デフォルト表紙
市場調査レポート
商品コード
1624504

ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場規模:コンポーネント別、NLPタイプ別、用途別、エンドユーザー別、地域別、範囲および予測

Global Natural Language Processing In Healthcare And Life Sciences Market Size By Component, By NLP Types, By Application (Interactive voice response, Pattern & image recognition), By End-User, By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場規模:コンポーネント別、NLPタイプ別、用途別、エンドユーザー別、地域別、範囲および予測
出版日: 2024年08月25日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の市場規模と予測

ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)市場規模は、2024年に22億5,000万米ドルと評価され、2024年から2031年にかけて19.82%のCAGRで成長し、2031年には95億7,000万米ドルに達すると予測されています。ヘルスケアにおける自然言語処理(NLP)とは、コンピュータが医療の文脈で人間の言葉を理解、解釈、生成できるようにするAI技術の応用を指します。臨床記録、患者記録、研究論文などの非構造化データを処理し、より効率的なデータ管理と分析を可能にします。複雑なテキストを実用的な洞察に変換することで、NLPは臨床上の意思決定を強化し、患者のケアを向上させる。

NLPは、臨床文書の改善、患者の感情分析、電子健康記録(EHR)からの有意義な情報の抽出など、ヘルスケアにおいて数多くの用途があります。

また、患者エンゲージメントのためのチャットボットにも活用され、ヘルスケアプロバイダーと患者間のコミュニケーションを促進しています。さらにNLPは、膨大な文献を分析して潜在的な治療標的を特定することで、創薬にも役立っています。

ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)市場力学

主な市場促進要因

健康データの爆発的増加:

ヘルスケア分野では、電子カルテからウェアラブルデバイスまで、毎日膨大な量のデータが生成されています。この膨大なデータ量は、データ分析のための高度なツールを必要とします。NLPは、非構造化データを実用的な洞察に変換するための重要なソリューションとして機能します。インターナショナル・データ・コーポレーション(IDC)によると、ヘルスケアデータの量は2020年に2,314エクサバイトに達し、毎年48%の割合で増加し、2025年には11,318エクサバイトに達すると予測されています。

患者エンゲージメントの強化:

NLPテクノロジーは、患者とのやり取りやフィードバックを分析し、ヘルスケアプロバイダーが患者のニーズをよりよく理解するのに役立ちます。パーソナライズされたコミュニケーションを促進することで、これらのツールは患者のエンゲージメントと満足度を高めます。このようなつながりの向上は、最終的に健康状態の改善につながります。2023年にJournal of Medical Internet Researchに掲載された調査によると、NLPを搭載したチャットボットは、従来の方法と比較して患者のエンゲージメント率を35%向上させました。

業務の効率化:

ヘルスケアプロバイダーは、効率改善とコスト削減のプレッシャーに直面しています。NLPは文書化やコーディングといった時間のかかる作業を自動化し、臨床医の貴重な時間を解放します。これにより、ヘルスケアチームは管理業務よりも患者ケアに集中することができます。ヘルスケア財務管理協会(Healthcare Financial Management Association)は2023年、臨床文書改善のためにNLPを使用した病院では、照会率が20%減少し、症例混合指数が15%改善したと報告しています。

研究開発の加速:

ライフサイエンスの分野では、NLPは膨大な量の研究文献や臨床試験データを迅速に処理することができます。この機能により、創薬プロセスや革新的な治療法の開発が大幅にスピードアップします。データへのアクセシビリティを高めることで、NLPは研究における情報に基づいた意思決定をサポートします。2023年にNature Biotechnology誌に掲載された調査によると、NLP支援による文献レビューにより、研究論文の初期スクリーニングにかかる時間を最大70%短縮できることが示されています。

主な課題

医療用語の複雑さ:

医療用語は複雑で、専門分野によって大きく異なるため、NLPの実装を複雑にしています。専門用語、略語、文脈を正確に解釈する能力は、依然として大きなハードルとなっています。この複雑さは誤った解釈を招き、臨床結果に影響を与える可能性があります。

既存システムとの統合:

効果的なNLPモデルのトレーニングには、高品質で注釈付きのデータセットが不可欠ですが、ヘルスケアでは不足しがちです。包括的なトレーニングデータがないため、モデルのパフォーマンスが最適化されない可能性があります。この制限は、NLPアプリケーションのスケーラビリティと有効性を制限します。

変化への抵抗:

ヘルスケアの専門家は、確立されたワークフローが破壊されることを恐れ、新しいテクノロジーを採用することに抵抗を示すことがあります。このような懐疑的な態度は、正確性や信頼性に対する懸念から生じている可能性があります。この抵抗を克服するには、的を絞った教育と、臨床現場におけるNLPの価値を証明することが必要です。

主要動向

対話型AI:

NLPを活用した対話型AIは、患者との対話のためにヘルスケア環境に組み込まれることが増えています。バーチャルアシスタントは、患者からの問い合わせに即座に回答し、情報へのアクセスを向上させることができます。この動向は患者のエンゲージメントを高め、管理プロセスを合理化します。2023年の米国病院協会(AHA)の調査によると、47%の病院が患者エンゲージメントのために対話型AIソリューションを使用または試験的に導入しています。

センチメント分析:

ヘルスケアにおけるセンチメント分析は、フィードバックやレビューから患者の感情や経験を測定するためにNLPを利用します。患者の感情を理解することで、医療提供者はサービスを調整し、ケア提供を改善することができます。この動向は、ヘルスケアにおける患者中心のアプローチの重要性を強調しています。2023年にJournal of Medical Internet Researchに掲載された調査では、NLPベースの患者フィードバックの感情分析により、病院の再入院率を78%の精度で予測できることがわかりました。

電子カルテ(EHR)との統合:

NLPはEHRシステムと統合され、データ抽出と分析機能を強化しています。非構造化データを構造化フォーマットに変換することで、NLPはより良い臨床的意思決定を促進します。この動向は、ワークフローの効率を改善し、ヘルスケア環境における患者の転帰を最適化することを目的としています。ONC(Office of the National Coordinator for Health Information Technology)によると、2023年の時点で、連邦政府以外の急性期病院の96%が認定EHR技術を導入しています。

目次

ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)市場のイントロダクション

  • 市場概要
  • 調査範囲
  • 前提条件

第2章 エグゼクティブサマリー

第3章 VERIFIED MARKET RESEARCHの調査手法

  • データマイニング
  • バリデーション
  • 一次資料
  • データソース一覧

第4章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場展望

  • 概要
  • 市場力学
    • 促進要因
    • 抑制要因
    • 機会
  • ポーターのファイブフォースモデル
  • バリューチェーン分析

第5章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:コンポーネント別

  • 概要
  • ソリューション
  • サービス

第6章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:NLPタイプ別

  • 概要
  • ルールベースの自然言語処理
  • 統計的自然言語処理
  • ハイブリッド自然言語処理

第7章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:用途別

  • 概要
  • 対話型音声応答(IVR)
  • パターン・画像認識
  • 自動コーディング
  • 分類・カテゴリー化
  • テキスト&音声分析
  • その他

第8章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:組織規模別

  • 概要
  • 中小企業(SMEs)
  • 大企業

第9章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:エンドユーザー別

  • 概要
  • 医師
  • 研究者
  • 患者
  • 臨床オペレーター

第10章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:地域別

  • 概要
  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • その他アジア太平洋地域
  • 世界のその他の地域
    • ラテンアメリカ
    • 中東・アフリカ

第11章 ヘルスケアおよびライフサイエンスにおける自然言語処理(NLP)の世界市場:競合情勢

  • 概要
  • 各社の市場ランキング
  • 主な開発戦略

第12章 企業プロファイル

  • 3M
  • Apple
  • Google
  • . Microsoft
  • A3logics
  • AlchemyAPI
  • Apixio
  • Aylien
  • Dolbey Systems
  • Fluxifi

第13章 主な発展

  • 製品の上市/開発
  • 合併と買収
  • 事業拡大
  • パートナーシップと提携

第14章 付録

  • 関連調査
目次
Product Code: 24681

Natural Language Processing (NLP) In Healthcare And Life Sciences Market Size And Forecast

Natural Language Processing (NLP) In Healthcare And Life Sciences Market size was valued at USD 2.25 Billion in 2024 and is projected to reach USD 9.57 Billion by 2031, growing at a CAGR of 19.82% from 2024 to 2031. Natural Language Processing (NLP) in healthcare refers to the application of AI technologies that enable computers to understand, interpret, and generate human language within medical contexts. It involves processing unstructured data from clinical notes, patient records, and research articles, allowing for more efficient data management and analysis. By transforming complex text into actionable insights, NLP enhances clinical decision-making and improves patient care.

NLP has numerous applications in healthcare, including clinical documentation improvement, patient sentiment analysis, and the extraction of meaningful information from electronic health records (EHRs).

It is also utilized in chatbots for patient engagement, facilitating communication between healthcare providers and patients. Additionally, NLP aids in drug discovery by analyzing vast amounts of literature to identify potential therapeutic targets.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market Dynamics

The key market dynamics that are shaping the global natural language processing (NLP) in healthcare and life sciences market include:

Key Market Drivers

Explosion of Health Data:

The healthcare sector generates an immense volume of data daily, from electronic health records to wearable devices. This sheer volume necessitates advanced tools for data analysis. NLP serves as a critical solution for transforming unstructured data into actionable insights. According to the International Data Corporation (IDC), the volume of healthcare data reached 2,314 exabytes in 2020 and is projected to grow at a rate of 48% annually, reaching 11,318 exabytes by 2025.

Enhanced Patient Engagement:

NLP technologies can analyze patient interactions and feedback, helping healthcare providers understand patient needs better. By facilitating personalized communication, these tools boost patient engagement and satisfaction. This improved connection ultimately leads to better health outcomes. A study published in the Journal of Medical Internet Research in 2023 found that NLP-powered chatbots improved patient engagement rates by 35% compared to traditional methods.

Operational Efficiency:

Healthcare providers face increasing pressure to improve efficiency and reduce costs. NLP automates time-consuming tasks such as documentation and coding, freeing up valuable clinician time. This allows healthcare teams to focus more on patient care rather than administrative burdens. The Healthcare Financial Management Association reported in 2023 that hospitals using NLP for clinical documentation improvement saw a 20% reduction in query rates and a 15% improvement in case mix index.

Accelerated Research and Development:

In the realm of life sciences, NLP can quickly process vast amounts of research literature and clinical trial data. This capability significantly speeds up the drug discovery process and the development of innovative treatments. By enhancing data accessibility, NLP supports informed decision-making in research. A study published in Nature Biotechnology in 2023 showed that NLP-assisted literature review could reduce the time spent on initial screening of research papers by up to 70%.

Key Challenges:

Complexity of Medical Language:

Medical terminology is intricate and varies widely across specialties, complicating NLP implementation. The ability to accurately interpret jargon, abbreviations, and context remains a significant hurdle. This complexity can lead to misinterpretations and affect clinical outcomes.

Integration with Existing Systems:

High-quality, annotated datasets are essential for training effective NLP models, yet they are often scarce in healthcare. The absence of comprehensive training data can lead to suboptimal model performance. This limitation restricts the scalability and effectiveness of NLP applications.

Resistance to Change:

Healthcare professionals may be resistant to adopting new technologies, fearing disruption to established workflows. This skepticism can stem from concerns about accuracy and reliability. Overcoming this resistance requires targeted education and evidence of NLP's value in clinical practice.

Key Trends

Conversational AI:

Conversational AI, powered by NLP, is increasingly being integrated into healthcare settings for patient interaction. Virtual health assistants can provide instant responses to patient inquiries, improving access to information. This trend enhances patient engagement and streamlines administrative processes. According to a survey by the American Hospital Association (AHA) in 2023, 47% of hospitals were using or piloting conversational AI solutions for patient engagement.

Sentiment Analysis:

Sentiment analysis in healthcare utilizes NLP to gauge patient emotions and experiences from feedback and reviews. Understanding patient sentiment helps providers tailor services and improve care delivery. This trend emphasizes the importance of patient-centered approaches in healthcare. A study published in the Journal of Medical Internet Research in 2023 found that NLP-based sentiment analysis of patient feedback could predict hospital readmission rates with 78% accuracy.

Integration with Electronic Health Records (EHRs):

NLP is being integrated with EHR systems to enhance data extraction and analysis capabilities. By transforming unstructured data into structured formats, NLP facilitates better clinical decision-making. This trend aims to improve workflow efficiency and optimize patient outcomes in healthcare settings. According to the Office of the National Coordinator for Health Information Technology (ONC), as of 2023, 96% of all non-federal acute care hospitals have adopted certified EHR technology.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market Regional Analysis

Here is a more detailed regional analysis of the global natural language processing (NLP) In healthcare and life sciences market:

North America

North America dominating the natural language processing (NLP) in healthcare and life sciences market, driven by advanced healthcare infrastructure and substantial investments in AI and machine learning technologies. The region's dominance is reinforced by the presence of major tech companies and healthcare providers actively integrating NLP solutions to improve patient care and streamline operations.

According to the U.S. Department of Health and Human Services, 96% of hospitals had adopted certified electronic health record (EHR) technology by 2021, creating a vast repository of unstructured data ideal for NLP applications. Recently, IBM Watson Health announced a collaboration with Humana to leverage NLP and AI for improving care management and addressing social determinants of health.

The COVID-19 pandemic has accelerated the adoption of NLP technologies in North American healthcare, particularly for analyzing vast amounts of medical literature, clinical notes, and patient data. NLP tools have proven invaluable in tracking disease spread, identifying potential treatments, and managing vaccine distribution.

Asia Pacific

The Asia Pacific region is experiencing rapid growth in the Natural Language Processing (NLP) in Healthcare and Life Sciences Market, driven by increasing digitalization of healthcare systems and substantial investments in AI technologies. Countries like China, Japan, and India are actively adopting NLP solutions to overcome language barriers, improve clinical documentation, and enhance patient care in their diverse healthcare landscapes.

According to China's National Health Commission, the country's health information technology market reached 77.55 billion yuan ($11.04 billion) in 2020, with NLP playing a crucial role in this expansion. Recently, Alibaba Health announced a partnership with SenseTime to develop AI-powered NLP solutions for medical image analysis and clinical decision support, showcasing the region's commitment to advancing healthcare technology.

The COVID-19 pandemic has accelerated the adoption of NLP technologies in Asia Pacific's healthcare sector, particularly for analyzing large volumes of medical literature, tracking disease spread, and managing vaccine distribution. NLP tools have proven invaluable in processing multilingual health data and facilitating cross-border collaboration in pandemic response.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market: Segmentation Analysis

The Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is segmented based on Component, NLP Types, Application, End-User, and Geography.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By Component

  • Solution
  • Services

Based on Component, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Solution and Services. In the healthcare and life sciences market for natural language processing (NLP), the solution segment currently dominates due to the increasing adoption of NLP technologies for clinical documentation, patient engagement, and data analysis. However, the services segment is rapidly growing as healthcare providers seek tailored implementations, ongoing support, and training to optimize these solutions. This trend highlights a shift towards integrated, comprehensive NLP strategies that enhance both functionality and user experience.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By NLP Types

  • Rule-based natural language processing
  • Statistical natural language processing
  • Hybrid natural language processing

Based on NLP Types, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Rule-based natural language processing, Statistical natural language processing, Hybrid natural language processing. In the healthcare and life sciences market for Natural Language Processing (NLP), the rule-based natural language processing segment currently dominates due to its reliability and effectiveness in specific applications like clinical coding and data extraction. However, the hybrid natural language processing segment is rapidly growing, as it combines the strengths of both rule-based and statistical approaches, offering greater flexibility and accuracy in handling diverse healthcare data. This trend reflects an increasing demand for more robust and adaptive NLP solutions that can improve outcomes in patient care and research.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By Application

  • Interactive Voice Response (IVR)
  • Pattern & Image Recognition
  • Auto Coding
  • Classification & Categorization
  • Text & Speech Analytics

Based on Application, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Interactive Voice Response (IVR), Pattern & Image Recognition, Auto Coding, and Classification & Categorization, and Text & Speech Analytics. In the natural language processing (NLP) in healthcare and life sciences market, the text and speech analytics segment is dominating owing to its critical role in analyzing vast amounts of unstructured data for improved clinical insights and patient interactions. Meanwhile, the auto coding segment is rapidly growing, fueled by the increasing need for automation in medical coding and billing processes, which enhances efficiency and accuracy in healthcare operations. This growth reflects a broader trend toward integrating advanced NLP applications to streamline workflows and improve healthcare delivery.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By End-User

  • Physicians
  • Researchers
  • Patients
  • Clinical Operators

Based on End-User, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is bifurcated into Physicians, Researchers, Patients, and Clinical Operators. The physician segment is expected to dominate the market as healthcare providers increasingly leverage NLP to enhance clinical documentation, decision-making, and patient interactions. However, the patient segment is rapidly growing, driven by the rise of patient engagement tools and telehealth services that utilize NLP to improve communication and personalize care. This trend highlights a shift towards empowering patients through technology, ultimately fostering better health outcomes and experiences.

Natural Language Processing (NLP) In Healthcare And Life Sciences Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Based on Geography, the Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market is classified into North America, Europe, Asia Pacific, and the Rest of the World. North America is anticipated to hold major share in the natural language processing (NLP) in healthcare and life sciences market owing to its advanced healthcare infrastructure, high investment in technology, and a strong focus on data-driven solutions. Meanwhile, the Asia Pacific segment is rapidly growing, fueled by increasing digitalization in healthcare, rising healthcare expenditures, and a growing emphasis on improving patient outcomes through innovative technologies. This shift indicates a burgeoning market opportunity as countries in the region adopt NLP solutions to enhance their healthcare systems.

Key Players

  • The "Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are
  • The Lubrizol Corporation, BASF SE, Evonik Industries AG, Clariant Corporation, SABIC, SEPPIC, The Dow Chemical Company, Solvay, Huntsman International LLC, Stepan Company, Sasol Ltd, India Glycols Ltd, Ineos Group Ltd.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with its product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Global Natural Language Processing (NLP) In Healthcare And Life Sciences Market Key Developments

  • In October 2023, IBM Watson Health unveiled an upgraded NLP platform that enhances clinical decision support by integrating real-time patient data analysis and predictive analytics.
  • In September 2023, Google Health launched a new NLP tool aimed at improving patient-provider communication by automatically summarizing medical notes and patient queries during consultations.

TABLE OF CONTENTS

INTRODUCTION OF GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4 Value Chain Analysis

5 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY COMPONENT

  • 5.1 Overview
  • 5.2 Solution
  • 5.3 Services

6 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY NLP TYPES

  • 6.1 Overview
  • 6.2 Rule-based natural language processing
  • 6.3 Statistical natural language processing
  • 6.4 Hybrid natural language processing

7 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY APPLICATION

  • 7.1 Overview
  • 7.2 Interactive voice response (IVR)
  • 7.3 Pattern & image recognition
  • 7.4 Auto coding
  • 7.5 Classification & categorization
  • 7.6 Text & speech analytics
  • 7.7 Others

8 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY ORGANIZATION SIZE

  • 8.1 Overview
  • 8.2 Small and medium-sized enterprises (SMEs)
  • 8.3 Large enterprises

9 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY END-USER

  • 9.1 Overview
  • 9.2 Physicians
  • 9.3 Researchers
  • 9.4 Patients
  • 9.5 Clinical operators

10 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET, BY GEOGRAPHY

  • 10.1 Overview
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 U.K.
    • 10.3.3 France
    • 10.3.4 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 Japan
    • 10.4.3 India
    • 10.4.4 Rest of Asia Pacific
  • 10.5 Rest of the World
    • 10.5.1 Latin America
    • 10.5.2 Middle East and Africa

11 GLOBAL NATURAL LANGUAGE PROCESSING (NLP) IN HEALTHCARE AND LIFE SCIENCES MARKET COMPETITIVE LANDSCAPE

  • 11.1 Overview
  • 11.2 Company Market Ranking
  • 11.3 Key Development Strategies

12 COMPANY PROFILES

  • 12.1 3M
    • 12.1.1 Overview
    • 12.1.2 Financial Performance
    • 12.1.3 Product Outlook
    • 12.1.4 Key Developments
  • 12.2 Apple
    • 12.2.1 Overview
    • 12.2.2 Financial Performance
    • 12.2.3 Product Outlook
    • 12.2.4 Key Developments
  • 12.3 Google
    • 12.3.1 Overview
    • 12.3.2 Financial Performance
    • 12.3.3 Product Outlook
    • 12.3.4 Key Developments
  • 12.4 . Microsoft
    • 12.4.1 Overview
    • 12.4.2 Financial Performance
    • 12.4.3 Product Outlook
    • 12.4.4 Key Developments
  • 12.5 A3logics
    • 12.5.1 Overview
    • 12.5.2 Financial Performance
    • 12.5.3 Product Outlook
    • 12.5.4 Key Developments
  • 12.6 AlchemyAPI
    • 12.6.1 Overview
    • 12.6.2 Financial Performance
    • 12.6.3 Product Outlook
    • 12.6.4 Key Developments
  • 12.7 Apixio
    • 12.7.1 Overview
    • 12.7.2 Financial Performance
    • 12.7.3 Product Outlook
    • 12.7.4 Key Developments
  • 12.8 Aylien
    • 12.8.1 Overview
    • 12.8.2 Financial Performance
    • 12.8.3 Product Outlook
    • 12.8.4 Key Developments
  • 12.9 Dolbey Systems
    • 12.9.1 Overview
    • 12.9.2 Financial Performance
    • 12.9.3 Product Outlook
    • 12.9.4 Key Developments
  • 12.10 Fluxifi
    • 12.10.1 Overview
    • 12.10.2 Financial Performance
    • 12.10.3 Product Outlook
    • 12.10.4 Key Developments

13 KEY DEVELOPMENTS

  • 13.1 Product Launches/Developments
  • 13.2 Mergers and Acquisitions
  • 13.3 Business Expansions
  • 13.4 Partnerships and Collaborations

14 Appendix

  • 14.1 Related Research