • 5.2.4. By Topology
    • 5.2.5. By Voltage
    • 5.2.6. By Cell Balancing Method
    • 5.2.7. By Country
      • 5.2.7.1. United States
      • 5.2.7.1.1. By Vehicle
      • 5.2.7.1.2. By Configuration
      • 5.2.7.1.3. By Design
      • 5.2.7.1.4. By Topology
      • 5.2.7.1.5. By Voltage
      • 5.2.7.1.6. By Cell Balancing Method
      • 5.2.7.2. Canada
      • 5.2.7.2.1. By Vehicle
      • 5.2.7.2.2. By Configuration
      • 5.2.7.2.3. By Design
      • 5.2.7.2.4. By Topology
      • 5.2.7.2.5. By Voltage
      • 5.2.7.2.6. By Cell Balancing Method

6. Europe Electric Vehicle Battery Management System Market

  • 6.1. Market Size & Forecast, 2019-2029
    • 6.1.1. By Value (USD Million)
  • 6.2. Market Share & Forecast
    • 6.2.1. By Vehicle
    • 6.2.2. By Configuration
    • 6.2.3. By Design
    • 6.2.4. By Topology
    • 6.2.5. By Voltage
    • 6.2.6. By Cell Balancing Method
    • 6.2.7. By Country
      • 6.2.7.1. Germany
      • 6.2.7.1.1. By Vehicle
      • 6.2.7.1.2. By Configuration
      • 6.2.7.1.3. By Design
      • 6.2.7.1.4. By Topology
      • 6.2.7.1.5. By Voltage
      • 6.2.7.1.6. By Cell Balancing Method
      • 6.2.7.2. United Kingdom
      • 6.2.7.2.1. By Vehicle
      • 6.2.7.2.2. By Configuration
      • 6.2.7.2.3. By Design
      • 6.2.7.2.4. By Topology
      • 6.2.7.2.5. By Voltage
      • 6.2.7.2.6. By Cell Balancing Method
      • 6.2.7.3. Italy
      • 6.2.7.3.1. By Vehicle
      • 6.2.7.3.2. By Configuration
      • 6.2.7.3.3. By Design
      • 6.2.7.3.4. By Topology
      • 6.2.7.3.5. By Voltage
      • 6.2.7.3.6. By Cell Balancing Method
      • 6.2.7.4. France
      • 6.2.7.4.1. By Vehicle
      • 6.2.7.4.2. By Configuration
      • 6.2.7.4.3. By Design
      • 6.2.7.4.4. By Topology
      • 6.2.7.4.5. By Voltage
      • 6.2.7.4.6. By Cell Balancing Method
      • 6.2.7.5. Spain
      • 6.2.7.5.1. By Vehicle
      • 6.2.7.5.2. By Configuration
      • 6.2.7.5.3. By Design
      • 6.2.7.5.4. By Topology
      • 6.2.7.5.5. By Voltage
      • 6.2.7.5.6. By Cell Balancing Method
      • 6.2.7.6. Belgium
      • 6.2.7.6.1. By Vehicle
      • 6.2.7.6.2. By Configuration
      • 6.2.7.6.3. By Design
      • 6.2.7.6.4. By Topology
      • 6.2.7.6.5. By Voltage
      • 6.2.7.6.6. By Cell Balancing Method
      • 6.2.7.7. Russia
      • 6.2.7.7.1. By Vehicle
      • 6.2.7.7.2. By Configuration
      • 6.2.7.7.3. By Design
      • 6.2.7.7.4. By Topology
      • 6.2.7.7.5. By Voltage
      • 6.2.7.7.6. By Cell Balancing Method
      • 6.2.7.8. The Netherlands
      • 6.2.7.8.1. By Vehicle
      • 6.2.7.8.2. By Configuration
      • 6.2.7.8.3. By Design
      • 6.2.7.8.4. By Topology
      • 6.2.7.8.5. By Voltage
      • 6.2.7.8.6. By Cell Balancing Method
      • 6.2.7.9. Rest of Europe
      • 6.2.7.9.1. By Vehicle
      • 6.2.7.9.2. By Configuration
      • 6.2.7.9.3. By Design
      • 6.2.7.9.4. By Topology
      • 6.2.7.9.5. By Voltage
      • 6.2.7.9.6. By Cell Balancing Method

7. Asia Pacific Electric Vehicle Battery Management System Market

  • 7.1. Market Size & Forecast, 2019-2029
    • 7.1.1. By Value (USD Million)
  • 7.2. Market Share & Forecast
    • 7.2.1. By Vehicle
    • 7.2.2. By Configuration
    • 7.2.3. By Design
    • 7.2.4. By Topology
    • 7.2.5. By Voltage
    • 7.2.6. By Country
      • 7.2.6.1. China
      • 7.2.6.1.1. By Vehicle
      • 7.2.6.1.2. By Configuration
      • 7.2.6.1.3. By Design
      • 7.2.6.1.4. By Topology
      • 7.2.6.1.5. By Voltage
      • 7.2.6.1.6. By Cell Balancing Method
      • 7.2.6.2. India
      • 7.2.6.2.1. By Vehicle
      • 7.2.6.2.2. By Configuration
      • 7.2.6.2.3. By Design
      • 7.2.6.2.4. By Topology
      • 7.2.6.2.5. By Voltage
      • 7.2.6.2.6. By Cell Balancing Method
      • 7.2.6.3. Japan
      • 7.2.6.3.1. By Vehicle
      • 7.2.6.3.2. By Configuration
      • 7.2.6.3.3. By Design
      • 7.2.6.3.4. By Topology
      • 7.2.6.3.5. By Voltage
      • 7.2.6.3.6. By Cell Balancing Method
      • 7.2.6.4. South Korea
      • 7.2.6.4.1. By Vehicle
      • 7.2.6.4.2. By Configuration
      • 7.2.6.4.3. By Design
      • 7.2.6.4.4. By Topology
      • 7.2.6.4.5. By Voltage
      • 7.2.6.4.6. By Cell Balancing Method
      • 7.2.6.5. Australia & New Zealand
      • 7.2.6.5.1. By Vehicle
      • 7.2.6.5.2. By Configuration
      • 7.2.6.5.3. By Design
      • 7.2.6.5.4. By Topology
      • 7.2.6.5.5. By Voltage
      • 7.2.6.5.6. By Cell Balancing Method
      • 7.2.6.6. Indonesia
      • 7.2.6.6.1. By Vehicle
      • 7.2.6.6.2. By Configuration
      • 7.2.6.6.3. By Design
      • 7.2.6.6.4. By Topology
      • 7.2.6.6.5. By Voltage
      • 7.2.6.6.6. By Cell Balancing Method
      • 7.2.6.7. Malaysia
      • 7.2.6.7.1. By Vehicle
      • 7.2.6.7.2. By Configuration
      • 7.2.6.7.3. By Design
      • 7.2.6.7.4. By Topology
      • 7.2.6.7.5. By Voltage
      • 7.2.6.7.6. By Cell Balancing Method
      • 7.2.6.8. Singapore
      • 7.2.6.8.1. By Vehicle
      • 7.2.6.8.2. By Configuration
      • 7.2.6.8.3. By Design
      • 7.2.6.8.4. By Topology
      • 7.2.6.8.5. By Voltage
      • 7.2.6.8.6. By Cell Balancing Method
      • 7.2.6.9. Vietnam
      • 7.2.6.9.1. By Vehicle
      • 7.2.6.9.2. By Configuration
      • 7.2.6.9.3. By Design
      • 7.2.6.9.4. By Topology
      • 7.2.6.9.5. By Voltage
      • 7.2.6.9.6. By Cell Balancing Method
      • 7.2.6.10. Rest of APAC
      • 7.2.6.10.1. By Vehicle
      • 7.2.6.10.2. By Configuration
      • 7.2.6.10.3. By Design
      • 7.2.6.10.4. By Topology
      • 7.2.6.10.5. By Voltage
      • 7.2.6.10.6. By Cell Balancing Method

8. Latin America Electric Vehicle Battery Management System Market

  • 8.1. Market Size & Forecast, 2019-2029
    • 8.1.1. By Value (USD Million)
  • 8.2. Market Share & Forecast
    • 8.2.1. By Vehicle
    • 8.2.2. By Configuration
    • 8.2.3. By Design
    • 8.2.4. By Topology
    • 8.2.5. By Voltage
    • 8.2.6. By Cell Balancing Method
    • 8.2.7. By Country
      • 8.2.7.1. Brazil
      • 8.2.7.1.1. By Vehicle
      • 8.2.7.1.2. By Configuration
      • 8.2.7.1.3. By Design
      • 8.2.7.1.4. By Topology
      • 8.2.7.1.5. By Voltage
      • 8.2.7.1.6. By Cell Balancing Method
      • 8.2.7.2. Mexico
      • 8.2.7.2.1. By Vehicle
      • 8.2.7.2.2. By Configuration
      • 8.2.7.2.3. By Design
      • 8.2.7.2.4. By Topology
      • 8.2.7.2.5. By Voltage
      • 8.2.7.2.6. By Cell Balancing Method
      • 8.2.7.3. Argentina
      • 8.2.7.3.1. By Vehicle
      • 8.2.7.3.2. By Configuration
      • 8.2.7.3.3. By Design
      • 8.2.7.3.4. By Topology
      • 8.2.7.3.5. By Voltage
      • 8.2.7.3.6. By Cell Balancing Method
      • 8.2.7.4. Peru
      • 8.2.7.4.1. By Vehicle
      • 8.2.7.4.2. By Configuration
      • 8.2.7.4.3. By Design
      • 8.2.7.4.4. By Topology
      • 8.2.7.4.5. By Voltage
      • 8.2.7.4.6. By Cell Balancing Method
      • 8.2.7.5. Rest of LATAM
      • 8.2.7.5.1. By Vehicle
      • 8.2.7.5.2. By Configuration
      • 8.2.7.5.3. By Design
      • 8.2.7.5.4. By Topology
      • 8.2.7.5.5. By Voltage
      • 8.2.7.5.6. By Cell Balancing Method

9. Middle East & Africa Electric Vehicle Battery Management System Market

  • 9.1. Market Size & Forecast, 2019-2029
    • 9.1.1. By Value (USD Million)
  • 9.2. Market Share & Forecast
    • 9.2.1. By Vehicle
    • 9.2.2. By Configuration
    • 9.2.3. By Design
    • 9.2.4. By Topology
    • 9.2.5. By Voltage
    • 9.2.6. By Cell Balancing Method
    • 9.2.7. By Country
      • 9.2.7.1. Saudi Arabia
      • 9.2.7.1.1. By Vehicle
      • 9.2.7.1.2. By Configuration
      • 9.2.7.1.3. By Design
      • 9.2.7.1.4. By Topology
      • 9.2.7.1.5. By Voltage
      • 9.2.7.1.6. By Cell Balancing Method
      • 9.2.7.2. UAE
      • 9.2.7.2.1. By Vehicle
      • 9.2.7.2.2. By Configuration
      • 9.2.7.2.3. By Design
      • 9.2.7.2.4. By Topology
      • 9.2.7.2.5. By Voltage
      • 9.2.7.2.6. By Cell Balancing Method
      • 9.2.7.3. Qatar
      • 9.2.7.3.1. By Vehicle
      • 9.2.7.3.2. By Configuration
      • 9.2.7.3.3. By Design
      • 9.2.7.3.4. By Topology
      • 9.2.7.3.5. By Voltage
      • 9.2.7.3.6. By Cell Balancing Method
      • 9.2.7.4. Kuwait
      • 9.2.7.4.1. By Vehicle
      • 9.2.7.4.2. By Configuration
      • 9.2.7.4.3. By Design
      • 9.2.7.4.4. By Topology
      • 9.2.7.4.5. By Voltage
      • 9.2.7.4.6. By Cell Balancing Method
      • 9.2.7.5. South Africa
      • 9.2.7.5.1. By Vehicle
      • 9.2.7.5.2. By Configuration
      • 9.2.7.5.3. By Design
      • 9.2.7.5.4. By Topology
      • 9.2.7.5.5. By Voltage
      • 9.2.7.5.6. By Cell Balancing Method
      • 9.2.7.6. Nigeria
      • 9.2.7.6.1. By Vehicle
      • 9.2.7.6.2. By Configuration
      • 9.2.7.6.3. By Design
      • 9.2.7.6.4. By Topology
      • 9.2.7.6.5. By Voltage
      • 9.2.7.6.6. By Cell Balancing Method
      • 9.2.7.7. Algeria
      • 9.2.7.7.1. By Vehicle
      • 9.2.7.7.2. By Configuration
      • 9.2.7.7.3. By Design
      • 9.2.7.7.4. By Topology
      • 9.2.7.7.5. By Voltage
      • 9.2.7.7.6. By Cell Balancing Method
      • 9.2.7.8. Rest of MEA
      • 9.2.7.8.1. By Vehicle
      • 9.2.7.8.2. By Configuration
      • 9.2.7.8.3. By Design
      • 9.2.7.8.4. By Topology
      • 9.2.7.8.5. By Voltage
      • 9.2.7.8.6. By Cell Balancing Method

10. Competitive Landscape

  • 10.1. List of Key Players and Their Offerings
  • 10.2. Global Electric Vehicle Battery Management System Company Market Share Analysis, 2022
  • 10.3. Competitive Benchmarking, By Operating Parameters
  • 10.4. Key Strategic Developments (Mergers, Acquisitions, Partnerships, etc.)

11. Impact of Covid-19 on Global Electric Vehicle Battery Management System Market

12. Company Profile (Company Overview, Financial Matrix, Competitive Landscape, Key Personnel, Key Competitors, Contact Address, Strategic Outlook, SWOT Analysis)

  • 12.1. Leclanche SA
  • 12.2. Sensata Technologies Holding PLC
  • 12.3. Nuvation Energy
  • 12.4. Renesas Electronics Corporation
  • 12.5. Eberspaecher Vecture Inc.
  • 12.6. STMicroelectronics N.V.
  • 12.7. Panasonic Corporation
  • 12.8. LION Smart GmbH
  • 12.9. Ewert Energy Systems, Inc.
  • 12.10. Navitas Systems LLC.
  • 12.11. NXP Semiconductors N.V.
  • 12.12. Analog Devices, Inc.
  • 12.13. Merlin Equipment Ltd.
  • 12.14. BMS PowerSafe
  • 12.15. Maxim Integrated
  • 12.16. Other Prominent Players

13. Key Strategic Recommendations

14. Research Methodology

  • 14.1. Qualitative Research
    • 14.1.1. Primary & Secondary Research
  • 14.2. Quantitative Research
  • 14.3. Market Breakdown & Data Triangulation
    • 14.3.1. Secondary Research
    • 14.3.2. Primary Research
  • 14.4. Breakdown of Primary Research Respondents, By Region
  • 14.5. Assumptions & Limitations