デフォルト表紙
市場調査レポート
商品コード
1733738

画像認識の世界市場規模:技術別、展開モード別、用途別、地域範囲別、予測

Global Image Recognition Market Size By Technology (Facial Recognition, Pattern Recognition), By Deployment Mode (On-Premises, Cloud), By Application (Healthcare, Retail), By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.87円
画像認識の世界市場規模:技術別、展開モード別、用途別、地域範囲別、予測
出版日: 2025年04月30日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

画像認識の市場規模と予測

画像認識市場規模は、2024年に921億6,000万米ドルと評価され、2026年から2032年にかけてCAGR 10.56%で成長し、2032年には1,915億米ドルに達すると予測されています。

  • コンピュータビジョンとしても知られる画像認識は、機械がデジタル画像や動画から視覚情報を解釈・理解することを可能にする技術です。この技術には、視覚データ内の物体、シーン、パターン、さらには人の顔を識別・分類できるアルゴリズムとモデルの開発が含まれます。
  • 画像認識、またはコンピュータ・ビジョンは、業界を問わず様々な用途に利用されています。ヘルスケアでは、MRIやX線スキャンからがんなどの病態を診断するための医療画像診断に役立っています。
  • 小売業では、顧客がスマートフォンで撮影した画像と類似した商品を見つけることができるビジュアル検索エンジンに役立っています。セキュリティと監視では、CCTV映像からリアルタイムで個人を特定する顔認識技術が役立っています。
  • 自動車産業は、交通標識、歩行者、道路上の障害物を検知して解釈するために、自律走行車に画像認識を活用しています。製造業では、生産ラインにおける品質管理と欠陥検出のために画像認識を活用し、製品が高い基準を満たしていることを保証しています。
  • 画像認識は、現実の環境にデジタル情報を重ね合わせることで拡張現実(AR)アプリケーションを強化し、ゲーム、教育、インテリアデザインなどの業界を没入体験で変革します。
  • ディープラーニング・アルゴリズム、特に畳み込みニューラルネットワークは、画像認識システムの精度と効率を向上させています。エッジコンピューティングはリアルタイムの処理と意思決定を可能にし、待ち時間を短縮して応答性を高める。AIと機械学習技術の統合は、膨大なデータからの学習による継続的な改善を可能にします。

世界の画像認識市場力学

世界の画像認識市場を形成している主な市場力学は以下の通り:

主な市場促進要因:

  • 人工知能(AI)と機械学習(ML)の進歩:(AI)と(ML)アルゴリズムは、画像認識システムの精度と信頼性を大幅に向上させました。これらの技術により、コンピュータは視覚データをより高精度に分析・解釈できるようになり、ヘルスケアから小売まで様々な業界における需要を牽引しています。
  • デジタルカメラとスマートフォンの普及:高解像度センサーを搭載したデジタルカメラやスマートフォンの台頭により、日々生成される視覚データの量は飛躍的に増加しています。このようなデータの急増により、膨大なデータセットから価値ある洞察を効率的に処理・抽出できる堅牢な画像認識ソリューションに対するニーズが高まっています。
  • 消費者向けアプリケーションの増加:ソーシャルメディア・プラットフォーム、eコマース・ウェブサイト、モバイル・アプリなどの消費者向けアプリケーションに画像認識が統合されたことで、ユーザー・エクスペリエンスが一変しました。写真の自動タグ付け、セキュリティのための顔認識、ビジュアル検索機能などの機能により、ユーザビリティとエンゲージメントが向上し、導入と市場成長が促進されます。
  • ヘルスケアにおける需要の増加:ヘルスケアなどの産業は、医療診断、画像ベースの研究、患者ケアを支援する画像認識の能力から大きな恩恵を受けています。医療画像の自動分析、異常の検出、パターンの識別は、意思決定と患者の転帰の改善に貢献するため、ヘルスケア環境における画像認識技術の拡大を促進しています。
  • 自動車分野での採用拡大:自動車分野では、ADAS(先進運転支援システム)や自律走行車に画像認識が活用されています。自動車に組み込まれたカメラは、リアルタイムの物体検知、車線逸脱警告、歩行者認識を可能にし、安全性を高めるとともに、自律走行機能への道を開きます。
  • 在庫管理における採用の増加:小売業やeコマース業界では、画像認識を活用して在庫管理を最適化し、顧客に合った商品を提案し、ビジュアル検索技術によってチェックアウトプロセスを合理化しています。これらのアプリケーションは業務効率を改善し、ショッピング体験を向上させるため、小売業者やオンライン・プラットフォームでの採用を促進しています。
  • 絶え間ない進化:クラウド・コンピューティング・インフラとエッジ・コンピューティング機能の継続的な進化により、画像認識ソリューションの展開と拡張性が強化され、複雑なタスクやリアルタイムのデバイス分析に必要な計算能力とストレージが提供され、アプリケーションの幅が広がります。

主な課題

  • 複雑な画像内の物体の識別精度と信頼性の確保は依然として重要なハードルです。AIや機械学習アルゴリズムは改善されたもの、複雑な画像やあいまいな画像内の物体を正確に識別することには課題が残っており、医療診断や自律走行車などのアプリケーションでは潜在的なエラーにつながります。
  • プライバシーの懸念:顔認識やバイオメトリクス・データの利用をめぐるプライバシーの懸念は、規制当局の監視や世論の議論を巻き起こしています。データの安全性、同意、個人情報の悪用の可能性に関する問題は、画像認識技術の導入における強固なガバナンスの枠組みと倫理的ガイドラインの必要性を強調しています。
  • 画像データの多様性とばらつき:画像データの多様性とばらつきは、AIモデルを効果的に学習させる上での課題となります。照明条件、アングル、視点のばらつきは画像認識システムの性能に影響を与える可能性があり、さまざまなシナリオにわたって精度と汎化を向上させるためには、大規模なデータの前処理と補強が必要になります。
  • 相互運用性と互換性の問題:画像認識技術を多様な産業アプリケーションに統合することは、相互運用性と互換性の問題による課題に直面します。レガシーシステムとのシームレスな統合、標準化されたデータフォーマット、プラットフォーム間の相互運用性を確保することが重要です。

主要動向:

  • マルチモーダル融合:画像認識と、自然言語処理(NLP)や音声分析などの他のモダリティを組み合わせることが普及しています。このマルチモーダル融合により、よりリッチなデータ分析とコンテキストを考慮したアプリケーションが可能になり、ユーザー体験と意思決定プロセスが強化されます。
  • IoTおよびエッジ・コンピューティングとの統合:モノのインターネット(IoT)デバイスとエッジコンピューティング機能の普及は、エッジでの画像認識の展開を促進しています。この動向は、ローカルでの視覚データのリアルタイム処理をサポートし、待ち時間と帯域幅の要件を削減すると同時に、スマート監視や産業オートメーションなどのアプリケーションを可能にします。
  • 拡張現実(AR)およびバーチャル試着:画像認識は、小売業における革新的なARアプリケーションを後押ししており、顧客は購入を決定する前に、衣服やアクセサリー、さらには家具をバーチャルで試着することができます。この動向は、リテール体験を再構築し、オンライン・エンゲージメントを促進します。
  • セキュリティ・アプリケーションの強化:画像認識の進歩は、監視、認証、詐欺検出など、さまざまな分野でのセキュリティ対策を強化しています。特に顔認識技術は、より安全で信頼性の高い認証ソリューションを提供するために進化しています。

目次

第1章 イントロダクション

  • 市場の定義
  • 市場セグメンテーション
  • 調査手法

第2章 エグゼクティブサマリー

  • 主な調査結果
  • 市場概要
  • 市場ハイライト

第3章 市場概要

  • 市場規模と成長の可能性
  • 市場動向
  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • ポーターのファイブフォース分析

第4章 画像認識市場:技術別

  • 顔認識
  • パターン認識
  • 物体認識
  • バーコード認識
  • 光学式文字認識(OCR)

第5章 画像認識市場:用途別

  • ヘルスケア
  • 小売
  • 自動車
  • セキュリティ
  • 農業

第6章 画像認識市場:展開モード別

  • オンプレミス
  • クラウド

第7章 地域別分析

  • 北米
  • 米国
  • カナダ
  • メキシコ
  • 欧州
  • 英国
  • ドイツ
  • フランス
  • イタリア
  • アジア太平洋
  • 中国
  • 日本
  • インド
  • オーストラリア
  • ラテンアメリカ
  • ブラジル
  • アルゼンチン
  • チリ
  • 中東・アフリカ
  • 南アフリカ
  • サウジアラビア
  • アラブ首長国連邦

第8章 市場力学

  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • COVID-19の市場への影響

第9章 競合情勢

  • 主要企業
  • 市場シェア分析

第10章 企業プロファイル

  • Amazon Web Services(AWS)Inc.(US)
  • Microsoft Corporation(US)
  • Google LLC(US)
  • IBM Corporation(US)
  • 11. Market Outlook and Opportunities
  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

第12章 付録

  • 略語リスト
  • 出典と参考文献
目次
Product Code: 33557

Image Recognition Market Size And Forecast

Image Recognition Market size was valued at USD 92.16 Billion in 2024 and is projected to reach USD 191.5 Billion by 2032, growing at a CAGR of 10.56% from 2026 to 2032.

  • Image recognition, also known as computer vision, is a technology that enables machines to interpret and understand visual information from digital images or videos. It involves the development of algorithms and models that can identify and classify objects, scenes, patterns, and even human faces within visual data.
  • Image recognition, or computer vision, finds diverse applications across industries. In healthcare, it aids in medical imaging for diagnosing conditions like cancer from MRI or X-ray scans.
  • In retail, it powers visual search engines that enable customers to find products similar to ones they capture with their smartphones. Security and surveillance benefit from facial recognition technologies that identify individuals in real-time from CCTV footage.
  • Automotive industries utilize image recognition for autonomous vehicles to detect and interpret traffic signs, pedestrians, and obstacles on the road. Manufacturing relies on it for quality control and defect detection in production lines, ensuring products meet high standards.
  • Image recognition enhances augmented reality (AR) applications by overlaying digital information onto real-world environments, transforming industries like gaming, education, and interior design with immersive experiences.
  • Deep learning algorithms, particularly convolutional neural networks, are improving image recognition systems' accuracy and efficiency. Edge computing enables real-time processing and decision-making, reducing latency and enhancing responsiveness. The integration of AI and machine learning techniques enables continuous improvement through learning from vast data.

Global Image Recognition Market Dynamics

The key market dynamics that are shaping the global image recognition market include:

Key Market Drivers:

  • Advancements in Artificial Intelligence (AI) and Machine Learning (ML): (AI) & (ML) algorithms have significantly enhanced the accuracy and reliability of image recognition systems. These technologies enable computers to analyze and interpret visual data with increasing precision, driving demand across various industries from healthcare to retail.
  • Proliferation of Digital Cameras and Smartphones: The rise of digital cameras and smartphones equipped with high-resolution sensors has exponentially increased the volume of visual data generated daily. This surge in data availability fuels the need for robust image recognition solutions capable of efficiently processing and extracting valuable insights from vast datasets.
  • Rising Consumer Applications: The integration of image recognition into consumer applications such as social media platforms, e-commerce websites, and mobile apps has transformed user experiences. Features like automatic tagging of photos, facial recognition for security, and visual search capabilities enhance usability and engagement, driving adoption and market growth.
  • Increasing Demand in Healthcare: Industries such as healthcare benefit significantly from image recognition's ability to assist in medical diagnostics, image-based research, and patient care. Automated analysis of medical images, detection of anomalies, and identification of patterns contribute to improved decision-making and patient outcomes, thereby driving the expansion of image recognition technologies in healthcare settings.
  • Growing Adoption in Automotive Sector: The automotive sector leverages image recognition for advanced driver assistance systems (ADAS) and autonomous vehicles. Cameras integrated into vehicles enable real-time object detection, lane departure warnings, and pedestrian recognition, enhancing safety and paving the way for autonomous driving capabilities.
  • Rising Adoption in Inventory Management: Retail and e-commerce industries utilize image recognition to optimize inventory management, personalize customer recommendations, and streamline checkout processes through visual search technology. These applications improve operational efficiency and enhance the shopping experience, driving adoption among retailers and online platforms.
  • Continuous Evolution: The continuous evolution of cloud computing infrastructure and edge computing capabilities enhances the deployment and scalability of image recognition solutions, providing computational power and storage for complex tasks and real-time device analysis, expanding their applications.

Key Challenge:

  • Identifying Objects in Complex Images: Ensuring accuracy and reliability remains a significant hurdle. While AI and machine learning algorithms have improved, challenges persist in accurately identifying objects in complex or ambiguous images, leading to potential errors in applications such as medical diagnostics or autonomous vehicles.
  • Privacy Concerns: Privacy concerns surrounding the use of facial recognition and biometric data have sparked regulatory scrutiny and public debate. Issues related to data security, consent, and potential misuse of personal information underscore the need for robust governance frameworks and ethical guidelines in deploying image recognition technologies.
  • Image Data Diversity and Variability: The diversity and variability of image data present challenges in training AI models effectively. Variations in lighting conditions, angles, and perspectives can affect the performance of image recognition systems, requiring extensive data preprocessing and augmentation to improve accuracy and generalization across different scenarios.
  • Interoperability and Compatibility Issues: Integrating image recognition technologies into diverse industry applications faces challenges due to interoperability and compatibility issues. Ensuring seamless integration with legacy systems, standardized data formats, and interoperability across platforms is crucial.

Key Trends:

  • Multimodal Fusion: Combining image recognition with other modalities such as natural language processing (NLP) or audio analysis is becoming more prevalent. This multimodal fusion allows for richer data analysis and context-aware applications, enhancing user experiences and decision-making processes.
  • Integration with IoT and Edge Computing: The proliferation of Internet of Things (IoT) devices and edge computing capabilities is driving the deployment of image recognition at the edge. This trend supports real-time processing of visual data locally, reducing latency and bandwidth requirements while enabling applications such as smart surveillance and industrial automation.
  • Augmented Reality (AR) and Virtual Try-On: Image recognition is powering innovative AR applications in retail, allowing customers to virtually try on clothing, accessories, or even furniture before making purchasing decisions. This trend is reshaping the retail experience and driving online engagement.
  • Enhanced Security Applications: Advances in image recognition are bolstering security measures in various sectors, including surveillance, authentication, and fraud detection. Facial recognition technologies, in particular, are evolving to provide more secure and reliable authentication solutions.

Global Image Recognition Market Regional Analysis

Here is a more detailed regional analysis of the global image recognition market:

North America

  • North America dominating of the global image recognition market due to several key factors. The region boasts a robust technological infrastructure that supports advanced AI and machine learning capabilities, essential for developing sophisticated image recognition systems. Major technology hubs like Silicon Valley in the United States and tech clusters in Canada foster innovation and attract substantial investments in research and development.
  • North America exhibits high adoption rates of image recognition technologies across diverse sectors. In healthcare, image recognition aids in medical diagnostics, patient monitoring, and telemedicine applications, enhancing efficiency and accuracy in healthcare delivery. The retail sector utilizes image recognition for inventory management, customer analytics, and personalized marketing strategies, optimizing operational processes and enhancing customer experiences.
  • Additionally, the automotive industry in North America integrates image recognition into advanced driver assistance systems (ADAS) and autonomous vehicles. These technologies improve vehicle safety, navigation, and adaptive cruise control capabilities, driving innovation and safety standards within the automotive sector.
  • Furthermore, regulatory frameworks such as privacy laws in the United States (e.g., HIPAA) and Canada (e.g., PIPEDA) play a crucial role in shaping deployment strategies and market dynamics for image recognition technologies. Compliance with these regulations ensures data protection and privacy, fostering trust among consumers and businesses alike.

Asia Pacific

  • Asia-Pacific is indeed emerging as a rapidly growing market for image recognition, driven by several factors that highlight its dynamic growth trajectory. Across the broader Asia-Pacific region, countries benefit from a large and digitally savvy consumer base driving demand for innovative applications. In India, for example, startups are developing image recognition solutions for sectors ranging from agriculture (crop monitoring and pest detection) to healthcare (diagnostic imaging and telemedicine).
  • Moreover, the region's expanding digital infrastructure, including widespread mobile internet access and cloud computing capabilities, facilitates the deployment of AI-driven image recognition systems. This infrastructure supports scalable and real-time applications in e-commerce, where visual search and augmented reality are enhancing online shopping experiences.
  • Asia-Pacific's emergence as a growth hub for image recognition is characterized by increasing investments in AI, expanding digital infrastructure, and innovative applications across diverse sectors. Countries like China, Japan, and South Korea lead the charge with significant developments in facial recognition, smart manufacturing, and consumer electronics, driving the region's prominence in the global image recognition market.
  • China's significant investment in AI technologies, including facial recognition, has led to global advancements in surveillance, public safety, and consumer applications, with the government's support fostering innovation. Japan and South Korea are leading in image recognition technology adoption, with Japan integrating AI-powered vision systems for quality control, robotic automation, and predictive maintenance in industries like automotive and electronics. South Korea's tech giants like Samsung and LG use it in smartphones, smart home devices, and smart city projects.

Global Image Recognition Market: Segmentation Analysis

The Global Image Recognition Market is Segmented on the basis of Technology, Application, Deployment Mode, and Geography.

Image Recognition Market, By Technology

  • Facial Recognition
  • Pattern Recognition
  • Object Recognition
  • Barcode Recognition
  • Optical Character Recognition (OCR)

Based on Technology, the Global Image Recognition Market is bifurcated into Facial Recognition, Pattern Recognition, Object Recognition, Barcode Recognition, and Optical Character Recognition (OCR). In the image recognition market by technology, facial recognition currently dominates as the largest segment. Facial recognition technology is widely used in security and surveillance systems, access control, and authentication processes across various industries. Its applications range from identifying individuals in real-time to enhancing customer experiences in retail and personalized marketing campaigns. The adoption of facial recognition continues to grow driven by advancements in AI and machine learning algorithms, improving accuracy and reliability in diverse environments. Secondly, object recognition is rapidly growing in the image recognition market.

Image Recognition Market, By Deployment Mode

  • On-Premises
  • Cloud

Based on Deployment Mode, the Global Image Recognition Market is bifurcated into On-Premises and Cloud. In the image recognition market by deployment mode, cloud-based solutions currently dominate as the largest segment. Cloud deployment offers scalability, flexibility, and cost-effectiveness, allowing businesses to access advanced image recognition capabilities without the need for extensive hardware investments or IT infrastructure management. Cloud-based image recognition platforms also provide seamless updates, integration with other cloud services, and the ability to handle large volumes of data efficiently, making them attractive for enterprises across various industries. On-premises deployment, while still relevant for sectors requiring strict data security or regulatory compliance, is seeing slower growth compared to cloud-based solutions.

Image Recognition Market, By Application

  • Healthcare
  • Retail
  • Automotive
  • Security
  • Agriculture

Based on Application, the Global Image Recognition Market is bifurcated into Healthcare, Retail, Automotive, Security, and Agriculture. In the image recognition market by application, the healthcare sector currently dominates as the largest segment. Image recognition plays a crucial role in medical imaging for diagnosing diseases, analyzing scans, and assisting in surgical procedures, thereby enhancing patient care and treatment outcomes. The adoption of AI-powered image recognition technologies in healthcare continues to grow, driven by advancements in deep learning algorithms and the increasing demand for precision medicine and personalized healthcare solutions. Secondly, the retail sector is experiencing rapid growth in the image recognition market.

Image Recognition Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Based on Geography, the Global Image Recognition Market is classified into North America, Europe, Asia Pacific, and the Rest of the World. In the image recognition market, North America currently dominates as the largest geographical segment. This is largely due to the region's strong technological infrastructure, substantial investments in artificial intelligence (AI) and machine learning (ML) research, and the presence of leading tech companies driving innovation in computer vision technologies. North America is home to a significant number of startups and established firms specializing in AI and image recognition, contributing to its leadership position in the market. Asia Pacific emerges as the second rapidly growing geographical segment in the image recognition market.

Key Players

The "Global Image Recognition Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are Amazon Web Services (AWS), Inc. , Microsoft Corporation, Google LLC, IBM Corporation.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with its product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Global Image Recognition Market Key Developments

  • In March 2023, Amazon Web Services (AWS) launched AWS Panorama, a machine learning appliance and service for industrial image analysis. AWS Panorama enables businesses to deploy computer vision applications at the edge, enhancing operational efficiency and real-time decision-making in manufacturing and logistics.
  • In July 2022, NVIDIA introduced the NVIDIA Maxine AR SDK, a software development kit for AI-powered video conferencing and collaboration. NVIDIA Maxine AR SDK leverages image recognition and AI technologies to enhance virtual interactions with features like background removal, face alignment, and real-time translation.
  • In November 2021, Google Cloud announced the acquisition of DALL-E, an AI image generation company. This acquisition strengthens Google Cloud's capabilities in AI and image recognition, enhancing its offerings in areas like content creation, visual search, and digital marketing.
  • In February 2021, Microsoft launched Azure Percept, an end-to-end platform for building and deploying AI-powered edge computing solutions. Azure Percept integrates Azure AI and Azure IoT services with image and speech recognition capabilities, enabling businesses to implement advanced edge AI applications.
  • In September 2020, Qualcomm Technologies unveiled the Snapdragon Elite Gaming feature suite, which includes AI-based image recognition and enhancement technologies for mobile gaming experiences. The Snapdragon Elite Gaming suite enhances visual quality, responsiveness, and immersive gaming experiences on mobile devices.

TABLE OF CONTENTS

1. Introduction

  • Market Definition
  • Market Segmentation
  • Research Methodology

2 Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4.Image Recognition Market, By Technology

  • Facial Recognition
  • Pattern Recognition
  • Object Recognition
  • Barcode Recognition
  • Optical Character Recognition (OCR)

5. Image Recognition Market, By Application

  • Healthcare
  • Retail
  • Automotive
  • Security
  • Agriculture

6.Image Recognition Market, By Deployment Mode

  • On-Premises
  • Cloud

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8 Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • Amazon Web Services (AWS) Inc. (US)
  • Microsoft Corporation (US)
  • Google LLC (US)
  • IBM Corporation (US)
  • 11. Market Outlook and Opportunities
  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References