表紙:新たな電子・電気・冷却用途におけるバナジウム化合物:市場および技術 (2024-2044年)
市場調査レポート
商品コード
1462398

新たな電子・電気・冷却用途におけるバナジウム化合物:市場および技術 (2024-2044年)

Vanadium Compounds in Emerging Electronics, Electrics, Cooling: Markets, Technologies 2024-2044

出版日: | 発行: Zhar Research | ページ情報: 英文 423 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=158.53円
新たな電子・電気・冷却用途におけるバナジウム化合物:市場および技術 (2024-2044年)
出版日: 2024年04月15日
発行: Zhar Research
ページ情報: 英文 423 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要
レポート統計
バナジウム関連研究論文の調査 - 2024年・2023年: 460
新しいインフォグラム・グラフ・表: 157
調査対象企業 85
2024~2044年の予測ライン 67
SWOT評価: 15
章構成 8

市場の急成長:

本レポートでは、新たな電子・電気・冷却用途におけるバナジウム化合物の市場価値が8倍に増加するという驚くべき結果を算出しています。これまでの成長は、強力な成長市場であるレドックスフロー電池の液体硫酸バナジウムアノライトとカソライトがもたらしていますが、今後は付加価値を高める洗練された形態のバナジウム固体によって大きく牽引されると考えられています。これらには、2次元化合物、MXen、グラフェン複合体、バナジン酸塩、中空ナノ球、インターカレート型カソード、エレクトロクロミックウィンドウなど、さまざまなものが含まれます。

キャプション

電子・電気・冷却用途におけるバナジウム化合物:先導的研究が成功した場合、2024-2044年の市場規模は10億米ドルとなる見通し (出典調査レポート:Vanadium compounds in emerging electronics, electrics, cooling: markets, technologies 2024-2044)

キャプション

バナジウム化合物とテラヘルツギャップ (出典調査レポート:Vanadium compounds in emerging electronics, electrics, cooling: markets, technologies 2024-2044)

当レポートでは、新たな電子・電気・冷却用途におけるバナジウム化合物の市場および技術を調査し、現在利用されているバナジウム化合物の構造・形態・形式と今後もっとも有望な構造・形態・形式、通信・キャパシタ・電池など主要用途における研究パイプラインの動向と成長機会などをまとめています。

目次

第1章 エグゼクティブサマリー・総論

第2章 電子・電気・熱用途で重要となるバナジウム化合物の構造・形態・形式

  • 概要
  • 異なる酸化状態の液体バナジウム化合物
  • もっとも有望な固体バナジウム化合物構造
    • 概況
    • 酸化バナジウムの構造
    • バナジウムカルコゲニドの構造
    • バナジウムペロブスカイト構造
    • バナジウム2D化合物
    • 研究されている段階、形態、形式の他の例
  • 製造における進歩:形式別

第3章 将来の6G通信、テラヘルツエレクトロニクス、メタマテリアル、メタサーフェス、メタデバイスにおけるバナジウム化合物

  • 概要
  • 現在理解されている6G通信のSWOT評価
  • 6G通信開発におけるバナジウム化合物の競合上の位置づけ
  • 6G研究におけるバナジウム化合物の優先順位
  • バナジウム化合物とテラヘルツギャップ
  • 6G、THz、メタサーフェス向けバナジウム化合物の研究パイプライン分析

第4章 将来のスーパーキャパシタ、擬似キャパシタ、リチウムイオンキャパシタ、その他のバッテリースーパーキャパシタハイブリッド (BSH) におけるバナジウム化合物

  • イントロダクション:適切なニーズと技術の選択
  • スーパーキャパシタとその変種の3つのSWOT評価
  • スーパーキャパシタとその変種を改善するための戦略
  • バナジウム化合物の登場場所
  • スーパーキャパシタ向けバナジウム関連研究パイプラインの分析:2024年
  • スーパーキャパシタ向けバナジウム関連研究パイプラインの分析:2023年以前
  • 擬似容量の理解と擬似キャパシタにおけるその最適化
  • 擬似キャパシタ向けバナジウム関連研究パイプラインの分析:2024年
  • BSH (ハイブリッドイオンキャパシタ、非対称スーパーキャパシタ) の理解
  • バナジウム関連BSH研究パイプラインの分析:2024年
  • バナジウム関連BSH研究パイプラインの分析:2023年以前

第5章 将来のレギュラー&ハイブリッドレドックスフロー電池におけるバナジウム化合物

  • 概要
  • RFBハードウェアの基本設計と最新のバナジウム関連研究
  • RFB技術に関する19のより詳細な結論
  • バナジウムRFBと代替品の最新の商業動向
  • RFBおよびRFBバナジウム製造業者48社の比較:8項目 (名称・ブランド・技術・技術準備・グリッド外への焦点・LDESへの焦点・コメント (90ページ))

第6章 将来のアルミニウムイオン、アンモニウムイオン、カルシウムイオン、鉄イオン、リチウムイオン、マグネシウムイオン、カリウムイオン、ナトリウムイオン、亜鉛イオン電池におけるバナジウム化合物

  • 概要
  • 最近のイオン電池研究におけるバナジウム化合物
  • バナジウム化合物に関する重要な研究論文の数:電池化学別
  • イオン電池用バナジウム酸化物ツールキット
  • アルミニウムイオン電池研究におけるバナジウム化合物
  • アンモニウムイオン電池研究におけるバナジウム化合物
  • カルシウムイオン電池研究におけるバナジウム化合物
  • 鉄イオン電池研究におけるバナジウム化合物
  • リチウムイオン電池研究におけるバナジウム化合物
  • マグネシウムイオン電池研究におけるバナジウム化合物
  • カリウムイオン電池研究におけるバナジウム化合物
  • ナトリウムイオン電池研究におけるバナジウム化合物
  • 亜鉛イオン電池研究におけるバナジウム化合物

第7章 将来の固体冷却、熱防止、スマートウィンドウにおけるバナジウム化合物

  • 重複するトピック
  • 将来のバナジウム化合物需要の指標としての調査分析
  • 冷却ツールキット
  • 固体冷却材料とデバイスに関する総合的なテーマに関する報告
  • 固体冷却用バナジウム化合物
  • 広く使用され、提案されている望ましくない材料:機会
  • スマートウィンドウと熱防止の研究におけるバナジウム化合物
  • バナジウム関連研究パイプラインの分析:2024年
  • バナジウム関連研究パイプラインの分析:2023年以前

第8章 電子・電気分野におけるバナジウム化合物:その他の用途

  • 概要
  • アクチュエータとMEMSミラー
  • データの保存と処理:トランジスタ、ダイオード、メモリ、メモリスタ、スイッチ、その他
  • ホログラフィー、電気光学、電子迷彩、ズームレンズ、暗号化など
  • 太陽光発電、太陽電池、光検出器
  • センサー
目次
REPORT STATISTICS
vanadium-related research papers examined- 2024 and 2023 emphasis:460
New infograms, graphs, comparison tables:157
Companies examined:85
Forecast lines 2024-2044:67
SWOT appraisals:15
Chapters:8

The new commercially-oriented Zhar Research report, "Vanadium compounds in emerging electronics, electrics, cooling: markets, technologies 2024-2044" is designed to assist added value materials and device companies to maximise their opportunities. It will also assist investors, researchers and other interested parties.

Rapid market growth explained

The report calculates a startling eight-fold increase in market value for vanadium compounds in this sector. Today's success is the liquid vanadium sulfate anolytes and catholytes in redox flow batteries, a strong growth market. Nonetheless, the imminent market growth for such compounds will substantially be driven by vanadium solids in sophisticated forms that add value. They will vary from 2D compounds, MXenes, graphene composites, vanadates, hollow nanospheres to intercalated cathodes, electrochromic windows and much more.

Commercially-oriented analysis

The 42-page Executive Summary and Conclusions makes easy reading for those with limited time because it has key conclusions and bar charts, tables and SWOT appraisal. See the most promising vanadium formulations and morphologies by future application then 58 forecast lines as graphs and tables.

Morphologies and formats being targeted

Next, the 17 pages of Chapter 2. "Vanadium compound formulations morphologies and formats becoming important in electronic, electric and thermal applications" clarifies the structures ahead and reasons why. Understand liquid vanadium compounds in different oxidation states and the most promising solid vanadium compound structures including as vanadium oxides, chalcogenides, perovskites, 2D compounds. Additionally, there are other examples of the phases, morphologies and formats being brought to market, with manufacturing approaches and many 2024 research references.

Major opportunity emerging in various forms of energy storage

The rest of the report has chapters on each of the sectors found to be important in driving that huge increase in sales, with latest company and research inputs and Zhar Research PhD level analysis. See drill down reports available from the company for your further reading on specifics. The first three chapters are concerned with the major vanadium opportunity emerging in various forms of energy storage.

Chapter 4. "Vanadium compounds in future supercapacitors, pseudocapacitors, Li-ion capacitors and other battery supercapacitor hybrids BSH" needs 77 pages to cover the massive progress here, with research and company activity sharply increasing in 2024. Learn the formulations and formats winning in supercapacitors, pseudocapacitors and battery-supercapacitor hybrids (lithium-ion capacitors but also others), the benefits and challenges remaining.

Chapter 5. "Vanadium compounds in future regular and hybrid redox flow batteries" is the longest because this is the only existing major commercial success for vanadium compounds in these sectors. See why it has great potential ahead. Although the typical vanadium sulfate electrolytes are mature technology with little further research, the large number of companies marketing these devices need to be covered including where they are headed next. There is also coverage of the research and commercial activity on hybrid RFB that employ vanadium compounds and the potential for that lesser opportunity for such compounds.

Logically, that is followed by Chapter 6. Vanadium compounds in future aluminium-ion. ammonium-ion, calcium-ion, iron-ion, lithium-ion, magnesium-ion, potassium-ion, sodium-ion and zinc ion batteries. Why are most of them suffering a trickle or research and little interest in commercialisation when it comes to vanadium-based options? In sharp contrast, which one has a rising flood of research and intense commercial interest in the vanadium-based approach? What is in-between and why?

Solid-state cooling, heat prevention, and smart windows

Then we move away from energy storage to the 42 pages of Chapter 7. "Vanadium compounds in future solid-state cooling, heat prevention, and smart windows".

Again there is a lucid introduction to the subject followed by specifics from a commercial point of view with deep information from the research pipeline distilled to provide conclusions. With global warming and many new industrial, medical and transport processes needing cooling, this is the focus, not heating. See how it is now a many- faceted opportunity, from electrochromics and Passive Daylight Radiative Cooling PDRC to smart windows. Which are the best opportunities for vanadium compounds and why? What is the competition? Clarity is provided by many new infograms, eight SWOT appraisals and assessment of latest company and research activity. A modest share of what will become a very large market awaits.

And much more ahead

The report closes with a catch-all on the rest, notably in electrics and electronics including vanadium compounds for solar panels, memory, memristors, transistors, actuators, MEMS and a considerable rollout of vanadium-based sensors. What types, why, where, what else? Chapter 8. "Other applications of vanadium compounds in electronics and electrics" takes 35 pages to provide the answers and, again, a profusion of further reading, including 2024 research.

CAPTION

Vanadium compounds for electrics, electronics, cooling: market $ billion 2024-2044 if leading research is successful. Source: Zhar Research report, "Vanadium compounds in emerging electronics, electrics, cooling: markets, technologies 2024-2044"

CAPTION

Vanadium compounds and the Terahertz Gap. Source, Zhar Research report, "Vanadium compounds in emerging electronics, electrics, cooling: markets, technologies 2024-2044" .

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
  • 1.2. Methodology of this analysis
  • 1.3. Primary conclusions
  • 1.4. Results of this research and market study by six device sectors and SWOT appraisal
  • 1.5. Primary focus by application of 460 vanadium compound research papers examined for electrics and electronics
  • 1.6. Primary focus by vanadium compound of research papers examined beyond RFB
  • 1.7. Research focus of vanadium compounds for ion batteries
    • 1.7.1. Nine leading formulations prioritised
    • 1.7.2. Nine device types prioritised
  • 1.8. Research focus of vanadium compounds for supercapacitors and variants
    • 1.8.1. Nine leading formulations prioritised
    • 1.8.2. Three device types prioritised
  • 1.9. Research focus of vanadium compounds for solid state cooling, heat prevention and smart windows:
    • 1.9.1. Four leading formulations prioritised
    • 1.9.2. Three leading functions and devices prioritised
  • 1.10. Research focus of vanadium compounds for other purposes:
    • 1.10.1. Six leading formulations prioritised
    • 1.10.2. Nine leading devices prioritised
  • 1.11. Market forecasts in 58 forecast lines 2024-2044
    • 1.11.1. Vanadium compounds for electrics, electronics, cooling: market $ billion 2024-2044 if successful
    • 1.11.2. Vanadium compounds for electrics, electronics by 5 devices $ billion 2024-2044 if successful
  • 1.12. Forecasts for equipment targetted for adoption of vanadium compounds
    • 1.12.1. RFB equipment global value market short term, LDES and total VRFB $ billion 2024-2044 table and graphs
    • 1.12.2. Vanadium vs iron vs other RFB equipment markets % 2024-2044 table, graph, explanation
    • 1.12.3. RFB equipment global value market grid vs beyond-grid 2023-2044 table, graph, explanation
    • 1.12.4. RFB global value market short term and LDES $ billion 2023-2044 table, graph, explanation
    • 1.12.5. Regular vs hybrid RFB % value sales 2024-2044
    • 1.12.6. Regional share of RFB value market in four regions 2024-2044
    • 1.12.7. Global solid-state cooling equipment market forecasts: by function and equipment types 2024-2044
    • 1.12.8. Global solid state cooling hardware forecasts by material categories and region 2024-2044 table, graphs, explanation
    • 1.12.9. Supercapacitors and variants equipment market by five types $ billion 2024-2044 table, graph, explanation
    • 1.12.10. Supercapacitors and variants equipment value market percent by five applications 2024-2044: table, graph

2. Vanadium compound formulations morphologies and formats becoming important in electronic, electric and thermal applications

  • 2.1. Overview
  • 2.2. Liquid vanadium compounds in different oxidation states
  • 2.3. The most promising solid vanadium compound structures
    • 2.3.1. General situation
    • 2.3.2. Vanadium oxides structures
    • 2.3.3. Vanadium chalcogenides structures
    • 2.3.4. Vanadium perovskites structures
    • 2.3.5. Vanadium 2D compounds
    • 2.3.6. Other examples of the phases, morphologies and formats being researched
  • 2.4. Advances in fabrication by format

3. Vanadium compounds in future 6G Communications, terahertz electronics, metamaterials, metsurfaces. metadevices

  • 3.1. Overview
  • 3.2. SWOT appraisal of 6G Communications as currently understood
  • 3.3. Competitive position of vanadium compounds in 6G Communications development
  • 3.4. The priority of vanadium compounds in 6G research
  • 3.5. Vanadium compounds and the Terahertz Gap
  • 3.6. Research pipeline analysis of vanadium compounds for 6G, THz and metasurfaces
    • 3.6.1. Metasurfaces for THz beam steering including 6G RIS
    • 3.6.2. Vanadium compounds for other terahertz applications: metadevices, SLM, SHE, other
    • 3.6.3. Outstanding recent research papers relevant to 6G THz RIS
    • 3.6.4. Vanadium compounds for other terahertz applications: metadevices, SLM, SHE, other

4. Vanadium compounds in future supercapacitors, pseudocapacitors, Li-ion capacitors and other battery supercapacitor hybrids BSH

  • 4.1. General introduction - appropriate needs and technology choices
    • 4.1.1. Needs
    • 4.1.2. Technology choices for supercapacitors and their variants
    • 4.1.3. Vanadium compounds favoured in recent research on supercapacitors and their variants
    • 4.1.4. Technology choices
  • 4.2. Three SWOT appraisals of supercapacitors and their variants
  • 4.3. Strategies for improving supercapacitors and their variants
  • 4.4. Where vanadium compounds come in
  • 4.5. Analysis of vanadium-related research pipeline for supercapacitors in 2024
  • 4.6. Analysis of vanadium-related research pipeline for supercapacitors in 2023 and earlier
  • 4.7. Understanding pseudocapacitance and its optimisation in pseudocapacitors
  • 4.8. Analysis of vanadium-related research pipeline for pseudocapacitors in 2024
  • 4.9. Understanding battery-supercapacitor hybrids (hybrid-ion capacitors, asymmetric supercapacitors
  • 4.10. Analysis of vanadium-related BSH research pipeline in 2024
  • 4.11. Analysis of vanadium-related BSH research pipeline in 2023 and earlier

5. Vanadium compounds in future regular and hybrid redox flow batteries

  • 5.1. Overview
    • 5.1.1. Anatomy
    • 5.1.2. How vanadium chemistry competes in redox flow batteries RFB including hybrids
    • 5.1.3. 13 primary conclusions concerning RFB markets and the place of vanadium compounds
  • 5.2. Basic RFB hardware design and latest vanadium-related research
    • 5.2.1. The vanadium electrolyte tanks in context
    • 5.2.2. Footprint reduction influences use of vanadium compounds
    • 5.2.3. Toxigen issues to tackle and effect on vanadium compounds
    • 5.2.4. Vanadium RFB design
    • 5.2.4. Vanadium in hybrid RFB
  • 5.3 19 more-detailed conclusions concerning RFB technologies
  • 5.4. Latest commercial trends with vanadium RFB vs alternatives
  • 5.5 48 RFB and RFB vanadium manufacturers compared in 8 columns: name, brand, technology, tech. readiness, beyond grid focus, LDES focus, comment (90 pages)

6. Vanadium compounds in future aluminium-ion. ammonium-ion, calcium-ion, iron-ion lithium-ion, magnesium-ion, potassium-ion, sodium-ion and zinc ion batteries

  • 6.1. Overview
  • 6.2. Vanadium compounds in recent ion battery research
  • 6.3. Number of important research papers on vanadium compounds by battery chemistry
  • 6.4. The vanadium oxide toolkit for ion batteries
  • 6.5. Vanadium compounds in aluminium-ion battery research
  • 6.6. Vanadium compounds in ammonium-ion battery research
  • 6.7. Vanadium compounds in calcium-ion battery research
  • 6.8. Vanadium compounds in iron-ion battery research
  • 6.9. Vanadium compounds in lithium-ion battery research
  • 6.10. Vanadium compounds in magnesium-ion battery research
  • 6.11. Vanadium compounds in potassium-ion battery research
  • 6.12. Vanadium compounds in sodium-ion battery research
  • 6.13. Vanadium compounds in zinc-ion battery research

7. Vanadium compounds in future solid-state cooling, heat prevention, and smart windows

  • 7.1. Overlapping topics
  • 7.2. Research analysis as an indicator of future vanadium compound demand
    • 7.2.1. Analysis of vanadium compounds researched for solid state cooling, heat prevention and smart windows
    • 7.2.2. Analysis of vanadium compounds research papers on these topics by application
  • 7.3. The cooling toolkit
  • 7.4. Report on the overall subject of solid-state cooling materials and devices
  • 7.5. Vanadium compounds for solid state cooling
    • 7.5.1. Reasons and the opportunities arising
    • 7.5.2 SWOT appraisals of solid-state cooling in general and specific emerging versions
    • 7.5.3. Attention vs maturity of cooling technologies 2024
  • 7.6. Undesirable materials widely used and proposed: this is an opportunity for you
  • 7.7. Vanadium compounds in research for smart windows and heat prevention
  • 7.8. Analysis of vanadium-related research pipeline in 2024
  • 7.9. Analysis of vanadium-related research pipeline in 2023 and earlier

8. Other applications of vanadium compounds in electronics and electrics

  • 8.1. Overview
  • 8.2. Actuators and MEMS mirrors
  • 8.3. Data storage and processing: transistors, diodes, memory, memristors, switches, other
    • 8.3.1. Transistors and diodes
    • 8.3.2. Memory and memristors
    • 8.3.3. Electronic switches
    • 8.3.4. Other data-related
  • 8.5. Holography, electro-optics, electronic camouflage, zoom lenses, encryption etc.
  • 8.6. Photovoltaics, solar cells, photodetectors
  • 8.7. Sensors