デフォルト表紙
市場調査レポート
商品コード
1622894

発光分光分析法市場:製品タイプ、用途、エンドユーザー、地域別、2024年~2031年

Optical Emission Spectroscopy Market By Product Type, Application, End User, & Region for 2024-2031


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
発光分光分析法市場:製品タイプ、用途、エンドユーザー、地域別、2024年~2031年
出版日: 2024年08月05日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

発光分光分析法市場の評価、2024年~2031年

発光分光分析法(OES)市場の成長要因は、様々な産業における材料分析における重要な役割にあります。OESは金属や合金の元素分析を迅速かつ正確に行うことができ、製品品質の維持、規制遵守、製造プロセス管理に不可欠です。市場が拡大しているのは、産業オートメーションの増加、自動車、航空宇宙、エレクトロニクスなどの産業における品質管理要件の要求、正確な元素組成データを提供する高度な分析技術への需要によるものです。発光分光分析法市場は、2024年に6億7,690万米ドルの収益を突破し、2031年には11億9,917万米ドルに達すると推定されます。

最新のOESシステムは、高分解能光学系、マルチチャンネル検出、データ解析のための改良されたソフトウェアアルゴリズムのような高度な機能を備えています。これらの開発により、材料分析、元素組成試験、品質管理手順における分析精度、精度、スピードが向上しています。さらに、現場での検査機能を備えたコンパクトなポータブルOES装置へのシフトが顕著になっており、現場アプリケーションにおける操作の柔軟性と効率が向上しています。同市場は、2024年から2031年までの予測CAGRが7.41%で上昇すると予想されています。

発光分光分析法市場定義/概要

発光分光分析法(OES)は、原子発光分光法(AES)とも呼ばれ、物質の元素組成を決定する技術です。OESは、試料中の原子に特定の波長の光を発生させ、それをモニター・分析して元素組成を特定します。OESは、プラズマや電気アークなどの高エネルギー熱源に試料をさらすことで原子をイオン化し、光を発生させる。各元素はそれぞれ異なる波長で発光するため、試料に含まれる元素を定量的・定性的に調べることができます。光学発光分光法(OES)の将来の展望は、技術開発と精密分析のニーズの高まりにより、幅広い産業分野で大きな期待が寄せられています。励起された原子からの発光に基づく元素分析技術であるOESは、非破壊、高速、高感度で正確な結果を提供します。企業が品質管理、材料特性評価、プロセス最適化を優先するにつれ、OESは冶金、自動車、航空宇宙、エレクトロニクスなどの産業でますます重要な役割を果たすと予測されています。

工業化と品質管理要求の高まりは、どのように発光分光分析法市場を拡大するのか?

世界の工業化による製造活動の増加は、自動車、航空宇宙、エレクトロニクス、冶金などの業界を牽引しており、発光分光分析法(OES)は、製造プロセスで使用される金属、合金、材料の精密な元素分析を提供するために重要です。OESは、原料組成の検証、加工中の材料の完全性の監視、製品品質の維持に使用され、その結果、OESシステムに対する需要が高まっています。

複雑な製造プロセスでは、製品の一貫性と規制遵守を確保するために厳密な管理と最適化が要求されますが、OESはリアルタイムの元素組成分析を可能にします。製造業者はOESデータを使って、プロセスパラメーターを修正し、材料利用を最適化し、廃棄物を削減し、生産効率を向上させます。これは、材料組成のわずかな違いが製品の性能や品質に影響する業界では非常に重要です。

さらに、品質管理は、製品の信頼性、安全性、性能を重視するビジネスにおいて重要であり、OESは、微量元素、汚染物質、合金元素を検出し定量化するための非破壊検査と分析を可能にします。OESは、微量元素、汚染物質、合金元素の非破壊検査と定量分析を可能にします。この機能により、高い品質基準と規制要件への準拠が保証され、自動車、航空宇宙、エレクトロニクスなどの業界に利益をもたらします。世界な規制遵守には、正確で信頼できる分析データが必要であり、OESは、製品の品質、安全性、環境影響基準を満たすために業界を支援しています。

さらに、冶金学などの産業では、OESは強度、耐久性、耐腐食性の基準について鋼や合金の組成を分析し、環境モニタリングでは、大気、水、土壌サンプル中の汚染物質や有害物質を検出し、環境コンプライアンスを保証します。分光装置の進歩により、OESの感度、精度、速度が向上し、幅広い濃度範囲とマトリックスで元素の正確な検出と定量が可能になりました。このような技術的進歩により、OESは、複雑な材料や困難なアプリケーションに対する信頼性の高い分析ソリューションを求める組織にとって、より魅力的なものとなっています。

OESを自動化技術、データ分析プラットフォーム、デジタル化イニシアチブと統合することで、産業現場での有用性が高まります。自動化されたOESシステムは、最小限の人的介入で迅速かつ反復的な評価を実行し、スループットを向上させると同時に運用コストを削減します。デジタル統合により、産業プロセスにおけるリアルタイムのデータ処理、分析、意思決定が可能になるため、プロアクティブ・メンテナンス、プロセス最適化、予測分析が容易になります。

操作の複雑さと他の分析技術との統合は、どのように発光分光分析法市場を阻害するか?

OES装置の操作には専門知識と技術力が必要です。ユーザーは分光原理、装置操作プロトコル、スペクトルデータの解釈を把握しなければならないからです。この必要性により、熟練労働者のOESへのアクセスが制限され、分光学の専門知識を持つ専任のオペレーターやアナリストが頻繁に必要となります。

OES装置は、その精度と信頼性を保証するために、定期的に校正とメンテナンスを行う必要があります。信頼性の高い分析結果を得るためには、特定のアプリケーションやサンプルの種類に合わせた正しい校正が重要です。校正には参照標準と骨の折れる調整が必要な場合があり、複雑さと操作オーバーヘッドを増大させます。OESを利用した正確な分光分析は、適切なサンプル調製に依存します。サンプル調製はサンプルの種類(固体、液体、気体)によって異なり、結果の均一性と再現性を保証するために特殊な手順が必要になります。サンプル調製作業は時間がかかり、危険物の取り扱いや厳格な汚染回避プロトコルの遵守を含む場合があります。

さらに、OES装置で得られたスペクトルデータの解釈は、特に複雑な試料や微量元素分析の場合、一般的に困難です。スペクトル線が重なったり、マトリックスの影響を受けたりするため、高度なデータ分析とソフトウェアツールが必要となります。ユーザーは、目的のスペクトル線とバックグラウンドノイズや干渉を区別しなければならず、これには幅広い知識と経験が必要です。OESは、蛍光X線分析(XRF)、原子吸光分析(AAS)、質量分析(MS)などの他の分析手法と組み合わせて広く使用され、分析能力を向上させたり、追加情報を提供したりします。

さらに、複数のアプローチからのデータを統合するには、サンプル調製、データ形式、校正標準の一貫性が必要です。多くの分析システム間でシームレスな統合とデータ相関を達成しようとすると、技術的な障害が発生することがあります。OESを他の分析装置やシステムと統合するには、ハードウェア・インターフェース、ソフトウェア・プロトコル、データ通信標準に準拠する必要がある場合があります。複数のメーカーが独自に開発した技術やデータ形式は、相互運用性を困難にし、機器間のシームレスなデータ交換を妨げ、ラボの運用の柔軟性を制限する可能性があります。このような複雑さはデータ管理の難しさを悪化させる。

統合された分析技術を効果的に使用するためには、作業員は分光学、化学、機器操作において学際的な能力を持つ必要があります。様々な分析機器からのデータを使用し、解釈するための従業員の開発は、運用コストを増加させ、技術の進歩に追いつくために、継続的な専門的開発が必要となる場合があります。

目次

第1章 イントロダクション

  • 市場の定義
  • 市場セグメンテーション
  • 調査手法

第2章 エグゼクティブサマリー

  • 主な調査結果
  • 市場概要
  • 市場ハイライト

第3章 市場概要

  • 市場規模と成長の可能性
  • 市場動向
  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • ポーターのファイブフォース分析

第4章 発光分光分析法市場:製品タイプ別

  • アーク/スパークOES
  • ICP-OES(誘導結合プラズマ)

第5章 発光分光分析法市場:エンドユーザー産業別

  • 冶金・鋳造
  • 鉱業と探査
  • 自動車
  • 航空宇宙
  • 石油・ガス

第6章 発光分光分析法市場:用途別

  • 化学組成分析
  • 材料試験と品質管理
  • 環境試験
  • 研究開発

第7章 地域別分析

  • 北米
  • 米国
  • カナダ
  • メキシコ
  • 欧州
  • 英国
  • ドイツ
  • フランス
  • イタリア
  • アジア太平洋
  • 中国
  • 日本
  • インド
  • オーストラリア
  • ラテンアメリカ
  • ブラジル
  • アルゼンチン
  • チリ
  • 中東・アフリカ
  • 南アフリカ
  • サウジアラビア
  • アラブ首長国連邦

第8章 市場力学

  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • COVID-19の市場への影響

第9章 競合情勢

  • 主要企業
  • 市場シェア分析

第10章 企業プロファイル

  • Thermo Fisher Scientific
  • Agilent Technologies
  • HORIBA, Ltd.
  • PerkinElmer, Inc.
  • Shimadzu Corporation
  • Oxford Instruments plc
  • Ametek, Inc.
  • Bruker Corporation
  • Spectronix Corporation
  • PlasmaTherm LLC

第11章 市場の展望と機会

  • 新興技術
  • 今後の市場動向
  • 投資機会

第12章 付録

  • 略語リスト
  • 出典と参考文献
目次
Product Code: 5266

Optical Emission Spectroscopy Market Valuation - 2024-2031

The rising factor of the Optical Emission Spectroscopy (OES) Market lies in its critical role in material analysis across various industries. OES offers rapid and precise elemental analysis of metals and alloys, which is critical for maintaining product quality, regulatory compliance, and process control during manufacturing. The market is growing because to increased industrial automation, demanding quality control requirements in industries such as automotive, aerospace, and electronics, and a demand for sophisticated analytical techniques that provide exact elemental composition data. The optical emission spectroscopy market is estimated to surpass a revenue of USD 676.9 Million in 2024 and reach USD 1199.17 Million by 2031.

Modern OES systems have advanced features like high-resolution optics, multi-channel detection, and improved software algorithms for data analysis. These developments have increased analytical precision, accuracy, and speed in material analysis, elemental composition testing, and quality control procedures. Furthermore, there has been a noticeable shift toward compact, portable OES equipment with on-site testing capabilities, which improves operational flexibility and efficiency in field applications. The market is expected to rise with a projectedCAGR of 7.41% from 2024 to 2031.

Optical Emission Spectroscopy Market: Definition/ Overview

Optical Emission Spectroscopy (OES), often called atomic emission spectroscopy (AES), is a technique for determining the elemental makeup of materials. It works by causing atoms in a sample to produce light with specific wavelengths, which are then monitored and analysed to identify the elemental makeup. OES entails exposing the sample to a high-energy heat source, such as a plasma or an electric arc, which ionizes atoms and causes them to produce light. Each element emits light at distinct wavelengths, enabling quantitative and qualitative examination of the elements contained in the sample. The future scope of Optical Emission Spectroscopy (OES) has tremendous promise across a wide range of industries, driven by technological developments and rising need for precise analysis. OES, an elemental analysis technique based on the emission of light from excited atoms, provides non-destructive, fast, and very sensitive and accurate results. As companies prioritize quality control, material characterisation, and process optimization, OES is predicted to play an increasingly important role in industries such as metallurgy, automotive, aerospace, and electronics.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

How are the Increasing Industrialization and Quality Control Requirements Set to Magnify the Optical Emission Spectroscopy Market?

The increasing manufacturing activity due to global industrialization drives the industries such as automotive, aerospace, electronics, and metallurgy, among others, where Optical Emission Spectroscopy (OES) is critical for providing precise elemental analysis of metals, alloys, and materials used in manufacturing processes. OES is used to validate raw material compositions, monitor material integrity during processing, and maintain product quality, resulting in increased demand for OES systems.

Complex production processes demand strict control and optimization to ensure product consistency and regulatory compliance, and OES allows for real-time elemental composition analysis. Manufacturers use OES data to modify process parameters, optimize material utilization, reduce waste, and improve production efficiency, which is critical in industries were minor differences in material composition effect product performance and quality.

Furthermore, quality control is critical in businesses that value product reliability, safety, and performance, and OES enables non-destructive testing and analysis to detect and quantify trace elements, contaminants, and alloying elements. This capability assures compliance with high quality standards and regulatory requirements, which benefits industries such as automotive, aerospace, and electronics. Global regulatory compliance needs accurate and trustworthy analytical data, with OES aiding industries in satisfying product quality, safety, and environmental impact standards.

Additionally, in industries such as metallurgy, OES analyses steel and alloy compositions for strength, durability, and corrosion resistance criteria, whereas in environmental monitoring, it detects pollutants and harmful substances in air, water, and soil samples, assuring environmental compliance. Advances in spectroscopic apparatus have improved OES sensitivity, accuracy, and speed, allowing for the precise detection and quantification of elements across a wide range of concentrations and matrixes. These technological advancements make OES more appealing to organizations looking for reliable analytical solutions for complex materials and difficult applications.

The integration of OES with automation technologies, data analytics platforms, and digitalization initiatives increases its usefulness in industrial settings. Automated OES systems perform rapid, repetitive assessments with minimal human intervention, increasing throughput while lowering operational expenses. Digital integration enables real-time data processing, analysis, and decision-making in industrial processes, hence facilitating proactive maintenance, process optimization, and predictive analytics.

How do Complexity of Operation and Integration with Other Analytical Techniques Impede the Optical Emission Spectroscopy Market?

Operating OES instruments requires specialist knowledge and technical competence, as users must grasp spectroscopic principles, instrument operation protocols, and spectrum data interpretation. This need limits OES access to skilled workers, frequently necessitating dedicated operators or analysts with spectroscopy expertise.

OES instruments must be calibrated and maintained on a regular basis to ensure their accuracy and dependability. Correct calibration for specific applications and sample types is critical for producing reliable analytical findings. Calibration may need reference standards and painstaking adjustments, increasing complexity and operating overhead. Accurate spectroscopic analysis utilizing OES is dependent on proper sample preparation, which varies by sample type (solid, liquid, gas) and necessitates specialized procedures to assure result uniformity and reproducibility. Sample preparation operations can be time-consuming and may include handling hazardous items or adhering to strict contamination avoidance protocols.

Furthermore, interpreting spectrum data obtained by OES equipment is typically difficult, especially for complicated samples or trace element analysis. Spectral lines can overlap or be impacted by matrix effects, demanding advanced data analysis and software tools. Users must distinguish between spectral lines of interest and background noise or interferences, which requires extensive knowledge and experience. OES is widely used in conjunction with other analytical techniques such as X-ray fluorescence (XRF), atomic absorption spectroscopy (AAS), and mass spectrometry (MS) to improve analytical capabilities or offer additional information.

Additionally, integrating data from several approaches necessitates consistency in sample preparation, data formats, and calibration standards. Technical obstacles can arise when attempting to achieve seamless integration and data correlation across many analytical systems. Integrating OES with other analytical instruments or systems may need compliance with hardware interfaces, software protocols, and data communication standards. Proprietary technologies or data formats from multiple manufacturers can make interoperability difficult, preventing seamless data interchange between devices and limiting flexibility in laboratory operations. This intricacy can exacerbate the difficulty of data management.

To effectively use integrated analytical techniques, workers must have interdisciplinary abilities in spectroscopy, chemistry, and equipment operation. Training employees to use and interpret data from various analytical equipment increases operational costs and may necessitate continual professional development to keep up with technological advances.

Category-Wise Acumens

How does the Increasing Demand for Arc/Spark OES and Chemical Composition Analysis Bolt up the Growth of the Optical Emission Spectroscopy Market?

The increasing demand for Arc/Spark Optical Emission Spectroscopy (OES) and Chemical Composition Analysis plays a crucial role in bolstering the growth of the Optical Emission Spectroscopy market. Arc/Spark OES is well-known for its high precision and accuracy in elemental analysis of metals and alloys, allowing manufacturers to swiftly and correctly assess the elemental composition of materials while adhering to industry requirements.

It supports quality control processes by verifying raw materials, monitoring manufacturing processes, and inspecting finished products for elemental consistency and integrity. Advancements in Arc/Spark OES systems have resulted in improved automation capabilities, allowing for faster analysis and data processing, as well as streamlining operations, decreasing manual errors, and increasing overall productivity in industrial settings.

Furthermore, chemical Composition Analysis with OES is critical for verifying the quality and performance of materials in various sectors. For example, in metal production and manufacturing, OES verifies alloy compositions to ensure they fulfil certain mechanical characteristics, corrosion resistance, and durability standards. OES enables real-time monitoring of chemical compositions throughout manufacturing processes by providing fast feedback on elemental content, allowing operators to quickly modify process parameters, optimize material utilization, and reduce output variability.

Additionally, many industries, such as automotive, aerospace, and electronics, operate under stringent regulatory frameworks that require precise material specifications and quality standards, which OES assists companies in meeting by ensuring that manufactured products meet required chemical compositions and safety criteria. The growing manufacturing industry, propelled by global industrialization and technological improvements, is driving need for dependable and effective analytical tools such as OES.

As industries diversify and evolve, there is a greater demand for precise chemical analysis to assist product development and quality assurance. Arc/Spark OES is increasingly being used in developing applications like as additive manufacturing (3D printing), where accurate material composition management is essential for obtaining desired mechanical qualities and product performance. Continuous breakthroughs in OES technology, such as spectral resolution, detection limitations, and data integration capabilities, increase the usability and appeal of these systems across a wider range of sectors and applications.

Will the Rising Utilization of Laser Induced Breakdown Spectroscopy and Environmental Analysis Contribute to the Propulsion of the Optical Emission Spectroscopy Market?

The rising utilization of Laser Induced Breakdown Spectroscopy (LIBS) and its application in environmental analysis can indeed contribute significantly to the propulsion of the Optical Emission Spectroscopy (OES) market. LIBS is distinguished by the employment of a laser pulse to vaporize a tiny sample volume, resulting in a plasma plume from which distinctive light is released for elemental composition analysis.

This technique excels at rapid, on-site analysis without considerable sample preparation, making it useful in environmental study across a wide range of sample types, including soil, air, water, and forensic investigations requiring quick and accurate elemental analysis. While different approaches, LIBS and OES have similar goals in elemental analysis. LIBS offers quick, real-time elemental analysis that is ideal for on-site environmental monitoring. However, it may not be as sensitive or precise as OES in controlled laboratory circumstances.

Furthermore, OES specializes in exact quantitative analysis, particularly for trace elements, which are important in metallurgy, materials science, and quality control. Its precision and sensitivity enhance LIBS's quick screening capabilities in an integrated analytical approach. The collaboration between LIBS and OES enables integrated analysis strategies. LIBS is useful for preliminary field screening, whereas OES validates results through comprehensive, quantitative laboratory analysis. This strategy improves the overall analytical dependability and capabilities.

Additionally, increased environmental restrictions and a focus on sustainability are driving demand for robust analytical techniques such as LIBS and OES. Together, they provide comprehensive solutions for environmental compliance, pollution management, and monitoring across multiple industries. Continuous improvements in laser technology, detecting systems, and software algorithms enhance LIBS and OES performance. These innovations shorten analytical time, improve detection limits, and broaden analyte measurement options.

LIBS and OES capabilities aid industries such as mining, agriculture, pharmaceuticals, and aerospace in terms of quality assurance, process control, and environmental management. Their joint use promotes effective decision-making and regulatory compliance. These regulations mandate accurate, reliable methods, spurring market growth through increased adoption.

Optical Emission Spectroscopy Market Report Methodology

Country/Region-wise Acumens

Will the Increasing Market Demand and Strong Industrial Base in North America Advance the Optical Emission Spectroscopy Market Further?

The increasing demand of OES technology across North America's diversified industrial landscape, which includes automotive, aerospace, electronics, metallurgy, and other industries. OES is used to conduct crucial elemental analyses of metals, alloys, and materials used in manufacturing processes. As industrial activities grow and vary, the necessity for precise and dependable analytical tools such as OES becomes more apparent.

In North American industries, quality control and compliance are overseen by severe regulations and standards. OES systems are critical in ensuring that materials fulfil exacting standards for strength, durability, performance, and environmental compliance. Real-time chemical analysis capabilities help manufacturing operations by spotting irregularities and ensuring material consistency. The region's concentration on innovation drives technological advances in OES systems on a continuous basis.

Furthermore, North American corporations have made significant investments in research and development to improve OES technology, including accuracy, sensitivity, automation, and integration with digital platforms. These improvements address the rising industry demand for advanced analytical equipment capable of handling complex materials while fulfilling demanding performance criteria. The expanding use of OES in diverse industrial applications in North America demonstrates a growing appreciation for its benefits in improving product quality, streamlining production processes, and assuring regulatory compliance.

Additionally, as industries attempt to improve efficiency, lower costs, and maintain competitive advantages, demand for advanced OES solutions is expected to surge. Leading OES producers in North America have a strong global market presence and export capability. They enter worldwide markets in Europe, Asia-Pacific, and beyond, leveraging their technological knowledge and reputation for excellence. This global outreach broadens business potential while reinforcing North America's position as a key influencer in establishing industry standards and technology breakthroughs in OES.

North America has a well-developed infrastructure for the production, delivery, and use of high-tech equipment such as OES systems. This includes modern testing facilities, research institutes, a qualified workforce, and logistical networks that facilitate the development and deployment of OES technology across a wide range of industrial sectors.

Will the Rising Manufacturing Sectors and Adoption of Advanced Technologies in Asia Pacific Region Stimulate the Growth Optical Emission Spectroscopy Market?

The rising manufacturing sectors and adoption of advanced technologies in the Asia-Pacific region create a fertile ground for the growth of the Optical Emission Spectroscopy market. Asia-Pacific countries, including China, Japan, South Korea, India, and Southeast Asian nations, are experiencing strong expansion in manufacturing across a variety of industries, including automotive, electronics, aerospace, and metals. These businesses require precise elemental analysis to ensure product quality, adherence to standards, and operational efficiency.

OES is important in manufacturing because it provides accurate and dependable elemental composition analysis for metals, alloys, and materials. This analysis is critical for quality assurance, process optimization, and regulatory compliance, which drives demand for OES equipment. Asia-Pacific is rapidly embracing sophisticated manufacturing technology to improve productivity, efficiency, and product quality. OES is incorporated into various technologies to provide real-time elemental analysis, which ensures manufacturing process consistency and reliability.

Furthermore, continuous advances in OES equipment, such as increased sensitivity, faster analysis times, and expanded data processing capabilities, address the changing needs of manufacturing businesses. Asia-Pacific countries are strengthening regulatory frameworks for product quality, safety, and environmental protection. OES assists manufacturers in meeting these high criteria by conducting comprehensive elemental analysis, identifying contaminants, and assuring material integrity.

Additionally, the growing emphasis on quality control, particularly in industries such as automotive, aerospace, and electronics, drives the demand for advanced analytical techniques like OES. Manufacturers rely on OES to meet high requirements, cut manufacturing costs, and achieve operational excellence. Governments in Asia-Pacific encourage technical advancement and innovation through regulations, incentives, and funding. These programs encourage industries to use modern analytical approaches, such as OES, to boost competitiveness and sustainability.

Investments in research centres, testing laboratories, and industrial hubs increase the adoption and deployment of OES technology. Government-led infrastructure development promotes technical innovation and market growth in the region. Asia-Pacific economies are important exporters of manufactured goods, necessitating strict quality control procedures and adherence to international standards. OES enables accurate and extensive elemental analysis, guaranteeing that exported products match worldwide market and customer expectations.

Competitive Landscape

The competitive landscape of Optical Emission Spectroscopy (OES) is distinguished by a varied spectrum of enterprises that provide innovative analytical solutions and services. These firms concentrate on improving OES technology for a variety of applications, including metallurgy, environmental monitoring, and material analysis. Innovation is a key driver, with continuing improvements in equipment, software algorithms, and spectral analysis approaches aimed at increasing accuracy, sensitivity, and usability. Furthermore, strategic partnerships, collaborations with research institutes, and investments in R&D are critical in establishing competitive strategies and expanding market presence in the worldwide OES industry.

Some of the prominent players operating in the optical emission spectroscopy market include:

Thermo Fisher Scientific

Agilent Technologies

HORIBA, Ltd.

PerkinElmer, Inc.

Shimadzu Corporation

Oxford Instruments plc

Ametek, Inc.

Bruker Corporation

Spectronix Corporation

PlasmaTherm LLC

Latest Developments

In April 2024, Luxium Solutions, a provider of advanced engineered materials and solutions, has entered into a definitive agreement to acquire Inrad Optics, Inc., a provider of advanced optical components, assemblies, and systems. Following the merger, Inrad Optics CEO Amy Eskilson highlighted enhanced flexibility and increased financial resources to drive future growth. The company aims to accelerate investments in critical technologies such as next-generation bent X-ray crystal monochromators for spectroscopy and plasma fusion applications, alongside large-format, ultra-high precision optical components and assemblies.

In November 2022, Digital lidar company Ouster and lidar sensors and solutions developer Velodyne Lidar have entered into a definitive agreement to merge in an all-stock transaction. Velodyne is well known for its Puck lidar sensors, which support low-speed autonomy and driver assistance applications, recently acquired AI-focused software company Bluecity. Ouster, which serves industrial, robotics, and smart infrastructure markets, acquired Sense Photonics last year and established Ouster Automotive to promote digital lidar adoption in consumer and commercial vehicles.

TABLE OF CONTENTS

1. Introduction

  • Market Definition
  • Market Segmentation
  • Research Methodology

2. Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4. Optical Emission Spectroscopy Market, By Product Type

  • Arc/Spark OES
  • ICP-OES (Inductively Coupled Plasma)

5. Optical Emission Spectroscopy Market, By End-User Industry

  • Metallurgy and Foundries
  • Mining and Exploration
  • Automotive
  • Aerospace
  • Oil and Gas

6. Optical Emission Spectroscopy Market, By Application

  • Chemical Composition Analysis
  • Material Testing and Quality Control
  • Environmental Testing
  • Research and Development

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8. Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • Thermo Fisher Scientific
  • Agilent Technologies
  • HORIBA, Ltd.
  • PerkinElmer, Inc.
  • Shimadzu Corporation
  • Oxford Instruments plc
  • Ametek, Inc.
  • Bruker Corporation
  • Spectronix Corporation
  • PlasmaTherm LLC

11. Market Outlook and Opportunities

  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References