市場調査レポート
商品コード
1418774

リチウムイオンキャパシタとその他のバッテリースーパーキャパシタハイブリッド (BSH) エネルギー貯蔵:市場の詳細分析、ロードマップ、技術の詳細分析、メーカーの評価、次の成功 (2024~2044年)

Lithium-ion Capacitors and other Battery Supercapacitor Hybrid Storage: Detailed Markets, Roadmaps, Deep Technology Analysis, Manufacturer Appraisal, Next Successes 2024-2044

出版日: | 発行: Zhar Research | ページ情報: 英文 | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=151.16円
リチウムイオンキャパシタとその他のバッテリースーパーキャパシタハイブリッド (BSH) エネルギー貯蔵:市場の詳細分析、ロードマップ、技術の詳細分析、メーカーの評価、次の成功 (2024~2044年)
出版日: 2024年01月30日
発行: Zhar Research
ページ情報: 英文
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

概要

レポート統計
SWOT評価 6件
章構成 12件
予測ライン 2024年~2044年
主な結論 30件
企業 116社
新しいインフォグラム 107点
2023年/2024年の研究論文のレビュー 153点

リチウムイオンキャパシタ (LIC) とその他のバッテリースーパーキャパシタハイブリッド (BSH) エネルギー貯蔵は、今や主流となり、100億米ドル規模のビジネスとなると考えられています。

当レポートでは、世界のLICおよびBSHエネルギー貯蔵の市場の最新情勢と将来展望について分析し、技術の概略や現在までの開発・普及動向、今後の開発・事業展開の成果と教訓、現在・将来の有望な活用領域、主要企業のプロファイルなどを調査しております。

目次

第1章 エグゼクティブサマリーと結論

第2章 バッテリースーパーキャパシタハイブリッド (BSH):必要性・ツールキット・製造方法の概略

  • エネルギー貯蔵ツールキット
  • エネルギー貯蔵市場
  • 技術の最適化と競合問題:概要
  • LIC・リチウムイオン電池・スーパーキャパシタのパラメーター比較 (全34項目)
  • LICのフォーマットと隣接技術との比較
  • 参考文献

第3章 将来のリチウムイオンキャパシタの設計と競争力

  • 概要
  • 設計上の問題
  • 研究パイプラインの分析
  • 参考文献

第4章 その他の金属イオンキャパシタの設計と進歩:鉛イオン、ニッケルイオン、カリウムイオン、ナトリウムイオン、亜鉛イオンキャパシタ

  • 概要
  • 鉛イオンキャパシタ:歴史、理論的根拠、研究パイプライン
  • ニッケルイオンコンデンサ:歴史、理論的根拠、研究パイプライン
  • カリウムイオンキャパシタ:理論的根拠、研究パイプライン
  • ナトリウムイオンキャパシタ:理論的根拠、研究パイプライン
  • 亜鉛イオンコンデンサ:理論的根拠、研究パイプライン

第5章 BSHエネルギー貯蔵に関するその他の新たな化学物質

  • 概要
  • 理論的根拠
  • 研究パイプライン

第6章 研究パイプライン分析で採用された新興材料 (2024年・2023年)

  • 概要
  • スーパーキャパシタの主要パラメータに影響を与える要因が売上を促進
  • 一般的な材料の選択
  • スーパーキャパシタを改善するための戦略
  • スーパーキャパシタとその変種におけるグラフェンの重要性
  • スーパーキャパシタ用/その他の2Dおよび関連材料と研究事例
  • スーパーキャパシタの電極材料・構造の研究 (2023年)
  • スーパーキャパシタの電極材料・構造の研究 (2024年)
  • これまでの重要な事例
  • スーパーキャパシタとその変種用の電解質
    • 一般的な考慮事項
  • スーパーキャパシタとその変種用の電解質
  • 膜の難易度と使用・提案された材料
  • 自己放電の削減:大きなニーズがあるもの、研究はほとんど行われていない

第7章 新興BSH市場:基本動向と最良展望の比較 - エネルギー、自動車、航空宇宙、軍事、エレクトロニクス、その他

  • 市場への影響 (2024~2044年)
  • 概要
  • スーパーキャパシタの変種の相対的な商業的重要性 (2024~2044年)
  • 最も有望なスーパーキャパシタ・ファミリーの市場提案 (2024~2044年)
  • 市場の可能性と生産規模の不一致
  • 大型デバイスの供給と可能性の分析

第8章 エネルギー分野の新規BSH市場

  • 概要:悲観的・中間的・楽観的な見通し (2024年~2044年)
  • 熱核発電
  • 断続性の低いグリッド発電:波力・潮流・風力発電
  • ビヨンドグリッド・スーパーキャパシタ:大きな新たなチャンス
  • 水力発電

第9章 陸上車両・船舶向けの新たな用途:自動車、バス、トラック列車、オフロード車 (建設、農業、鉱業、林業、マテリアルハンドリング)、ボート、船舶

  • 陸上輸送におけるスーパーキャパシタの利用:概要
  • オンロード向け用途が衰退に直面する一方、オフロード用途は活気に満ちている
  • 陸上車両におけるスーパーキャパシタとその変種の市場規模 (金額ベース):オンロード主体からオフロード主体への移行のあり方
  • 大型スーパーキャパシタを備えた新興車両と関連設計
  • 路面電車とトロリーバスの再生と、架線のギャップへの対処
  • マテリアルハンドリング (物流内) 用スーパーキャパシタ
  • 採掘・採石用の大型スーパーキャパシタ
  • 車両用大型スーパーキャパシタに関する研究
  • 列車用大型スーパーキャパシタと、線路脇での回生
  • 大型スーパーキャパシタの船舶向け利用と研究パイプライン

第10章 6G通信、エレクトロニクス、小型電気における新たな用途

  • 概要
  • 小型BSH・スーパーキャパシタの用途が大幅に拡大
  • ウェアラブル・スマートウォッチ・スマートフォン、ラップトップPC・同様デバイスにおけるBSHとスーパーキャパシタ
  • 6G通信:2030年からの新たなBSH市場
  • 資産追跡の成長市場
  • バッテリーサポート・バックアップ電源用スーパーキャパシタ
  • ハンディターミナルBSHとスーパーキャパシタ
  • IoTノード・ワイヤレスセンサーと、BSHやスーパーキャパシタを使用したエネルギーハーベスティングモード
  • データ送信・ロック・ソレノイド起動・電子インク更新・LEDフラッシュ用のピーク電力
  • スマートメーター
  • スポット溶接

第11章 軍事・航空宇宙向けの新たな用途

  • 概要
  • 軍事用途:電気力学兵器および電磁兵器への大きな注目
  • 軍事用途:無人航空機、通信機器、レーダー、飛行機、船舶、戦車、衛星、誘導ミサイル、弾薬点火、電磁装甲
  • 航空宇宙:衛星・電気航空機 (MEA) の増加、その他の成長機会

第12章 BSH (LICを含む)・スーパーキャパシタ・擬似キャパシタ・CSH企業の評価 (全116社)

  • 指標分析:全116社の比較
  • 116社のBSH (LICを含む)・スーパーキャパシタ・擬似キャパシタメーカーの評価 (10項目で比較、108ページ分)
目次
Product Code: 470 Pages

Summary

REPORT STATISTICS
SWOT appraisals:6
Chapters:12
Forecast lines:2024-2044
Key conclusions:30
Companies:116
New infograms:107
2023/4 research papers reviewed:153

This new commercially oriented 470-page report finds that lithium-ion capacitors LIC and other battery supercapacitor hybrid BSH energy storage will now become mainstream, headed to being a $10 billion business. It is the most up-to-date, comprehensive report on the subject and it concentrates on the opportunities for value-added materials and device suppliers with much for investors, product and system integrators and others. There is a glossary at the start and terms are explained throughout. Dollars, gaps in the market and benefitting society and lessons from success and failure have precedence over nostalgia and academic obscurity. Nonetheless, a large amount of research and experience from 2023 and 2024 is referenced and interpreted too, so you can dig deeper where you wish.

Pivoting to success

Dr. Peter Harrop, CEO of Zhar Research advises, "After a false start with lead and nickel versions and concentration on tiny versions for electronics with limited demand at the time, the industry has pivoted to add larger lithium-ion ones for electrical engineering. Incoming technologies particularly need these such as fusion power stations, electric trains, in unmanned mining vehicles, heavy vehicle fast chargers and electromagnetic weapons."

He adds, "Latest versions are better than a simple compromise between supercapacitors and lithium-ion batteries. For example, they can last longer than the equipment to which they are fitted and provide more than enough power handling yet minimal end-of-life issues - like supercapacitors. Many can now hold electricity almost as long as a lithium-ion battery can achieve yet have ten times the power density and pulse capability. Versions approaching lithium-ion battery levels of energy density are not flammable and need little or no battery management system or temperature control - huge advantages. The flood of new research covered in the report gives assurance of even better to come such as lower cost and no valuable materials needed for most of them."

The report layout

The Executive Summary and Conclusions is sufficient for those in a hurry. It has all the 30 key conclusions, SWOT appraisals, 42 forecast lines (sub types, by region, by power level, by application and for equipment to which they are fitted 2024-2044. There is a market and technology milestone roadmap 2024-2044, and many new infograms pull it all together, including graphics of the supercapacitor-like and battery-like versions with rationale and pictured examples of success.

The 23-page Introduction starts with the place of battery supercapacitor hybrids in the energy storage toolkit, including BSH replacing batteries in a 2023 e-bike. Learn how energy harvesting and beyond-grid power production create BSH markets and how they are evolving beyond standard formats to widen appeal. The technology is then introduced by comparing BSH internal design to others, how hot topics now include LIB and graphene. Understand BSH voltage, charge retention and ageing issues compared to competition. See BSH competitive position on energy density vs power density and days storage vs rated power return. A table then compared 34 parameters for LIC, Li-ion battery and supercapacitors then you see LIC formats compared with adjacent technologies and further reading.

Covering the technology in depth for each type of emerging BSH begins with Chapter 3. "Future lithium-ion capacitor design and competitive position" (10 pages). Then comes Chapter 4. "Lead-ion, nickel-ion, potassium-ion, sodium-ion, zinc-ion capacitors: design and competitive position" (15 pages) followed by Chapter 5. "Other emerging chemistries for battery-supercapacitor hybrid storage (15 pages)" . Here are BSH using Zeolite Ionic Frameworks ZIF, Metal Organic Frameworks MOF, MXenes and other exotica such as metal alloys and manganese complexes. Where will that all lead? Primarily, these chapters are an appraisal of latest research, including much in 2024. Toxic, flammable, temperature intolerant or short-lived materials, even with good other parameters, will not be acceptable anymore.

Do you want more detail of specifics of the anatomy of a BSH - electrodes, electrolytes and membranes? That requires us to cast the net wider to look at research that is relevant to BSH but not specific to it. That analysis is in Chapter 6. "Emerging materials employed with 2024, 2023 research pipeline analysis" (50 pages) is a much deeper look at the matched active-electrode/ electrolyte and membrane opportunities emerging. The battery electrode is not the emphasis here. There is depth on the many reasons why more adopt graphene yet research in MXenes and metal organics frameworks MOF and actual use of carbon nanotubes is happening. We identify your best opportunities to supply value added materials in future and to create and sell the most successful devices. See the limited research on reducing self-discharge despite the fact that the commercial impact of that would be considerable.

Now come the markets that will earn the big money 2024-2044. Chapter 7 introduces them with "Emerging markets : basic trends and best prospects compared between energy, vehicles, aerospace, military, electronics, other" . It takes only 11 pages because it consists mainly of new infograms, tables and pie charts covering such things as "Market analysis for the six most important applicational sectors" in 6 columns, 5 lines and "Market propositions of the most-promising supercapacitor families 2024-2044" in 6 columns, 3 lines. Another describes largest lithium-ion capacitors offered by 7 manufacturers with 4 parameters and comment.

The market detail then starts with Chapter 8. "Energy sector emerging markets for supercapacitors and their variants" (49 pages), starting with "Overview: poor, modest and strong prospects 2024-2044" and mostly detailing the opportunities in "thermonuclear power" , "less-intermittent grid electricity generation: wave, tidal stream, elevated wind" , beyond-grid power and fast chargers for electric vehicles land and air because all read to the strengths of supercapacitors. See both examples and intentions.

Chapter 9 is 48 pages on "Emerging land vehicle and marine applications: automotive, bus, truck train, off-road construction, agriculture, mining, forestry, material handling, boats, ships" . Chapter 10 at 29 pages is "Emerging applications in 6G Communications, electronics and small electrics" again with compact comparisons and infograms. Chapter 11, "Emerging military and aerospace applications" in 19 pages analysing and comparing key aspects of this rapidly emerging sector demanding all three - CSH, supercapacitor and BSH. For example, electrodynamic and electromagnetic weapons including force field all use supercapacitors and also military hybrid and diesel vehicles because they are not replaced by battery electric as seen on-road because their duty cycles are too demanding. Chapter 12 is 110 pages comparing 116 companies in detail in ten columns plus colour coding and pie charts. The ones making or saying they will make are identified, including which BSH type, and the others are supercapacitor cell and stack makers considering the BSH option.

That is why we suggest that the report, "Lithium-ion capacitors and other battery supercapacitor hybrid storage: detailed markets, roadmaps, deep technology analysis, manufacturer appraisal, next successes 2024-2044" is essential reading for investors, value-added materials suppliers, device manufacturers, product and system integrators with much to interest legislators, researchers, users and other interested parties as well.

Lithium-ion capacitor market positioning by energy density spectrum. Source: Zhar Research report, "Lithium-ion capacitors and other battery supercapacitor hybrid storage: detailed markets, roadmaps, deep technology analysis, manufacturer appraisal, next successes 2024-2044" .

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
  • 1.2. Methodology of this analysis
  • 1.3. Definitions
  • 1.4. Energy storage toolkit
    • 1.4.1. The basic options
    • 1.4.2. BSH have some of superlatives of a supercapacitor combined with those of a battery
    • 1.4.3. BSH and in particular LIC create some valuable tipping points
    • 1.4.4. The many advantages of lithium-ion capacitors LIC and the energy density choices
    • 1.4.5. How strategies for improving supercapacitors will benefit BSH including LIC
    • 1.4.6. Prioritisation of active electrode-electrolyte pairings
  • 1.5. 12 Primary conclusions: BSH markets including LIC
  • 1.6. Infogram: the most impactful market needs
  • 1.7. Infogram: relative commercial significance of BSH and pseudocapacitors 2024-2044
  • 1.8. Some market propositions and uses of EDLC and BSH including LIC 2024-2044
  • 1.9. Technology uses by applicational sector for EDLC vs BSH - examples
  • 1.10. Analysis of supply and potential of LIC and EDLC for large devices
  • 1.11. 18 primary conclusions: technologies and manufacturers
  • 1.12. Infogram: the energy density-power density, life, size and weight compromise
  • 1.13. How strategies to require less storage make BSH more adoptable
  • 1.14. How research needs redirecting: 5 columns, 7 lines
  • 1.17. BSH and EDLC research activity by country and technology 2024
  • 1.18. SWOT appraisals and roadmap 2024-2044
    • 1.18.1. SWOT appraisal of supercapacitors and BSH
    • 1.18.2. SWOT appraisal of LIC and other BSH
    • 1.18.3. SWOT appraisal of graphene LIC
    • 1.18.4. SWOT appraisal of batteryless storage technologies generally
  • 1.19. Roadmap of market-moving BSH events - technologies, industry and markets 2024-2044
  • 1.20. Battery supercapacitor hybrids: forecasts by 22 lines 2024-2044
    • 1.20.1. Competitors RFB, EDLC, Pseudocapacitor and BSH $ billion 2024-2044 table
    • 1.20.2. Competitors RFB, EDLC, Pseudocapacitor and BSH $ billion 2024-2044 graphs with explanation
    • 1.20.3. Battery supercapacitor hybrid storage BSH by type: BSH, Non-lithium, LIC, banks $ billion 2024-2044 table and graphs
    • 1.20.4. Battery supercapacitor hybrids BSH value market percent by four regions 2024-2044 table and graph
    • 1.20.5. Battery supercapacitor hybrids BSH value market percent by five applications 2024-2044: table, graph
    • 1.20.6. Battery supercapacitor hybrid BSH value market % by three Wh categories 2024-2044
    • 1.20.7. BSH value market % by three electrode morphologies 2024-2044
    • 1.20.8. BSH product life years and life of equipment to which it is fitted years 2014-2044
  • 1.21. Background forecasts in 22 lines 2024-2044

2. Battery supercapacitor hybrids BSH: introduction to need, toolkit and manufacture

  • 2.1. Energy storage toolkit
    • 2.1.1. The basic options
    • 2.1.2. How BSH will compete with other technologies
    • 2.1.3. Electrochemical vs electrostatic storage
    • 2.1.4. Examples of competition between capacitor, supercapacitor and battery technologies
    • 2.1.5. Supercapacitors and BSH replacing batteries in ebikes
  • 2.2. Energy storage market
    • 2.2.1. Overview
    • 2.2.2. Energy harvesting creates markets for BSH storage
    • 2.2.3. The beyond-grid opportunity for large BSH
    • 2.2.4. Need for conventional BSH formats but also structural electrics and electronics
  • 2.3. Introduction to technology optimisation and technology competition issues
    • 2.3.1. Overview
    • 2.3.2. BSH internal design compared to others
    • 2.3.3. Hot topics include LIB and graphene
    • 2.3.4. BSH voltage, charge retention and ageing issues compared to competition
    • 2.3.5. BSH competitive position on energy density vs power density
    • 2.3.6. Days storage vs rated power return MW for storage technologies
  • 2.4. 34 parameters for LIC, Li-ion battery and supercapacitor compared
  • 2.5. LIC formats compared with adjacent technologies
  • 2.6. Further reading

3. Future lithium-ion capacitor design and competitive position

  • 3.1. Overview
  • 3.2. Design issues
  • 3.3. Analysis of research pipeline
  • 3.4. Further reading

4. Other metal-ion capacitors design and progress: Lead-ion, nickel-ion, potassium-ion, sodium-ion, zinc-ion capacitors

  • 4.1. Overview
  • 4.2. Lead ion capacitors: history, rationale , research pipeline
  • 4.3. Nickel-ion capacitors: history, rationale, research pipeline
  • 4.4. Potassium-ion capacitors: rationale, research pipeline
  • 4.5. Sodium-ion capacitors: rationale, research pipeline
  • 4.5. Zinc-ion capacitors: rationale, research pipeline

5. Other emerging chemistries for battery-supercapacitor hybrid storage

  • 5.1. Overview
  • 5.2. Rationale
  • 5.3. Research pipeline
    • 5.3.1. Zeolite Ionic Frameworks for BSH
    • 5.3.2. MXene and MOFs composites for BSH
    • 5.3.2. Metal alloys and manganese compounds in BSH

6. Emerging materials employed with 2024, 2023 research pipeline analysis

  • 6.1. Overview
  • 6.2. Factors influencing key supercapacitor parameters driving sales
  • 6.3. Materials choices in general
  • 6.4. Strategies for improving supercapacitors
    • 6.4.1. General
    • 6.4.2. Prioritisation of active electrode-electrolyte pairings
  • 6.5. Significance of graphene in supercapacitors and variants
    • 6.5.1. Overview
    • 6.5.2. Graphene supercapacitor SWOT appraisal
    • 6.5.3. Vertically-aligned graphene for ac and improved cycle life
    • 6.5.4. Frequency performance improvement with graphene
    • 6.5.5. Graphene textile for supercapacitors and sensors
    • 6.5.6. Eleven graphene supercapacitor material and device developers and manufacturers compared in five columns
  • 6.6. Other 2D and allied materials for supercapacitors with examples of research
    • 6.6.1. MOF and MXene and combinations are the focus
    • 6.6.2. Tantalum carbide MXene hybrid as a biocompatible supercapacitor electrodes
    • 6.6.3. CNT
  • 6.7. Research on supercapacitor electrode materials and structures in 2024
  • 6.8. Research on supercapacitor electrode materials and structures in 2023
  • 6.9. Important examples from earlier
  • 6.10. Electrolytes for supercapacitors and variants
    • 6.10.1. General considerations
  • 6.10. Electrolytes for supercapacitors and variants
    • 6.10.1. General considerations including organic electrolytes
    • 6.10.2. Supercapacitor electrolyte choices
    • 6.10.3. Focus on aqueous supercapacitor electrolytes
    • 6.10.4. Ionic liquid electrolytes in supercapacitor research
    • 6.10.5. Focus on solid state, semi-solid-state and flexible electrolytes
    • 6.10.6. Hydrogels as electrolytes for semi-solid supercapacitors
    • 6.10.7. Supercapacitor concrete and bricks
  • 6.11. Membrane difficulty levels and materials used and proposed
  • 6.12. Reducing self-discharge: great need, little research

7. Emerging BSH markets : basic trends and best prospects compared between energy, vehicles, aerospace, military, electronics, other

  • 7.1. Implications for the market 2024-2044
  • 7.2. Overview
  • 7.3. Relative commercial significance of supercapacitor variants 2024-2044
  • 7.4. Market propositions of the most-promising supercapacitor families 2024-2044
  • 7.5. Mismatch between market potential and sizes made
  • 7.6. Analysis of supply and potential for large devices
    • 7.6.1. Overview
    • 7.6.2. Largest lithium-ion capacitors offered by manufacturer with parameters and uses
    • 7.6.3. Markets for the largest BSH
    • 7.6.4. Market analysis for the six most important applicational sectors

8. Energy sector emerging BSH markets

  • 8.1. Overview: poor, modest and strong prospects 2024-2044
  • 8.2. Thermonuclear power
    • 8.2.1. Overview
    • 8.3.2. Applications of supercapacitors in fusion research
    • 8.3.3. Other thermonuclear supercapacitors
    • 8.3.4. Hybrid supercapacitor banks for thermonuclear power: Tokyo Tokamak
    • 8.3.5. Helion USA supercapacitor bank
    • 8.3.6. First Light UK supercapacitor bank
  • 8.3. Less-intermittent grid electricity generation: wave, tidal stream, elevated wind
    • 8.3.1. Supercapacitors in utility energy storage for grids and large UPS
    • 8.3.2. 5MW grid measurement supercapacitor
    • 8.3.3. Tidal stream power applications
    • 8.3.4. Wave power applications
    • 8.3.5. Airborne Wind Energy AWE applications
    • 8.3.6. Taller wind turbines tapping less-intermittent wind: protection, smoothing
  • 8.4. Beyond-grid supercapacitors: large emerging opportunity
    • 8.4.1. Overview
    • 8.4.2. Beyond-grid buildings, industrial processes, minigrids, microgrids, other
    • 8.4.3. Beyond-grid electricity production and management
    • 8.4.4. The off-grid megatrend
    • 8.4.5. The solar megatrend
    • 8.4.6. Hydrogen-supercapacitor rural microgrid Tapah, Malaysia
    • 8.4.7. Supercapacitors in other microgrids, solar buildings
    • 8.4.8. Fast charging of electric vehicles including buses and autonomous shuttles
  • 8.5. Hydro power

9. Emerging land vehicle and marine applications: automotive, bus, truck train, off-road construction, agriculture, mining, forestry, material handling, boats, ships

  • 9.1. Overview of supercapacitor use in land transport
  • 9.2. On-road applications face decline but off-road vibrant
  • 9.3. How the value market for supercapacitors and their variants in land vehicles will move from largely on-road to largely off-road
  • 9.4. Emerging vehicle and allied designs with large supercapacitors
    • 9.4.1. Industrial vehicles: Rutronik HESS
    • 9.4.2. Heavy duty powertrains and active suspension
  • 9.5. Tram and trolleybus regeneration and coping with gaps in catenary
  • 9.6. Material handling (intralogistics) supercapacitors
  • 9.7. Mining and quarrying uses for large supercapacitors
    • 9.7.1. Overview and future open pit mine and quarry
    • 9.7.2. Mining and quarrying vehicles go electric
    • 9.7.3. Supercapacitors for electric mining and construction
  • 9.8. Research relevant to large supercapacitors in vehicles
  • 9.9. Large supercapacitors for trains and their trackside regeneration
    • 9.9.1. Overview
    • 9.9.2. Supercapacitor diesel hybrid and hydrogen trains
    • 9.9.3. Supercapacitor regeneration for trains on-board and trackside
    • 9.9.4. Research pipeline relevant to supercapacitors for trains
  • 9.10. Marine use of large supercapacitors and the research pipeline

10. Emerging applications in 6G Communications, electronics and small electrics

  • 10.1. Overview
  • 10.2. Substantial growing applications for small BSH and supercapacitors
  • 10.3. BSH and supercapacitors in wearables, smart watches, smartphones, laptops and similar devices
    • 10.3.1. General
    • 10.3.2. Wearables needing BSH and supercapacitors
  • 10.4. 6G Communications: new BSH market from 2030
    • 10.4.1. Overview with needs
    • 10.4.2. New needs and 5G inadequacies
    • 10.4.3. 6G massive hardware deployment: proliferation but many compromises
    • 10.4.4. Objectives of NTTDoCoMo, Huawei, Samsung and others
    • 10.4.5. Progress from 1G-6G rollouts 1980-2044
    • 10.4.6. 6G underwater and underground
  • 10.5. Asset tracking growth market
  • 10.6. Battery support and back-up power supercapacitors
  • 10.7. Hand-held terminals BSH and supercapacitors
  • 10.8. Internet of Things nodes, wireless sensors and their energy harvesting modes with BSH and supercapacitors
    • 10.8.1. Overview
    • 10.8.2. Sensor inputs and outputs
    • 10.8.3. Ten forms of energy harvesting for sensing and power for sensors
    • 10.8.4. Supercapacitor transpiration electrokinetic harvesting for battery-free sensor power supply
  • 10.9. Peak power for data transmission, locks, solenoid activation, e-ink update, LED flash
  • 10.10. Smart meters
  • 10.11. Spot welding

11. Emerging military and aerospace applications

  • 11.1. Overview
  • 11.2. Military applications: electrodynamic and electromagnetic weapons now a strong focus
    • 11.2.1. Overview: laser weapons, beam energy weapons, microwave weapons, electromagnetic guns
    • 11.2.2. Electrodynamic weapons: coil and rail guns
    • 11.2.3. Electromagnetic weapons disabling electronics or acting as ordnance
    • 11.2.4. Pulsed linear accelerator weapon
  • 11.3. Military applications: unmanned aircraft, communication equipment, radar, plane, ship, tank, satellite, guided missile, munition ignition, electromagnetic armour
    • 11.3.1. CSH sales increasing
    • 11.3.2. Force Field protection
    • 11.3.3. Supercapacitor- diesel hybrid heavy mobility army truck
    • 11.3.4. 17 other military applications now emerging
  • 11.4. Aerospace: satellites, More Electric Aircraft MEA and other growth opportunities
    • 11.4.1. Overview: supercapacitor numbers and variety increase
    • 11.4.2. More Electric Aircraft MEA
    • 11.4.3. Better capacitors sought for aircraft

12. 116 BSH (including LIC), supercapacitor, pseudocapacitor, CSH companies assessed in 10 columns and 112 pages

  • 12.1. Analysis of metrics from the comparison of 116 companies
  • 12.2. 116 BSH (including LIC), supercapacitor and pseudocapacitor manufacturers assessed in 10 columns across 108 pages