![]() |
市場調査レポート
商品コード
1528162
防衛用3Dプリンティングの世界市場 (2024~2034年)Global Defense 3D Printing Market 2024-2034 |
||||||
|
防衛用3Dプリンティングの世界市場 (2024~2034年) |
出版日: 2024年06月08日
発行: Aviation & Defense Market Reports (A&D)
ページ情報: 英文 150+ Pages
納期: 3営業日
|
世界の防衛用3Dプリンティング市場は、2024年に30億米ドルと推定され、予測期間中 (2024~2034年) に10.59%の年間平均成長率 (CAGR) で拡大し、2034年までに82億1,000万米ドルに成長すると予測されています。
積層造形 (AM) としても知られる3Dプリンティングは、防衛産業に革命をもたらしています。この技術は、材料を連続的に積層することで3次元物体を作成するものです。材料を除去して目的の形状を形成する従来の除去造型とは対照的に、3Dプリンティングは物体を層ごとに作り上げます。防衛への影響は大きいです。ラピッドプロトタイピングから最終使用部品の製造まで、3Dプリンティングは防衛システムの設計、製造、配備の方法を変えつつあります。
3Dプリンティングが防衛分野に与える影響は多面的です。重要な利点の1つはラピッドプロトタイピングで、3Dプリンティングによって設計から製造までのサイクルが加速され、プロトタイプの迅速な反復と改良が可能になります。この機能は、新しい兵器システム、車両、装備品の迅速な開発につながり、変化する防衛ニーズへの迅速な対応を可能にします。もう1つの利点は、サプライチェーンの最適化です。部品の現地生産を可能にすることで、3Dプリンティングは複雑で脆弱なサプライチェーンへの依存を軽減します。この機能は、従来の供給ラインが途絶える可能性のある遠隔地や敵対的な環境において特に有益です。3Dプリンティングはまた、重量と強度を最適化する複雑な形状の作成を可能にすることで、軽量化を促進します。これは、軽量化が性能と効率の向上につながる航空宇宙や地上車両にとって極めて重要です。この技術はさらにカスタマイズ性を高め、特定のニーズや条件に合わせて高度にカスタマイズされた部品やコンポーネントの製造を可能にします。この柔軟性により、防衛用途ではより精密なソリューションが可能になります。最後に、3Dプリンティングは、オンデマンドでスペアパーツを製造することにより、ロジスティクスとメンテナンスにメリットをもたらし、ロジスティクスの課題とダウンタイムを削減します。この機能により、防衛システムの保守と修理が迅速に行えるようになり、さまざまな状況での運用態勢が維持されます。
防衛産業における3Dプリンティングの普及を促進している要因はいくつかあります。大きな要因の一つが操業効率です:部品やプロトタイプを迅速に製造できるため、効率が大幅に向上してコストが削減され、防衛技術の開発と展開が合理化されます。3Dプリンティング材料とプロセスの継続的な改善によって応用範囲が拡大し、この技術がますます汎用的で効果的になるため、技術進歩も重要な役割を果たします。サプライチェーンの回復力も重要な推進力です。世界なサプライチェーンへの依存を減らすことで、3Dプリンティングは防衛活動の回復力を高め、厳しい条件下でも重要な部品を現地で生産できるようにします。地理的な利点は、3Dプリンティングの採用にさらに貢献します。特に、軍事基地が分散している国では、部品の現地生産によって物流の課題を軽減できます。最後に、3Dプリンティングは防衛産業における革新と実験の文化を育みます。この技術は、新しく改良された防衛技術の開発を促進し、進歩を促し、急速に進化する分野における競争力を維持します。
防衛用3Dプリンティングの地域動向は、技術的成熟度、経済状況、地政学的優先順位によって異なります。3Dプリンティングのパイオニアである米国では、防衛用途の技術に多額の投資が行われています。ここでの焦点は、高性能コンポーネントを製造するための高度な材料とプロセスの開発であり、防衛技術の進歩における米国の主導的役割を反映しています。欧州では、各国が防衛のための3Dプリンティングの可能性を積極的に模索しており、連携と標準化に重点を置いています。欧州諸国は、共通の標準を開発し、知識を共有するために協力しています。これは、さまざまな防衛システムに3Dプリンティングを統合し、全体的な能力を強化するのに役立ちます。アジアでは、中国や韓国などの国々が3Dプリンティング能力を急速に向上させています。国内の産業政策と防衛予算の拡大に後押しされ、これらの国々は、防衛部門を強化し、さまざまな軍事用途をサポートするために、3Dプリンティング技術に多額の投資を行っています。技術革新で知られるイスラエルは、軍事目的で3Dプリンティングを効果的に活用しています。同国は、無人航空機 (UAV) やその他の高度なシステムの製造にこの技術を活用しており、防衛業務に最先端技術を統合するリーダーとしての役割を示しています。
オーストラリア陸軍は、国防分野における金属3Dプリンティングの潜在的な機会を奨励し続けています。オーストラリア陸軍とSPEE3Dは、2021年も協力を継続し、さらに12ヶ月間SPEE3Dの技術をテストする予定です。オーストラリア陸軍の第1戦闘支援大隊は、地元企業であるSPEE3Dに再び協力の機会を与えました。今回の提携では、容易に入手可能な独自の金属補修部品のストックを大幅に強化する可能性のある新技術の開発に集中します。
海事・防衛産業のために、カナダは初の3Dプリント金属研究施設を建設しました。ニューブランズウィック大学は、CFM (Custom Fabricators and Machinists) およびニューブランズウィック州とノバスコシア州のコミュニティ機関と共同で、Marine Additive Manufacturing Centre of Excellenceを設立しました。このセンターは、金属3Dプリンティングを使用して海洋産業向けの認定カスタム部品を製造する国内初のセンターであり、研究、商業化、労働力の開発と訓練を兼ね備えています。センター長でUNB機械工学准教授のモフセン・モハマディ博士がセンターの研究開発活動を担当します。
スペインの造船会社Navantiaは、積層造形を利用してスペイン海軍のF-110フリゲート (軍艦) 5隻を建造することで国防省と合意しました。同企業によると、これらの艦船は、3Dプリンターで製造された部品や、艦船を脅威から守るサイバーセキュリティ・システムなど、インダストリー4.0技術を取り入れた艦隊初の艦船となります。5隻のフリゲート艦は、スペイン海軍のASTILLERO 4.0フレームワークの一環として、最先端の統合制御・シミュレーションシステム (デジタルツイン) を使用して建造されます。このフレームワークは、より効果的な輸送ネットワークを構築するためにデジタル化を活用し、船舶の建造方法を変えようとするNavantiaの取り組みの一部です。
The Global Defense 3D Printing Market is estimated at USD 3.00 billion in 2024, projected to grow to USD 8.21 billion by 2034 at a Compound Annual Growth Rate (CAGR) of 10.59% over the forecast period 2024-2034.
3D printing, also known as additive manufacturing, is revolutionizing the defense industry. This technology involves creating three-dimensional objects by successively layering materials. In contrast to traditional subtractive manufacturing, which removes material to form a desired shape, 3D printing builds up objects layer by layer. The implications for defense are profound. From rapid prototyping to the production of end-use parts, 3D printing is transforming how defense systems are designed, manufactured, and deployed.
The impact of 3D printing on the defense sector is multifaceted. One significant advantage is rapid prototyping, where 3D printing accelerates the design-to-production cycle, enabling rapid iteration and refinement of prototypes. This capability leads to faster development of new weapons systems, vehicles, and equipment, allowing for quicker adaptation to changing defense needs. Another benefit is supply chain optimization. By enabling local production of parts, 3D printing reduces reliance on complex and vulnerable supply chains. This capability is particularly beneficial in remote or hostile environments, where traditional supply lines may be disrupted. 3D printing also facilitates light weighting by allowing for the creation of complex geometries that optimize weight and strength. This is crucial for aerospace and ground vehicles, where weight reduction can lead to improved performance and efficiency. The technology further enhances customization, enabling the production of highly customized parts and components tailored to specific needs and conditions. This flexibility allows for more precise solutions in defense applications. Finally, 3D printing offers advantages in logistics and maintenance by producing spare parts on demand, reducing logistical challenges and downtime. This capability ensures that defense systems can be maintained and repaired quickly, maintaining operational readiness in various situations.
Several factors are driving the adoption of 3D printing in the defense industry. One major factor is operational efficiency; the ability to rapidly produce parts and prototypes significantly improves efficiency and reduces costs, streamlining the development and deployment of defense technologies. Technological advancements also play a crucial role, as continuous improvements in 3D printing materials and processes expand the range of applications, making the technology increasingly versatile and effective. Supply chain resilience is another key driver. By reducing reliance on global supply chains, 3D printing enhances the resilience of defense operations, ensuring that critical components can be produced locally even in challenging conditions. Geographic advantages further contribute to the adoption of 3D printing, particularly for countries with dispersed military bases, where local production of parts can mitigate logistical challenges. Finally, 3D printing fosters a culture of innovation and experimentation within the defense industry. This technology encourages the development of new and improved defense technologies, driving progress and maintaining a competitive edge in a rapidly evolving field.
Regional trends in defense 3D printing vary based on technological maturity, economic conditions, and geopolitical priorities. In the United States, which is a pioneer in 3D printing, significant investments have been made in the technology for defense applications. The focus here is on developing advanced materials and processes to produce high-performance components, reflecting the country's leading role in advancing defense technologies. In Europe, countries are actively exploring the potential of 3D printing for defense, with a strong emphasis on collaboration and standardization. European nations are working together to develop common standards and share knowledge, which helps in integrating 3D printing into various defense systems and enhancing overall capabilities. In Asia, countries like China and South Korea are rapidly advancing their 3D printing capabilities. Driven by domestic industrial policies and expanding defense budgets, these nations are investing heavily in 3D printing technology to bolster their defense sectors and support a range of military applications. Israel, known for its innovation, has effectively leveraged 3D printing for military purposes. The country utilizes the technology for the production of unmanned aerial vehicles (UAVs) and other advanced systems, showcasing its role as a leader in integrating cutting-edge technologies into its defense operations.
The Australian Army continues to encourage potential opportunities for metal 3D printing within the Defense sector. The Australian Army and SPEE3D will continue their collaboration in 2021, with plans to test SPEE3D technology for an additional 12 months. Once more, the 1st Combat Service Support Battalion of the Australian Army has given local firm SPEE3D the chance to work with them. This time, the alliance will concentrate on creating new techniques that might vastly enhance the stock of readily accessible unique metal repair parts.
For the maritime and defence industries, Canada constructed its first 3D printing metal research facility. The University of New Brunswick, in collaboration with Custom Fabricators and Machinists (CFM) and community institutions in New Brunswick and Nova Scotia, established the Marine Additive Manufacturing Centre of Excellence. The centre, which is the first in the nation to use metal 3D printing to make certified custom parts for the marine industry, will combine research, commercialization, and workforce development and training. The center's director and associate professor of mechanical engineering at UNB, Dr. Mohsen Mohammadi, will be in charge of the center's research and development activities.
The Spanish shipbuilder Navantia has an agreement with the Ministry of Defense to build five F-110 frigates (warships) for the Spanish Navy using additive manufacturing. These ships will be the first in the fleet, according to the business, to incorporate Industry 4.0 technologies with 3D printed components and cybersecurity systems that protect ships from threats. The five frigates will be built using cutting-edge integrated control and simulation systems, or a digital twin, as part of the Spanish navy's ASTILLERO 4.0 framework. This framework is a component of Navantia's effort to change the way ships are built so that it takes advantage of digitalization to create more effective transportation networks.
Defense 3D Printing Market Report Definition
Defense 3D Printing Market Segmentation
By Application
By Region
By Material
Defense 3D Printing Market Analysis for next 10 Years
The 10-year Defense 3D Printing Market analysis would give a detailed overview of Defense 3D Printing Market growth, changing dynamics, technology adoption overviews and the overall market attractiveness is covered in this chapter.
Market Technologies of Defense 3D Printing Market
This segment covers the top 10 technologies that is expected to impact this market and the possible implications these technologies would have on the overall market.
Global Defense 3D Printing Market Forecast
The 10-year Defense 3D Printing Market forecast of this market is covered in detailed across the segments which are mentioned above.
Regional Defense 3D Printing Market Trends & Forecast
The regional Defense 3D Printing Market trends, drivers, restraints and Challenges of this market, the Political, Economic, Social and Technology aspects are covered in this segment. The market forecast and scenario analysis across regions are also covered in detailed in this segment. The last part of the regional analysis includes profiling of the key companies, supplier landscape and company benchmarking. The current market size is estimated based on the normal scenario.
North America
Drivers, Restraints and Challenges
PEST
Market Forecast & Scenario Analysis
Key Companies
Supplier Tier Landscape
Company Benchmarking
Europe
Middle East
APAC
South America
Country Analysis of Defense 3D Printing Market
This chapter deals with the key defense programs in this market, it also covers the latest news and patents which have been filed in this market. Country level 10 year market forecast and scenario analysis are also covered in this chapter.
US
Defense Programs
Latest News
Patents
Current levels of technology maturation in this market
Market Forecast & Scenario Analysis
Canada
Italy
France
Germany
Netherlands
Belgium
Spain
Sweden
Greece
Australia
South Africa
India
China
Russia
South Korea
Japan
Malaysia
Singapore
Brazil
Opportunity Matrix for Defense 3D Printing Market
The opportunity matrix helps the readers understand the high opportunity segments in this market.
Expert Opinions on Defense 3D printing Market Report Report
Hear from our experts their opinion of the possible analysis for this market.
Conclusions
About Aviation and Defense Market Reports