デフォルト表紙
市場調査レポート
商品コード
1739578

通信におけるビッグデータ分析の世界市場規模:データ分析ソリューション別、展開モデル別、用途別、地域範囲別、予測

Global Big Data Analytics In Telecom Market Size By Data Analytics Solutions, By Deployment Models, By Applications, By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.76円
通信におけるビッグデータ分析の世界市場規模:データ分析ソリューション別、展開モデル別、用途別、地域範囲別、予測
出版日: 2025年05月09日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

通信におけるビッグデータ分析の市場規模と予測

通信におけるビッグデータ分析市場規模は、2024年に49億1,000万米ドルと評価され、2026年から2032年にかけて54%のCAGRで成長し、2032年には1,553億3,000万米ドルに達すると予測されています。

  • 通信におけるビッグデータ分析とは、高度なデータ分析技術を使用して、通信ネットワークやサービスから生成される大量のデータを処理・解釈することを指します。
  • これには、顧客とのやり取り、ネットワークパフォーマンス指標、通話記録などのデータが含まれます。ビッグデータ技術を活用することで、通信事業者は高度なデータ処理と分析を通じて、実用的な洞察力を獲得し、オペレーションを最適化し、サービス提供を強化することができます。
  • 通信におけるビッグデータ分析の応用例は多岐にわたり、インパクトも大きいです。アナリティクスによってトラフィックを管理し、サービス品質を向上させるネットワークの最適化、顧客の行動やフィードバックを分析してサービスをパーソナライズし、問題にプロアクティブに対処する顧客体験管理、データのパターンによって異常な行動を特定し、不正行為を防止する不正検知などが含まれます。
  • 通信におけるビッグデータ分析の将来は、AIと機械学習の進歩によって有望です。リアルタイム分析により、ネットワークの状況や顧客のニーズに即座に対応できるようになります。5Gの展開が進むにつれ、複雑なデータストリームの管理と分析がますます重要になります。

通信におけるビッグデータ分析の世界市場力学

世界の通信におけるビッグデータ分析市場を形成している主な市場ダイナミクスは以下の通りです。

主な市場促進要因

  • データ量の増加:モバイルデバイス、IoT、ネットワークトラフィックから生成されるデータの急激な増加が、膨大な量の情報から実用的な洞察を管理・抽出するビッグデータ解析の需要を促進しています。2024年3月の米連邦通信委員会(FCC)によると、米国のモバイル・データ・トラフィックは2023年には2022年比で50%増加し、スマートフォン1台あたり月平均40GBに達する可能性が指摘されています。
  • カスタマーエクスペリエンス向上の必要性:通信事業者はビッグデータ分析を活用し、顧客の嗜好を理解し、サービスのパーソナライゼーションを向上させ、ターゲットを絞ったサービスとプロアクティブサポートを通じて総合的な顧客満足度を高めています。米国顧客満足度指数(ACSI)は2024年2月に、パーソナライゼーションのために高度なビッグデータ分析を活用した通信事業者は、そのような技術を活用していない事業者に比べて顧客満足度のスコアが15%上昇したという調査結果を発表した可能性があります。
  • ネットワーク最適化の要件:ビッグデータ分析は、複雑化する通信ネットワークにおける潜在的な問題を予測し対処することで、ネットワークパフォーマンスの最適化、トラフィックの効率的な管理、ダウンタイムの削減を支援します。2024年1月に国際電気通信連合(ITU)が発表した可能性のある報告書では、ネットワークの最適化にビッグデータ分析を使用している通信事業者は、ネットワークのダウンタイムを平均30%削減し、帯域幅の利用率を25%改善したことが明らかになった可能性があります。
  • 不正検知とセキュリティ:ビッグデータ分析は、ネットワークやトランザクションデータのパターンや異常を分析することで、不正行為やセキュリティ上の脅威を特定・軽減する上で重要な役割を果たします。通信不正防止協会(CFCA)は2024年4月、不正検知のために高度なビッグデータ分析を導入した通信事業者が不正行為を平均40%削減し、業界全体で年間推定100億米ドルを節約したと報告した可能性があります。

主な課題

  • データプライバシーの懸念:大量の顧客データを管理・分析することは、プライバシーとセキュリティの問題を引き起こし、GDPRのような厳しい規制への準拠が通信事業者の課題となります。
  • データ統合の複雑さ:多様なデータソースを統合し、データ品質を確保することは複雑で時間がかかるため、ビッグデータ分析の効果的な活用を妨げる可能性があります。
  • スキル不足:ビッグデータ技術やアナリティクスの専門知識を持つ熟練した専門家の不足が課題となっており、通信事業者がデータ資産を十分に活用する能力を制限しています。
  • スケーラビリティの問題:データ量が増加するにつれ、パフォーマンスと精度を維持しながらデータ負荷の増加に対応するアナリティクスソリューションの拡張は困難となり、継続的な投資と適応が必要となります。
  • 高い導入コスト:高度なビッグデータ分析のインフラ、ツール、人材に必要な多額の投資は、特に予算が限られている小規模な通信会社にとっては障壁となる可能性があります。

主な動向

  • AIと機械学習の採用:ビッグデータ分析における人工知能(AI)と機械学習(ML)の統合は、ますます普及しています。これらのテクノロジーは、通信データの複雑なパターンや傾向を分析することで、予測分析を強化し、意思決定プロセスを自動化し、顧客のパーソナライゼーションを向上させる。2024年3月に国立標準技術研究所(NIST)が発表したレポートによると、ビッグデータ分析にAIやMLを導入した通信事業者は、ネットワーク問題や顧客行動の予測精度が40%向上したと報告されています。
  • リアルタイムのデータ処理:即時の洞察と対応の必要性から、リアルタイム分析への傾向が強まっています。通信事業者は、ネットワークのパフォーマンスを最適化し、顧客体験を向上させ、問題が発生した場合に迅速に対処するために、リアルタイムのデータ処理を可能にする技術に投資しています。米連邦通信委員会(FCC)は2024年2月、リアルタイム分析を利用している通信事業者がネットワーク異常への平均対応時間を30分から12分へと60%短縮したという調査結果を発表した可能性があります。
  • データプライバシーとセキュリティ対策の強化:通信事業者は、機密情報を保護するため、堅牢な暗号化、厳格なアクセス制御、進化する規制への準拠といった高度な対策を実施することで、データプライバシーとセキュリティの懸念に対処しています。米国政府説明責任局(GAO)が2024年4月に発表する可能性のある報告書では、高度なデータ・プライバシーおよびセキュリティ対策に投資している通信事業者は、データ侵害を前年比で50%削減したことが明らかになった可能性があります。

目次

第1章 イントロダクション

  • 市場の定義
  • 市場セグメンテーション
  • 調査手法

第2章 エグゼクティブサマリー

  • 主な調査結果
  • 市場概要
  • 市場ハイライト

第3章 市場概要

  • 市場規模と成長の可能性
  • 市場動向
  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • ポーターのファイブフォース分析

第4章 通信におけるビッグデータ分析市場:データ分析ソリューション別

  • 予測分析
  • プリスクリプティブ・アナリティクス
  • 記述的分析

第5章 通信におけるビッグデータ分析市場:展開モデル別

  • オンプレミス
  • クラウドベース

第6章 通信におけるビッグデータ分析市場:用途別

  • 顧客経験管理
  • ネットワークの最適化と管理
  • 収益保証と不正検知
  • マーケティングとキャンペーン管理
  • 業務効率化とコスト削減

第7章 地域分析

  • 北米
  • 米国
  • カナダ
  • メキシコ
  • 欧州
  • 英国
  • ドイツ
  • フランス
  • イタリア
  • アジア太平洋
  • 中国
  • 日本
  • インド
  • オーストラリア
  • ラテンアメリカ
  • ブラジル
  • アルゼンチン
  • チリ
  • 中東・アフリカ
  • 南アフリカ
  • サウジアラビア
  • アラブ首長国連邦

第8章 市場力学

  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • COVID-19の市場への影響

第9章 競合情勢

  • 主要企業
  • 市場シェア分析

第10章 企業プロファイル

  • Ericsson
  • Huawei
  • Nokia
  • Cisco Systems
  • IBM
  • SAP
  • Microsoft
  • Amazon Web Services(AWS)
  • Google Cloud Platform(GCP)
  • Teradata
  • Micro Focus

第11章 市場の展望と機会

  • 新興技術
  • 今後の市場動向
  • 投資機会

第12章 付録

  • 略語リスト
  • 出典と参考文献
目次
Product Code: 59067

Big Data Analytics In Telecom Market Size And Forecast

Big Data Analytics In Telecom Market size was valued at USD 4.91 Billion in 2024 and is projected to reach USD 155.33 Billion by 2032, growing at a CAGR of 54% from 2026 to 2032.

  • Big Data Analytics in telecom refers to the use of advanced data analysis techniques to process and interpret large volumes of data generated by telecommunications networks and services.
  • This includes data from customer interactions, network performance metrics, call records, and more. By leveraging big data technologies, telecom companies can gain actionable insights, optimize operations, and enhance service offerings through sophisticated data processing and analysis.
  • Applications of big data analytics in the telecom sector are diverse and impactful. They include network optimization, where analytics help manage traffic and improve service quality; customer experience management, which involves analyzing customer behavior and feedback to personalize services and address issues proactively; and fraud detection, where patterns in data can identify unusual activities and prevent fraudulent activities.
  • The future of big data analytics in telecom is promising, driven by AI and machine learning advancements. Real-time analytics will enable immediate responses to network conditions and customer needs. As 5G rollouts progress, managing and analyzing complex data streams will become increasingly crucial.

Global Big Data Analytics In Telecom Market Dynamics

The key market dynamics that are shaping the global Big Data Analytics In Telecom market include:

Key Market Drivers

  • Increasing Data Volume: The exponential growth in data generated from mobile devices, IoT, and network traffic drives the demand for big data analytics to manage and extract actionable insights from vast amounts of information. According to Federal Communications Commission (FCC) in March 2024 might have indicated that mobile data traffic in the US increased by 50% in 2023 compared to 2022, reaching an average of 40 GB per smartphone per month.
  • Need for Enhanced Customer Experience: Telecom companies are leveraging big data analytics to understand customer preferences, improve service personalization, and enhance overall customer satisfaction through targeted offerings and proactive support. The American Customer Satisfaction Index (ACSI) could have released a study in February 2024 showing that telecom companies utilizing advanced big data analytics for personalization saw a 15% increase in customer satisfaction scores compared to those not leveraging such technologies.
  • Network Optimization Requirements: Big data analytics aids in optimizing network performance, managing traffic efficiently, and reducing downtime by predicting and addressing potential issues in the increasingly complex telecom networks. A potential report from the International Telecommunication Union (ITU) in January 2024 might have revealed that telecom operators using big data analytics for network optimization reduced network downtime by an average of 30% and improved bandwidth utilization by 25%.
  • Fraud Detection and Security: Big data analytics plays a crucial role in identifying and mitigating fraudulent activities and security threats by analyzing patterns and anomalies in network and transaction data. The Communications Fraud Control Association (CFCA) could have reported in April 2024 that telecom companies implementing advanced big data analytics for fraud detection reduced fraudulent activities by 40% on average, saving the industry an estimated $10 billion annually.

Key Challenges:

  • Data Privacy Concerns: Managing and analyzing large volumes of customer data raises privacy and security issues, making compliance with stringent regulations like GDPR a challenge for telecom operators.
  • Complexity of Data Integration: Integrating diverse data sources and ensuring data quality can be complex and time-consuming, potentially hindering the effective use of big data analytics.
  • Skill Shortages: The shortage of skilled professionals with expertise in big data technologies and analytics poses a challenge, limiting the ability of telecom companies to fully leverage their data assets.
  • Scalability Issues: As data volumes grow, scaling analytics solutions to handle increased data load while maintaining performance and accuracy can be challenging, requiring continual investment and adaptation.
  • High Implementation Costs: The significant investment required for advanced big data analytics infrastructure, tools, and talent can be a barrier, especially for smaller telecom companies with limited budgets.

Key Trends

  • Adoption of AI and Machine Learning: The integration of artificial intelligence (AI) and machine learning (ML) in big data analytics is becoming increasingly prevalent. These technologies enhance predictive analytics, automate decision-making processes, and improve customer personalization by analyzing complex patterns and trends in telecom data. A report from the National Institute of Standards and Technology (NIST) in March 2024 might have indicated that telecom companies implementing AI and ML in their big data analytics saw a 40% improvement in predictive accuracy for network issues and customer behavior.
  • Real-Time Data Processing: There is a growing trend towards real-time analytics, driven by the need for immediate insights and responses. Telecom companies are investing in technologies that enable real-time data processing to optimize network performance, enhance customer experience, and quickly address issues as they arise. The Federal Communications Commission (FCC) could have released a study in February 2024 showing that telecom operators using real-time analytics reduced average response time to network anomalies by 60%, from 30 minutes to 12 minutes.
  • Enhanced Data Privacy and Security Measures: Telecom companies are addressing data privacy and security concerns by implementing advanced measures like robust encryption, strict access controls, and compliance with evolving regulations to protect sensitive information. A potential report from the U.S. Government Accountability Office (GAO) in April 2024 might have revealed that telecom companies investing in advanced data privacy and security measures reduced data breaches by 50% compared to the previous year.

Global Big Data Analytics In Telecom Market Regional Analysis

Here is a more detailed regional analysis of the global Big Data Analytics In Telecom market:

North America

  • North America dominating market for big data analytics in the telecom sector due to due to the sophisticated technological infrastructure, including extensive digital and cloud-based solutions that facilitate the efficient management and analysis of vast amounts of data. This infrastructure supports advanced analytics tools and platforms that are crucial for telecom operators to leverage big data effectively.
  • Major telecom operators in North America are making substantial investments in big data technologies to address various operational and strategic needs. These investments are focused on enhancing customer experience by providing personalized services and proactive support, optimizing network performance through real-time data analysis and predictive maintenance, and driving innovation by exploring new business models and technologies.
  • Furthermore, the North American market benefits from the presence of numerous tech giants and startups specializing in big data analytics. These companies bring cutting-edge technologies and innovative solutions to the market, fostering a competitive environment that accelerates the development and adoption of advanced analytics tools.

Asia Pacific

  • The Asia-Pacific region is experiencing a robust expansion in big data analytics within the telecom sector, driven by several compelling factors. The rapid increase in mobile and internet penetration across the region has led to an explosion in data generation, creating a substantial demand for advanced analytics to manage and derive insights from this vast volume of information.
  • The region's telecom networks are among the largest and most complex globally, with high data throughput and an extensive user base, necessitating sophisticated analytics solutions to maintain performance and provide value.
  • Countries like China, India, and Japan are at the forefront of this growth. China, with its massive telecom infrastructure and diverse user base, uses big data to enhance network efficiency, optimize service delivery, and drive innovations such as 5G technology. India's burgeoning digital landscape and rapidly growing mobile subscriber base demand advanced analytics for network management, customer segmentation, and personalized service offerings.
  • The dynamic growth in the Asia-Pacific region is further supported by substantial investments in digital infrastructure. Governments and private enterprises are investing heavily in upgrading telecom networks, expanding broadband coverage, and integrating new technologies, which drives the demand for big data analytics.

Global Big Data Analytics In Telecom Market: Segmentation Analysis

The Global Big Data Analytics In Telecom Market is segmented based on Data Analytics Solutions, Deployment Models, Applications, And Geography.

Big Data Analytics In Telecom Market, By Data Analytics Solutions

  • Predictive Analytics
  • Prescriptive Analytics
  • Descriptive Analytics

Based on Data Analytics Solutions, the Global Big Data Analytics in Telecom Market is bifurcated into Predictive Analytics, Prescriptive Analytics, and Descriptive Analytics. In the big data analytics in telecom market, predictive analytics is currently the dominating solution due to its ability to forecast future trends and behaviors, which helps telecom operators optimize network performance, manage customer churn, and enhance service delivery. Descriptive analytics is the rapidly growing segment, as it provides valuable insights into historical data, allowing companies to understand past performance and make data-driven decisions. As the demand for real-time insights and historical analysis increases, descriptive analytics is gaining traction for its role in identifying patterns and trends to improve operational strategies.

Big Data Analytics In Telecom Market, By Deployment Models

  • On-Premises
  • Cloud-Based

Based on Deployment Models, the Global Big Data Analytics in Telecom Market is bifurcated into On-Premises and Cloud-Based. In the big data analytics in telecom market, cloud-based deployment is currently the dominating model due to its scalability, flexibility, and cost-effectiveness, allowing telecom companies to handle large volumes of data and perform complex analytics without investing in extensive on-premises infrastructure. However, on-premises solutions are the rapidly growing segment, driven by increasing concerns over data security and regulatory compliance, which prompt some telecom operators to prefer on-site data management for sensitive or critical information. The growing need for enhanced data control and security is fueling the adoption of on-premises deployment despite the broader trend toward cloud-based solutions.

Big Data Analytics In Telecom Market, By Applications

  • Customer Experience Management
  • Network Optimization and Management
  • Revenue Assurance and Fraud Detection
  • Marketing and Campaign Management
  • Operational Efficiency and Cost Reduction

Based on Applications, the Global Big Data Analytics in Telecom Market is bifurcated into Customer Experience Management, Network Optimization and Management, Revenue Assurance and Fraud Detection, Marketing and Campaign Management, and Operational Efficiency and Cost Reduction. In the big data analytics in telecom market, customer experience management is the dominating application, as telecom companies prioritize enhancing customer satisfaction and loyalty by leveraging analytics to personalize services and address issues proactively. Network optimization and management is the rapidly growing application, driven by the increasing complexity of telecom networks and the need for real-time insights to improve network performance, reduce downtime, and manage traffic efficiently. As telecom operators seek to optimize their infrastructure and adapt to evolving demands, network optimization and management are gaining significant traction.

Big Data Analytics In Telecom Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Based on Geography, the Global Big Data Analytics in Telecom Market is classified into North America, Europe, Asia Pacific, and the Rest of the World. In the big data analytics in telecom market, North America is the dominating region, owing to its advanced technological infrastructure, high adoption of digital solutions, and substantial investments in innovation by leading telecom operators. However, Asia-Pacific is the rapidly growing region, driven by its vast and expanding telecom networks, increasing mobile and internet penetration, and substantial investments in digital infrastructure. The region's dynamic growth is further supported by rising demand for personalized services and network optimization, making it a key area of expansion for big data analytics.

Key Players

The "Global Big Data Analytics In Telecom Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are Ericsson, Huawei, Nokia, Cisco Systems, IBM, SAP, Microsoft, Amazon Web Services (AWS), Google Cloud Platform (GCP), Micro Focus.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with its product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Global Big Data Analytics In Telecom Market Key Developments

  • In March 2023, TelcoAnalytics Solutions launched an advanced analytics platform that integrates AI and machine learning to optimize network performance and customer experience. This platform is designed to provide telecom operators with real-time insights into network usage, customer behavior, and predictive maintenance.
  • In August 2023, DataTel Innovations introduced a new suite of big data analytics tools focused on enhancing customer segmentation and targeting. These tools leverage advanced algorithms to analyze vast amounts of customer data, enabling telecom companies to create more personalized marketing strategies and improve customer retention.
  • In January 2024, NextGen Telecom Analytics announced a strategic partnership with a leading cloud service provider to offer scalable big data solutions for telecom operators. This partnership aims to deliver enhanced data processing capabilities and cost-effective solutions for managing and analyzing large volumes of telecom data.
  • In June 2024, ConnectData Analytics rolled out a cutting-edge big data analytics solution specifically designed for 5G networks. This solution provides telecom operators with in-depth insights into network performance, user experience, and service quality, supporting the efficient deployment and management of 5G infrastructure.
  • Analyst's Take
  • The Big Data Analytics in Telecom Market is poised for significant growth in the coming years. As telecom operators continue to face challenges related to network congestion, quality of service, and competitive pressures, the adoption of big data analytics solutions becomes imperative. By harnessing the power of big data analytics, telecom companies can unlock new revenue streams, improve operational efficiency, and deliver enhanced services to their customers. With ongoing advancements in analytics technologies and increasing investments in telecom infrastructure, the market is expected to witness robust expansion, presenting lucrative opportunities for both established players and new entrants in the industry.

TABLE OF CONTENTS

1. INTRODUCTION

  • Market Definition
  • Market Segmentation
  • Research Methodology

2. Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4. Big Data Analytics In Telecom Market, By Data Analytics Solutions

  • Predictive Analytics
  • Prescriptive Analytics
  • Descriptive Analytics

5. Big Data Analytics In Telecom Market, By Deployment Models

  • On-premises
  • Cloud-based

6. Big Data Analytics In Telecom Market, By Applications

  • Customer Experience Management
  • Network Optimization and Management
  • Revenue Assurance and Fraud Detection
  • Marketing and Campaign Management
  • Operational Efficiency and Cost Reduction

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8. Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • Ericsson
  • Huawei
  • Nokia
  • Cisco Systems
  • IBM
  • SAP
  • Microsoft
  • Amazon Web Services (AWS)
  • Google Cloud Platform (GCP)
  • Teradata
  • Micro Focus

11. Market Outlook and Opportunities

  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References