デフォルト表紙
市場調査レポート
商品コード
1624427

バイオバンク市場:タイプ別、用途別、サンプルタイプ別、地域別、2024年~2031年

Biobanking Market By Type (Equipment, Consumables, Services, Software), By Application (Life Science Research, Regenerative Medicine), By Sample Type (Blood Products, Human Tissues, Nucleic Acids) & Region For 2024-2031


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
バイオバンク市場:タイプ別、用途別、サンプルタイプ別、地域別、2024年~2031年
出版日: 2024年11月16日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

バイオバンク市場の評価、2024年~2031年

ゲノミクス、個別化医療、バイオテクノロジーの重要性が高まるにつれ、研究開発に必要な高品質の生物サンプルの需要が高まっています。慢性疾患の増加と個別化医療のニーズの高まりが相まって、バイオバンクの需要が高まっています。さらに、官民双方からの資金提供の増加、大規模バイオバンクの形成、保管・保存技術の進歩などが、市場の成長に寄与しています。また、より効果的なデータ分析と利用のために、バイオバンクをビッグデータや人工知能と統合することも、業界の成長には欠かせないです。バイオバンク市場は、2023年に10億6,546万米ドルの売上を突破し、2031年には21億1,762万米ドルに達すると予想されます。

さらに、最新のバイオバンクは、サンプルの収集、保管、データ管理の効率を向上させるために、自動化とデジタル化を強化しています。凍結保存と分子生物学的手順が進歩し、保存される生物資源の品質と耐久性が向上しています。さらに、バイオインフォマティクスとデータ解析の向上により、研究や臨床応用のためのバイオバンク・サンプルのより効果的な利用が可能になった。また、倫理基準やデータ保護を確保するための規制の枠組みも進化しており、その結果、バイオバンクへの取り組みに対する社会的信頼と参加が高まっています。同市場は、2024年から2031年までの予測CAGRが9.89%で上昇する見込みです。

バイオバンク市場定義/概要

最新のバイオバンクは、サンプルの収集、保管、データ管理の効率を向上させるため、自動化とデジタル化を強化しています。凍結保存と分子生物学的手順が進歩し、保存される生物資源の品質と耐久性が向上しています。さらに、バイオインフォマティクスとデータ解析の向上により、研究や臨床応用のためのバイオバンク・サンプルのより効果的な利用が可能になった。また、倫理基準やデータ保護を確保するための規制の枠組みも発展しており、その結果、バイオバンクの取り組みに対する社会的信頼と参加が高まっています。このような状況の収束により、バイオバンクは科学研究とヘルスケアの成果を向上させる重要な要素となっています。バイオバンクの将来的な可能性は計り知れず、個別化医療、遺伝学、公衆衛生に重要な意味を持つ変革的なものです。バイオバンクが拡大するにつれ、病気のメカニズム、遺伝的変異、治療反応についてより深い洞察を可能にする高品質で多様な生物学的サンプルを供給することで、大規模な研究プロジェクトを支援することがますます増えていくと思われます。人工知能やビッグデータ解析などの新技術を統合することで、バイオマーカーの検出や標的治療の設計能力が向上します。さらに、バイオバンクは国際協力を促進し、疾病サーベイランスを強化し、予防ヘルスケア対策に貢献し、より効果的で個別化された医療介入をもたらします。

ゲノミクスとプレシジョン・メディシンの進展がバイオバンク市場の拡大をリードするか?

ゲノミクスと精密医療における進歩の増加は、バイオバンク市場の拡大を大きく促進します。ゲノミクスと精密医療は、遺伝子変異とそれが健康や病気に及ぼす影響をよりよく理解するために、高品質の生物学的サンプルに依存しています。バイオバンクは、これらのサンプルを保管・管理するために必要なインフラを提供し、研究や治療に利用できるようにします。

標的治療薬の開発は、特定の遺伝子プロファイルに合わせて治療をカスタマイズすることを目的としています。疾患の遺伝的基盤に関する広範な研究が必要であり、そのためにはバイオバンクに保管されている広範かつ十分に特性化された生物学的サンプル群へのアクセスが不可欠です。よりテーラーメードな医薬品が開発されるにつれ、バイオバンク・サービスの需要は高まっています。次世代シークエンシング(NGS)やその他のゲノム技術など、シークエンシング技術の進歩は遺伝子解析のコストと期間を大幅に引き下げました。これらの技術によって生成された膨大な量のデータは、適切にアノテーションされた生物学的サンプルにリンクされなければならないです。バイオバンクは、大規模なゲノム研究に必要なサンプルとデータを提供するため、このプロセスにおいて重要な役割を果たしています。

さらに、バイオバンクは、様々な集団からの大規模コホート試料へのアクセスを提供することにより、ゲノム研究および疾患知識を向上させる。このような支援は、疾患の遺伝的基盤の決定、バイオマーカーの発見、予測モデルの作成に不可欠です。ゲノム研究が拡大するにつれ、強力なバイオバンク基盤の重要性が増しています。プレシジョン・メディシンでは、患者の健康状態を完全に把握するために、ゲノムデータと臨床情報を統合する必要があります。バイオバンクは頻繁に生物学的サンプルと臨床データをリンクし、研究者が遺伝子情報と健康転帰を相関させることを可能にしています。このような統合は、オーダーメイドの治療プログラムの開発には不可欠であり、バイオバンク・サービスの需要を高めています。

さらに、ゲノムと精密医療の進歩は、規制と倫理的支援を頻繁に必要とします。規制と倫理の枠組みが改善されれば、生物学的サンプルが適切に収集、保存、使用されることが保証されます。このような枠組みは、バイオバンクに対する社会的信頼と関与を向上させ、利用可能なサンプルプールを拡大し、市場を強化します。ゲノミクスや精密医療に焦点を当てた世界の共同研究やコンソーシアムは、共同研究やデータ共有を容易にし、リソースを共有するためにバイオバンクを頻繁に利用しています。このような共同作業により、大規模な調査や迅速な発見が可能になり、改良型バイオバンクシステムに対する需要が高まっています。がん、糖尿病、心血管疾患などの慢性疾患の有病率が上昇していることから、新たな治療法の研究開発を可能にする広範なバイオバンクの必要性が浮き彫りになっています。主に遺伝子や分子データに依存するオーダーメイド医療への変化により、必要不可欠な生物学的材料を供給するための整備されたバイオバンクが必要とされています。

ゲノムと精密医療への関心の高まりは、営利機関と研究機関の双方から多額の投資を促しています。この投資は、バイオバンク施設の創設と成長を支援し、この分野の進化する需要に適合する最新の技術とベストプラクティスを備えていることを保証しています。

サンプルの品質と標準化がバイオバンク市場を阻む?

再現性のない調査結果は、サンプルの質の低さが原因である可能性があり、科学的研究の信頼性を弱めています。サンプルの採取、処理、保管中にサンプルが汚染されたり、損傷したり、誤った管理が行われたりすると、実験結果にばらつきや偏りが生じ、他の研究者が研究結果を再現することが困難になります。サンプルの質の低下は、臨床データ、ゲノムデータ、オミックスデータを含むリンクデータの完全性を危うくする可能性があります。不正確または不完全なデータと低品質サンプルとが組み合わさると、誤った結論が導き出され、科学的知識の発展を阻害する可能性があります。

さらに、バイオバンクは、おそらく数十年という長期間にわたってサンプルを保存する使命を担っているため、サンプルの完全性と安定性を長期間にわたって保証しなければならないです。試料が生存可能で、元の試料を代表するものであることを保証するためには、温度、湿度、光照射などの保存パラメータを厳密に管理しなければならないです。適切な保管条件を維持できないと、試料が劣化し、下流の分析に適さなくなる可能性があります。異なるバイオバンクで採用されている手順、プロトコール、機器にばらつきがあると、サンプルの質にばらつきが生じ、結果の比較や様々な調査からのデータの統合が困難になる可能性があります。

さらに、規制の遵守と認定はバイオバンクの重要な部分であり、バイオバンクは倫理的、法的、および品質保証の規範に従うことを保証するために、規制の制限と認定基準の対象となります。標準化されていないプロセスでは、規制基準を満たし認定を受けることが難しくなり、資金提供の見込みや他の研究機関との共同研究が制限される可能性があります。しかし、品質上の問題やサンプル処理における不一致により、十分に特性化されたサンプルが不足すると、特に珍しい疾患や特定の患者集団に関する研究の妨げになる可能性があります。バイオバンクの成功は、ドナー、研究者、医師、規制機関を含む利害関係者の信頼の維持にかかっています。サンプルの質の低下や統一性の欠如は、バイオバンク資源の信頼性や有用性に対する信用を低下させ、参加、資金調達、支援の減少につながります。

バイオバンク内、あるいは同じバイオバンク内であっても、時間の経過とともに収集技術が異なれば、サンプルの質に変化が生じる可能性があります。検体の取り扱い、保存条件、処理工程はすべて、生物学的検体の完全性に影響を及ぼします。採取の詳細、保存条件、品質管理パラメータなど、検体のメタデータの正確かつ完全な文書化を維持することは、データの完全性とトレーサビリティにとって極めて重要です。しかし、人為的な記録管理手順やデータ入力エラーは、検体データの正確性を危うくする可能性があります。データの正確性と比較可能性を維持するためには、分析法を検証し、アッセイ性能をモニターするために、承認された標準物質と標準品を利用できることが重要です。しかし、十分に特性化された標準物質へのアクセスが限られているため、サンプルの品質評価とキャリブレーションのプロトコルを標準化する努力が妨げられる可能性があります。

目次

第1章 世界のバイオバンク市場のイントロダクション

  • 市場のイントロダクション
  • 調査範囲
  • 前提条件

第2章 エグゼクティブサマリー

第3章 VERIFIED MARKET RESEARCHの調査手法

  • データマイニング
  • バリデーション
  • 一次資料
  • データソース一覧

第4章 世界のバイオバンク市場の展望

  • 概要
  • 市場力学
    • 促進要因
    • 抑制要因
    • 機会
  • ポーターのファイブフォースモデル
  • バリューチェーン分析

第5章 世界のバイオバンク市場:タイプ別

  • 概要
  • 機器
  • 消耗品
  • サービス
  • ソフトウェア

第6章 世界のバイオバンク市場:用途別

  • 概要
  • ライフサイエンス調査
  • 再生医療
  • 臨床研究
  • 治療用途

第7章 世界のバイオバンク市場:サンプルタイプ別

  • 概要
  • 血液製品
  • ヒト組織
  • 核酸
  • 細胞株
  • 生物学的液体
  • ヒト廃棄物

第8章 世界のバイオバンク市場:地域別

  • 概要
  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • その他アジア太平洋地域
  • 世界のその他の地域
    • ラテンアメリカ
    • 中東・アフリカ

第9章 世界のバイオバンク市場:競合情勢

  • 概要
  • 各社の市場ランキング
  • 主な発展戦略

第10章 企業プロファイル

  • Tecan Group Ltd
  • Lonza
  • PHC Holdings Corporation
  • Thermo Fisher Scientific Inc.
  • Hamilton
  • Brooks Automation
  • Qiagen N.V.
  • TTP Labtech Ltd
  • Cryoport, Inc.
  • Azenta, Inc.

第11章 付録

  • 関連調査
目次
Product Code: 24302

Biobanking Market Valuation - 2024-2031

The rising importance of genomics, personalized medicine, and biotechnology has raised the demand for high-quality biological samples, which are required for research and development. The rise in chronic diseases, combined with the growing need for personalized medicines, has increased the demand for biobanking. Furthermore, increased funding from both the public and commercial sectors, as well as the formation of large-scale biobanks and advances in storage and preservation technology, have all contributed to the market's growth. The integration of biobanking with big data and artificial intelligence for more effective data analysis and usage is also critical to the industry's growth. The Biobanking Market is expected to surpass a revenue of USD 1065.46 Million in 2023 and reach USD 2117.62 Million by 2031.

Furthermore, Modern biobanks incorporate enhanced automation and digitization to improve the efficiency of sample collection, storage, and data management. Cryopreservation and molecular biology procedures have advanced, improving the quality and endurance of stored biological resources. Furthermore, improved bioinformatics and data analytics enable more effective use of biobanked samples for research and clinical applications. Regulatory frameworks have also evolved to ensure ethical standards and data protection, resulting in increased public trust and participation in biobanking efforts. The market is expected to rise with a projectedCAGR of 9.89% from 2024 to 2031.

Biobanking Market: Definition/ Overview

Modern biobanks incorporate enhanced automation and digitization to improve the efficiency of sample collection, storage, and data management. Cryopreservation and molecular biology procedures have advanced, improving the quality and endurance of stored biological resources. Furthermore, improved bioinformatics and data analytics enable more effective use of biobanked samples for research and clinical applications. Regulatory frameworks have also evolved to ensure ethical standards and data protection, resulting in increased public trust and participation in biobanking efforts. This convergence of circumstances establishes biobanking as a critical component in increasing scientific research and healthcare outcomes. Biobanking's future potential is immense and transformational, with significant implications for personalized medicine, genetics, and public health. As biobanks expand, they will increasingly support large-scale research projects by supplying high-quality, diverse biological samples that allow for deeper insights into disease mechanisms, genetic variations, and therapeutic responses. Integration of new technologies such as artificial intelligence and big data analytics will improve the ability to detect biomarkers and design targeted treatments. Furthermore, biobanking can promote global cooperation, increase illness surveillance, and contribute to preventive healthcare measures, resulting in more effective and personalized medical interventions.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Will the Increasing Advancements in Genomics and Precision Medicine Lead the Expansion of the Biobanking Market?

The increasing advancements in genomics and precision medicine significantly drive the expansion of the Biobanking Market. Genomics and precision medicine rely on high-quality biological samples to better understand genetic variants and their consequences for health and illness. Biobanks provide the required infrastructure to store and maintain these samples, making them available for research and therapeutic uses.

The development of targeted therapeutics aims to customize treatments to particular genetic profiles. Extensive research into the genetic basis of diseases is necessary, which is dependent on access to a broad and well-characterized set of biological samples held in biobanks. As more tailored medicines are created, the demand for biobanking services is increasing. Advances in sequencing technologies, such as next-generation sequencing (NGS) and other genomic technologies, have significantly lowered the cost and duration of genetic analysis. Massive amounts of data generated by these technologies must be linked to properly annotated biological samples. Biobanks play an important part in this process because they provide the samples and data required for large-scale genomic studies.

Furthermore, biobanks enhance genomic research and disease knowledge by providing access to large cohorts of samples from a variety of populations. This assistance is critical for determining the genetic basis of diseases, finding biomarkers, and creating predictive models. As genomic research expands, a strong biobanking infrastructure becomes increasingly important. Precision medicine requires the integration of genomic data and clinical information to provide full insights into patient health. Biobanks frequently link biological samples to clinical data, allowing researchers to correlate genetic information with health outcomes. This integration is critical for the development of tailored treatment programs, which increases demand for biobanking services.

Additionally, advances in genomes and precision medicine frequently require regulatory and ethical support. Improved regulatory and ethical frameworks ensure that biological samples are collected, stored, and used appropriately. These frameworks improve public trust and involvement in biobanking, which expands the available sample pool and strengthens the market. Global collaborations and consortia focused on genomics and precision medicine make collaboration and data sharing easier, and they frequently rely on biobanks to share resources. These joint efforts enable large-scale investigations and rapid discoveries, which increases the demand for improved biobanking systems. The rising prevalence of chronic diseases such as cancer, diabetes, and cardiovascular ailments highlights the need for broad biobanking to enable research and development of new treatments. The change to customized medicine, which is primarily reliant on genetic and molecular data, demands well-maintained biobanks to supply the essential biological materials.

The increased interest in genomes and precision medicine has prompted significant investment from both commercial and research institutions. This investment supports the creation and growth of biobanking facilities, ensuring that they are equipped with the most up-to-date technologies and best practices to suit the field's evolving demands.

How does Sample Quality and Standardization Hold Back the Biobanking Market?

Irreproducible research findings might be the result of poor sample quality, weakening the credibility of scientific study. Variability and bias in experimental results can occur when samples are contaminated, damaged, or mismanaged during collection, processing, or storage, making it difficult for other researchers to duplicate the findings. Poor sample quality has the potential to jeopardize the integrity of linked data, including clinical, genomic, and omics data. Inaccurate or incomplete data combined with low-quality samples can lead to incorrect conclusions, impeding the growth of scientific knowledge.

Furthermore, biobanks must ensure sample integrity and stability throughout time, as they are tasked with storing samples for extended periods of time, perhaps decades. To guarantee that samples remain viable and representative of the original specimen, storage parameters must be strictly controlled, such as temperature, humidity, and light exposure. Failure to maintain correct storage conditions might cause sample degradation, making them unsuitable for downstream analysis. Inter-laboratory variability might result from a lack of standardization in sample collecting and processing techniques amongst biobanks. variations in the procedures, protocols, and equipment employed by different biobanks might cause variations in sample quality, making it difficult to compare results or combine data from various research.

Additionally, regulatory compliance and accreditation are critical parts of biobanking, with biobanks subject to regulatory restrictions and accrediting standards to ensure they follow ethical, legal, and quality assurance norms. Non-standardized processes might make it difficult to meet regulatory standards and acquire accreditation, limiting funding prospects and collaborations with other research institutes. Researchers rely on biobanks to offer high-quality samples for their studies; yet a lack of well-characterized samples due to quality issues or discrepancies in sample processing might hamper research efforts, particularly for uncommon diseases or specific patient populations. The success of biobanking efforts is dependent on sustaining stakeholder trust, which includes donors, researchers, doctors, and regulatory agencies. Poor sample quality and lack of uniformity can reduce trust in the trustworthiness and utility of biobank resources, leading to decreasing participation, financing, and support.

Different collection techniques within biobanks, or even within the same biobank over time, might result in changes in sample quality. Sample handling, storage conditions, and processing processes all have an impact on biological specimen integrity. Maintaining accurate and thorough documentation of sample metadata, such as collection details, storage conditions, and quality control parameters, is critical for data integrity and traceability. However, human record-keeping procedures and data input errors can jeopardize the accuracy of sample data. The availability of approved reference materials and standards for validating analytical methods and monitoring assay performance is critical for maintaining data correctness and comparability. However, limited access to well-characterized reference materials can stymie efforts to standardize sample quality assessment and calibration protocols.

Category-Wise Acumens

How does the Increasing Demand for Clinical Research Advance the Growth of the Biobanking Market?

The increasing demand for clinical research is fuelling growth in the Biobanking Market. Biobanks serve an important role in precision medicine projects by allowing researchers access to large-scale collections of well-characterized clinical samples such as tissues, blood, and biological fluids, as well as accompanying clinical data. These resources allow for the identification of disease biomarkers, the classification of patient populations, and the development of targeted medicines, increasing the demand for high-quality clinical samples held in biobanks.

Biobanks facilitate biomarker development and validation in clinical research, which is critical for improving illness diagnosis, monitoring therapy efficacy, and predicting patient outcomes. Diverse patient samples are made available for biomarker identification and validation investigations, which helps to translate basic research discoveries into therapeutic applications. Furthermore, biobanks provide researchers and pharmaceutical companies with patient-derived samples for preclinical investigations and biomarker-driven clinical trials.

Furthermore, using well-characterized clinical samples from biobanks, researchers can assess the safety, efficacy, and pharmacokinetics of investigational drugs, identify patient subgroups likely to benefit from treatment, and optimize trial design, thereby improving drug development efficiency and accelerating approval timelines. Biobanks also enhance disease modelling and personalized medicine techniques by allowing researchers access to patient-derived samples to study disease mechanisms, identify therapeutic targets, and design patient-specific treatment regimens. Using human tissues, cell lines, and bodily fluids from biobanks, researchers can mimic disease phenotypes in vitro and test medication responses in patient-derived models, allowing for individualized treatment selection and optimization based on specific patient features.

Additionally, the growing demand for clinical research is driving increased collaboration across biobanks, research institutions, and healthcare organizations to improve data exchange, standardize research protocols, and stimulate cross-disciplinary partnerships. Using shared resources and expertise, researchers can get access to larger and more diversified sample collections, overcome resource constraints, and accelerate scientific discoveries, thereby increasing our understanding of disease pathophysiology and patient treatment. Biobanks follow regulatory criteria and quality assurance standards to assure the ethical collection, storage, and dissemination of clinical samples. Compliance with laws such as Good Clinical Practice (GCP) and the Health Insurance Portability and Accountability Act (HIPAA) boosts confidence among researchers, sponsors, and regulatory bodies, promoting the expansion of the biobanking sector.

The increased emphasis on personalized healthcare, which seeks to provide tailored medical treatments based on unique patient characteristics, increases the demand for high-quality clinical samples and molecular data. Biobanks allow researchers and doctors to examine patient-derived samples for genetic variants, biomarker profiles, and therapy responses, resulting in more accurate diagnoses and focused medicines. High-throughput sequencing, omics technologies, and bioinformatics tools have revolutionized clinical research and biomarker identification. Biobanks use these technologies to undertake extensive molecular profiling of patient samples, detect disease signs, and predict therapy responses, fostering innovation and growth in the biobanking industry.

Will the Rising Utilization Nucleic Acids and Cell Lines Drive the Growth of the Biobanking Market?

The rising utilization of nucleic acids and cell lines in various research and clinical applications is expected to drive the growth of the Biobanking Market. High-throughput sequencing technologies have brought genomic research into the modern era, allowing for complete examination of DNA and RNA materials. Nucleic acids extracted from biobank specimens provide valuable resources for large-scale genomic investigations aiming at understanding disease genetics, finding biomarkers, and discovering therapeutic targets. As genomic research expands, there will be a large increase in demand for high-quality nucleic acid samples from biobanks.

Furthermore, nucleic acid samples are critical in precision medicine initiatives because they allow for the detection of genetic variants linked to disease susceptibility, therapeutic response, and treatment outcomes. Biobanks provide researchers and clinicians with access to vast libraries of well-annotated nucleic acid samples, which enables population-based studies and individualized healthcare interventions. Biobanks aid liquid biopsy research by giving access to archived blood samples and other biological fluids gathered over time from people with cancer and other disorders. Well-characterized nucleic acid samples from biobanks speed up the development and validation of liquid biopsy assays for clinical usage. Cell lines produced from biobank specimens are valuable tools for researching cellular physiology, disease processes, and medication responses in vitro.

Additionally, advances in stem cell biology, genome editing, and tissue engineering have expanded the use of cell lines in regenerative medicine, drug discovery, and disease modelling. Biobanks are repositories of verified and quality-controlled cell lines that help researchers develop cell-based therapeutics for a variety of ailments. Cell lines produced from biobank specimens are commonly used in pharmaceutical research and development to screen drug candidates, investigate pharmacological mechanisms of action, and predict drug toxicity.

Biobanks provide researchers and drug developers with diverse cell line collections covering various tissue types, disease states, and genetic origins, thereby expediting drug development, lowering costs, and increasing preclinical model predictability. Cell lines are also used in regenerative medicine applications such cell treatment, tissue engineering, and organ transplantation. Biobanks are critical in producing stem cell lines, induced pluripotent stem cells (iPSCs), and other cell types for regenerative medicine research and therapeutic use. The ability to bank and disseminate well-characterized and quality-controlled cell lines is critical for improving regenerative medicine therapy, driving market growth in this segment.

Biobanking Market

Report Methodology

Country/Region-wise

How does Advanced Healthcare Infrastructure and Research Funding in North America Boost Up the Biobanking Market?

North America's advanced healthcare infrastructure and robust research funding and investment ecosystem create an enabling environment for biobanking activities. North America is distinguished by cutting-edge healthcare facilities, such as hospitals, clinics, and research institutions, which are outfitted with advanced diagnostic and treatment technologies, providing the infrastructure for conducting biomedical research and clinical studies that require access to patient samples.

The region's interconnected healthcare ecosystem promotes collaboration among healthcare providers, research institutions, and biobanks, allowing clinicians to easily collect and bank biospecimens from patients enrolled in clinical trials or routine healthcare visits. This agreement guarantees a consistent supply of high-quality samples for biobanking programs.

Furthermore, many healthcare organizations in North America have taken a patient-centric approach, encouraging patient participation in research activities, such as sample donation for biobanking purposes. Patient engagement initiatives, such as informed consent processes, community outreach programs, and patient advocacy groups, promote awareness of biobanking and facilitate sample collection efforts. The widespread adoption of electronic health records (EHR) in North America facilitates the integration of clinical and research data, streamlining sample collection and data annotation processes. Biobanks can leverage EHR systems to identify eligible patients, track sample provenance, and link molecular data with clinical outcomes, thereby enhancing the utility of biobank resources for research purposes.

Additionally, regarding research funding and investment, substantial funding is allocated by government agencies in North America, such as the National Institutes of Health (NIH) in the United States and the Canadian Institutes of Health Research (CIHR) in Canada, to support biomedical research and biobanking initiatives. These agencies' research grants and cooperative agreements make it possible to build and expand biobanks, fund infrastructure development, sample collection initiatives, and conduct research projects that use biobank resources. Furthermore, North America receives significant private funding from venture capital firms, philanthropic organizations, and biotechnology corporations interested in supporting biobanking infrastructure and research. Private investment enables biobanks to update their facilities, implement cutting-edge technology, and expand sample collections in response to new research objectives and market demands.

Collaboration between biobanks and pharmaceutical, biotechnology, and diagnostic industries in North America promotes innovation and speeds translational research initiatives. Industry partners may give financial support, technical experience, and access to specialized resources, thereby increasing the value proposition of biobank resources and accelerating the development of novel diagnostics, treatments, and personalized medicine strategies. Furthermore, collaboration between biobanks and academic institutions in North America encourages interdisciplinary research collaborations and knowledge sharing. Academic collaborations provide access to research skills, specialized equipment, and training opportunities, which improve biobank activities and advance scientific discovery in fields such as genomics, precision medicine, and regenerative therapies.

Will the Increasing Healthcare Expenditure and Growing Biotechnology in the Asia-Pacific Region Promote the Biobanking Market Further?

The increasing healthcare spending in the Asia-Pacific region enables investment in healthcare infrastructure, such as the establishment and expansion of biobanking facilities, which require sophisticated infrastructure for sample collection, processing, storage, and distribution, as well as specialised equipment and personnel. Higher healthcare spending allows for the development of cutting-edge biobanking infrastructure, hence supporting market growth.

Healthcare expenditure enables higher funding allocations for research and development (R&D) activities in the Asia-Pacific region, with academic institutions, research organizations, and pharmaceutical companies receiving more resources to conduct biomedical research, drug discovery, and clinical trials. Biobanks play an important role in supporting R&D operations by providing high-quality biological samples, hence generating demand for biobanking services and solutions. The growth of healthcare access in the Asia-Pacific area, driven by increased healthcare spending, creates a growing demand for healthcare solutions suited to individual patients' requirements, including personalized medicine approaches.

Furthermore, biobanks support personalized medicine initiatives by providing biological samples for genomic research, biomarker identification, and pharmaceutical development, which drives market demand. Government initiatives and policies in the Asia-Pacific region encourage healthcare innovation, research collaboration, and technological adoption, with many countries providing incentives and funding to support biobanking infrastructure development, research partnerships, and regulatory compliance. Initiatives like China's Precision Medicine Initiative and Singapore's Biomedical Sciences Initiative seek to improve healthcare innovation and research, hence promoting the expansion of the biobanking industry. Increased healthcare spending drives developments in healthcare services and technologies in the Asia-Pacific area. Precision medicine, genetic research, and personalized healthcare approaches are becoming increasingly popular, need access to large amounts of biological samples and data. Biobanks play an important role in allowing these advances by supplying broad and well-characterized sample sets, which drive market growth.

Additionally, emerging markets and potential in the Asia-Pacific area, such as China, India, and South Korea, are driven by increased healthcare expenditure, leading to demand for biobanking solutions and infrastructure. These countries, with their huge and diverse populations, genetic variety, and rising burden of chronic diseases, present enormous prospects for biobanking services and research collaborations. Biobanks serve a crucial role in drug discovery and development efforts by biotechnology companies in the Asia-Pacific area by giving access to varied biological samples. These activities include target identification, lead optimization, and preclinical testing.

Precision medicine projects in the Asia-Pacific area are highlighted, with the goal of tailoring medical therapies to individual patients' genetic makeup and illness profiles, with biobanks serving as critical resources for genomic analysis, biomarker development, and tailored treatment options. Biotechnology companies in Asia-Pacific are also looking into regenerative medicine approaches such as cell therapy, tissue engineering, and organ transplantation, with biobanks helping with research by providing stem cells, tissue samples, and other biological materials for experimentation and clinical applications.

Competitive Landscape

The Biobanking Market's competitive landscape includes a diversified mix of rising startups, specialty service providers, and regional biobanks. These firms frequently focus on specialized services, such as niche sample kinds, innovative storage systems, or specific disease regions, to meet the changing needs of researchers and pharmaceutical corporations. Furthermore, technical developments in sample processing, storage, and data management have resulted in the emergence of creative solution providers who offer unique platforms and services, upsetting established biobanking models. Regional biobanks, especially in emerging economies, add to the competitive landscape by leveraging local expertise, cooperation with academic institutions, and government backing to establish biobanking infrastructure suited to regional healthcare requirements.

Some of the prominent players operating in the Biobanking Market include:

Tecan Group Ltd, Lonza, PHC Holdings Corporation, Thermo Fisher Scientific Inc., Hamilton, Brooks Automation, Qiagen N.V., TTP Labtech Ltd, Becton, Dickinson and Company, Merck & Co., Avantor, Inc., Cryoport, Inc., Azenta, Inc.

Latest Developments

In April 2023, Merck & Co. has agreed to acquire Prometheus Biosciences for about $10.8 billion, in a deal intended to bolster the buyer's immunology drug pipeline as it faces loss of exclusivity for some of its best-selling products over the next few years. Based in San Diego, Prometheus develops precision drugs and companion diagnostics for immune-mediated diseases. The company's lead candidate, PRA023, is a humanized monoclonal antibody indicated for autoimmune conditions that include ulcerative colitis (UC), Crohn's disease (CD), and Systemic Sclerosis-associated Interstitial Lung Disease.

In October 2022, LabVantage Solutions and Biomax Informatics Merge to Create Innovative Capabilities for the Life Science and Bio Manufacturing Industries. LabVantage Solutions, Inc., the leading provider of laboratory informatics solutions and services, including purpose-built LIMS solutions that allow labs to go live faster and at a lower total cost, and Biomax Informatics AG, a software solutions and services provider for efficient decision-making and knowledge management at the intersection of life sciences, healthcare, and information technologies. Customers will now have more confidence in mission-critical projects that depend on the contextualisation of scientific data.

TABLE OF CONTENTS

1 INTRODUCTION OF GLOBAL BIOBANKING MARKET

  • 1.1 Introduction of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL BIOBANKING MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4 Value Chain Analysis

5 GLOBAL BIOBANKING MARKET, BY TYPE

  • 5.1 Overview
  • 5.2 Equipment
  • 5.3 Consumables
  • 5.4 Services
  • 5.5 Software

6 GLOBAL BIOBANKING MARKET, BY APPLICATION

  • 6.1 Overview
  • 6.2 Life Science Research
  • 6.3 Regenerative Medicine
  • 6.4 Clinical Research
  • 6.5 Therapeutic Applications

7 GLOBAL BIOBANKING MARKET, BY SAMPLE TYPE

  • 7.1 Overview
  • 7.2 Blood Products
  • 7.3 Human Tissues
  • 7.4 Nucleic Acids
  • 7.5 Cell Lines
  • 7.6 Biological Fluids
  • 7.7 Human Waste Products

8 GLOBAL BIOBANKING MARKET, BY GEOGRAPHY

  • 8.1 Overview
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 U.K.
    • 8.3.3 France
    • 8.3.4 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 Japan
    • 8.4.3 India
    • 8.4.4 Rest of Asia Pacific
  • 8.5 Rest of the World
    • 8.5.1 Latin America
    • 8.5.2 Middle East and Africa

9 GLOBAL BIOBANKING MARKET COMPETITIVE LANDSCAPE

  • 9.1 Overview
  • 9.2 Company Market Ranking
  • 9.3 Key Development Strategies

10 COMPANY PROFILES

  • 10.1 Tecan Group Ltd
    • 10.1.1 Overview
    • 10.1.2 Financial Performance
    • 10.1.3 Product Outlook
    • 10.1.4 Key Developments
  • 10.2 Lonza
    • 10.2.1 Overview
    • 10.2.2 Financial Performance
    • 10.2.3 Product Outlook
    • 10.2.4 Key Developments
  • 10.3 PHC Holdings Corporation
    • 10.3.1 Overview
    • 10.3.2 Financial Performance
    • 10.3.3 Product Outlook
    • 10.3.4 Key Developments
  • 10.4 Thermo Fisher Scientific Inc.
    • 10.4.1 Overview
    • 10.4.2 Financial Performance
    • 10.4.3 Product Outlook
    • 10.4.4 Key Developments
  • 10.5 Hamilton
    • 10.5.1 Overview
    • 10.5.2 Financial Performance
    • 10.5.3 Product Outlook
    • 10.5.4 Key Developments
  • 10.6 Brooks Automation
    • 10.6.1 Overview
    • 10.6.2 Financial Performance
    • 10.6.3 Product Outlook
    • 10.6.4 Key Developments
  • 10.7 Qiagen N.V.
    • 10.7.1 Overview
    • 10.7.2 Financial Performance
    • 10.7.3 Product Outlook
    • 10.7.4 Key Developments
  • 10.8 TTP Labtech Ltd
    • 10.8.1 Overview
    • 10.8.2 Financial Performance
    • 10.8.3 Product Outlook
    • 10.8.4 Key Developments
  • 10.9 Cryoport, Inc.
    • 10.9.1 Overview
    • 10.9.2 Financial Performance
    • 10.9.3 Product Outlook
    • 10.9.4 Key Developments
  • 10.10 Azenta, Inc.
    • 10.10.1 Overview
    • 10.10.2 Financial Performance
    • 10.10.3 Product Outlook
    • 10.10.4 Key Developments

11 Appendix

  • 11.1 Related Research