デフォルト表紙
市場調査レポート
商品コード
1618396

レコメンデーションエンジンの世界市場規模:タイプ別、用途別、エンドユーザー別、地域別、範囲および予測

Global Recommendation Engine Market Size By Type (Collaborative Filtering, Content-Based Filtering), By Application (E-commerce, Media and Entertainment), By End-User (Retail, Media and Entertainment Platforms), By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.08円
レコメンデーションエンジンの世界市場規模:タイプ別、用途別、エンドユーザー別、地域別、範囲および予測
出版日: 2024年08月02日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

レコメンデーションエンジンの市場規模と予測

レコメンデーションエンジン市場規模は2024年に74億8,000万米ドル、2031年には1,140億8,000万米ドルに達し、2024年から2031年までのCAGRは40.58%で成長すると予測されます。レコメンデーションエンジンとは、ユーザーの嗜好や行動を分析し、ユーザーの関心に沿った製品、サービス、コンテンツを提案するように設計されたソフトウェア・システムです。アルゴリズムとデータ分析を活用することで、レコメンデーションエンジンは、ユーザーの過去の交流や嗜好に基づいて、ユーザーが関与したり購入したりする可能性が高いものを予測し、ユーザー体験をパーソナライズすることができます。レコメンデーションエンジンは、eコマース、ストリーミング・サービス、デジタル・マーケティングなど、様々な業界で広く利用されています。アマゾンのようなeコマース・プラットフォームでは、過去の検索や購入履歴に基づいて商品を提案します。ネットフリックスのようなストリーミング・サービスでは、レコメンデーションエンジンを使って、個人の視聴習慣に合わせた映画やテレビ番組を推薦し、ユーザーのエンゲージメントと満足度を高めています。

レコメンデーションエンジンの将来は、人工知能や機械学習のような先進技術を統合して精度とパーソナライゼーションを向上させるとともに、より適切で文脈を考慮した提案、クロスプラットフォーム・データ統合、リアルタイム分析を可能にします。

世界のレコメンデーションエンジン市場力学

世界のレコメンデーションエンジン市場を形成している主な市場力学

主な市場促進要因

パーソナライゼーションへの需要の高まり:

消費者のパーソナライズされた体験に対する期待の高まりが、レコメンデーションエンジンの採用を後押ししています。米国商務省による2023年の報告書によると、パーソナライゼーション戦略を導入した企業は、そうでない企業と比較して平均15%の収益増加を記録しました。この動向は拡大を続けており、様々なプラットフォームで、より多くの消費者が、それぞれに合った体験を期待しています。

eコマースとデジタル・プラットフォームの成長:

オンラインショッピングやデジタルメディアプラットフォームの拡大により、ユーザーのエンゲージメントを高め、ターゲットを絞った提案で売上を伸ばすための高度なレコメンデーションシステムが必要とされています。米国国勢調査局によると、2023年第4四半期の小売総売上高に占めるeコマース売上高の割合は14.8%で、2022年同期の13.6%から上昇しました。この継続的な成長は、デジタル・マーケットプレースにおけるレコメンデーションエンジンの重要性を強調しています。

AIと機械学習の進歩:

高度なAIと機械学習アルゴリズムの開発により、レコメンデーションエンジンの有効性が向上し、複雑なユーザーデータに基づく、より正確で適切なレコメンデーションが可能になります。例えば、グーグル・クラウドは2024年3月、様々なアプリケーションにレコメンデーションエンジンを簡単に実装・カスタマイズできる、企業向けの新しいAIツール群を発表しました。

ビッグデータ分析:

増え続けるユーザーデータとインタラクションは、レコメンデーションエンジンに貴重な洞察を提供し、顧客満足度を向上させるためのパターン分析や情報に基づいた提案に活用されます。米国労働統計局は、2022年から2032年にかけてデータサイエンティスト職が全職種の平均を上回る31%の伸びを示すと予測しており、推薦システムを含むさまざまな業界でビッグデータ分析の重要性が高まっていることを示しています。

競合優位性:

企業はレコメンデーションエンジンを活用し、ユーザー・エクスペリエンスを向上させ、コンバージョン率を高め、カスタマイズされたレコメンデーションやパーソナライズされたインタラクションを通じて顧客ロイヤリティを育成することで、競争優位性を獲得しています。中小企業庁による2023年のレポートによると、パーソナライズされたレコメンデーション・システムを導入している中小企業は、導入していない中小企業に比べて顧客維持率が20%向上しています。

主な課題

データ・プライバシーの問題:

レコメンデーションのためのユーザーデータの収集と分析は、プライバシーの問題を引き起こし、レコメンデーションエンジンの展開と効果を制限する可能性があります。

高い導入コスト:

高度なレコメンデーションエンジンの開発と統合には、テクノロジーと専門知識への多大な投資が必要であり、中小企業や新興企業にとっては障壁となりえます。

データ管理の複雑さ:

膨大な量のデータを扱い、レコメンデーションにおける正確性と関連性を確保することは困難であり、レコメンデーションシステムのパフォーマンスと信頼性に影響を与える可能性があります。

アルゴリズムのバイアス:

レコメンデーションエンジンは、データに存在するバイアスを不用意に強化する可能性があり、ユーザーの満足度や信頼に影響を与える歪んだ、または不公平な提案を導く可能性があります。

急速な技術変化:

AIや機械学習の技術進歩のペースが速いため、レコメンデーションエンジンの更新や適応を常に行う必要があり、システムの妥当性や有効性を維持する上で課題が生じる。

主な動向

AIとディープラーニングの統合:

人工知能とディープラーニングの活用は、ユーザーの行動や嗜好をより正確かつ高度に分析することでレコメンデーションエンジンを強化し、高度にパーソナライズされた適切なレコメンデーションにつながっています。全米科学財団(NSF)の2023年の報告書によると、レコメンデーション・システムにおけるAIとディープラーニングのプロジェクトに対する研究資金は前年比で35%増加しており、これらの技術の重要性が高まっていることが浮き彫りになっています。

リアルタイム・パーソナライゼーション:

ユーザーとのインタラクションに即座に適応し、ユーザー体験とエンゲージメントを高めるために、即座に文脈に即した提案を提供するリアルタイム・レコメンデーション・システムへの動向が高まっています。例えば、セールスフォースは2024年2月、マーケティング・クラウド・プラットフォームのアップデートを発表し、ウェブやモバイル・アプリケーションにおけるユーザーとの即時のインタラクションに基づいてマーケティング・コンテンツを調整するリアルタイム・レコメンデーション機能を導入しました。

オムニチャネル・レコメンデーション:

様々なタッチポイントからのデータを統合し、シームレスでまとまりのあるユーザーエクスペリエンスを実現するため、企業はますます複数のプラットフォームやデバイスに一貫したレコメンデーションを提供することに注力しています。例えば、ターゲットは2024年1月、店舗での購入、オンラインでの閲覧、モバイルアプリの利用などのデータを統合し、すべての顧客接点で一貫した商品提案を提供する、新しいオムニチャネル・レコメンデーション・システムの立ち上げを発表しました。

目次

第1章 イントロダクション

  • 市場の定義
  • 市場セグメンテーション
  • 調査手法

第2章 エグゼクティブサマリー

  • 主な調査結果
  • 市場概要
  • 市場ハイライト

第3章 市場概要

  • 市場規模と成長の可能性
  • 市場動向
  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • ポーターのファイブフォース分析

第4章 レコメンデーションエンジン市場:タイプ別

  • 協調フィルタリング
  • コンテンツベースフィルタリング
  • ハイブリッド推薦システム

第5章 レコメンデーションエンジン市場:用途別

  • eコマース
  • メディアとエンターテイメント
  • ソーシャルネットワーキング

第6章 レコメンデーションエンジン市場:エンドユーザー別

  • 小売
  • メディアおよびエンターテイメントプラットフォーム
  • ソーシャルメディアプラットフォーム
  • その他

第7章 地域分析

  • 北米
  • 米国
  • カナダ
  • メキシコ
  • 欧州
  • 英国
  • ドイツ
  • フランス
  • イタリア
  • アジア太平洋
  • 中国
  • 日本
  • インド
  • オーストラリア
  • ラテンアメリカ
  • ブラジル
  • アルゼンチン
  • チリ
  • 中東・アフリカ
  • 南アフリカ
  • サウジアラビア
  • アラブ首長国連邦

第8章 市場力学

  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • COVID-19の市場への影響

第9章 競合情勢

  • 主要企業
  • 市場シェア分析

第10章 企業プロファイル

  • IBM
  • SAP
  • Salesforce
  • Microsoft
  • Google
  • Amazon Web Services
  • Oracle
  • Intel
  • HPE
  • Sentient Technologies

第11章 市場の展望と機会

  • 新興技術
  • 今後の市場動向
  • 投資機会

第12章 付録

  • 略語リスト
  • 出典と参考文献
目次
Product Code: 8582

Recommendation Engine Market Size And Forecast

Recommendation Engine Market size was valued at USD 7.48 Billion in 2024 and is projected to reach USD 114.08 Billion by 2031, growing at a CAGR of 40.58% from 2024 to 2031. A recommendation engine is a software system designed to analyze user preferences and behaviors to suggest products, services, or content that align with their interests. By leveraging algorithms and data analytics, recommendation engines can personalize user experiences by predicting what users are likely to engage with or purchase based on their past interactions and preferences. Recommendation engines are widely used across various industries, including e-commerce, streaming services, and digital marketing. In e-commerce platforms like Amazon, they suggest products based on previous searches and purchase history. Streaming services such as Netflix use recommendation engines to recommend movies and TV shows tailored to individual viewing habits, enhancing user engagement and satisfaction.

The future of recommendation engines will see the integration of advanced technologies like artificial intelligence and machine learning to improve accuracy and personalization, while also enabling more relevant and context-aware suggestions, cross-platform data integration, and real-time analytics.

Global Recommendation Engine Market Dynamics

The key market dynamics that are shaping the global recommendation engine market include:

Key Market Drivers:

Increasing Demand for Personalization:

Consumers' growing expectations for personalized experiences drive the adoption of recommendation engines, as businesses seek to tailor content and product suggestions to individual preferences. According to a 2023 report by the U.S. Department of Commerce, businesses that implemented personalization strategies saw an average increase in revenue of 15% compared to those that didn't. This trend has continued to grow, with more consumers expecting tailored experiences across various platforms.

Growth of E-commerce and Digital Platforms:

The expansion of online shopping and digital media platforms necessitates advanced recommendation systems to enhance user engagement and boost sales through targeted suggestions. The U.S. Census Bureau reported that e-commerce sales accounted for 14.8% of total retail sales in Q4 2023, up from 13.6% in the same quarter of 2022. This continuous growth underscores the importance of recommendation engines in the digital marketplace.

Advancements in AI and Machine Learning:

The development of sophisticated AI and machine learning algorithms enhances the effectiveness of recommendation engines, enabling more accurate and relevant recommendations based on complex user data. For instance, Google Cloud announced in March 2024 a new suite of AI tools for businesses to easily implement and customize recommendation engines across various applications.

Big Data Analytics:

The increasing volume of user data and interactions provides valuable insights for recommendation engines, driving their use in analyzing patterns and making informed suggestions that improve customer satisfaction. The U.S. Bureau of Labor Statistics projected a 31% growth in data scientist jobs from 2022 to 2032, faster than the average for all occupations, indicating the increasing importance of big data analytics in various industries, including recommendation systems.

Competitive Advantage:

Companies leverage recommendation engines to gain a competitive edge by improving user experience, increasing conversion rates, and fostering customer loyalty through tailored recommendations and personalized interactions. A 2023 report by the Small Business Administration found that small businesses implementing personalized recommendation systems saw a 20% increase in customer retention rates compared to those without such systems.

Key Challenges:

Data Privacy Concerns:

The collection and analysis of user data for recommendations can raise privacy issues and lead to regulatory challenges, potentially limiting the deployment and effectiveness of recommendation engines.

High Implementation Costs:

Developing and integrating advanced recommendation engines requires significant investment in technology and expertise, which can be a barrier for smaller businesses or startups.

Complexity in Data Management:

Handling vast amounts of data and ensuring its accuracy and relevance for recommendations can be challenging, potentially impacting the performance and reliability of recommendation systems.

Algorithmic Bias:

Recommendation engines may inadvertently reinforce biases present in the data, leading to skewed or unfair suggestions that can affect user satisfaction and trust.

Rapid Technological Changes:

The fast pace of technological advancements in AI and machine learning requires constant updates and adaptations to recommendation engines, posing challenges in maintaining system relevance and effectiveness.

Key Trends:

Integration of AI and Deep Learning:

The use of artificial intelligence and deep learning is enhancing recommendation engines by enabling more accurate and sophisticated analyses of user behavior and preferences, leading to highly personalized and relevant recommendations. According to a 2023 report from the National Science Foundation (NSF), research funding for AI and deep learning projects in recommendation systems increased by 35% compared to the previous year, highlighting the growing importance of these technologies.

Real-Time Personalization:

There is a growing trend toward real-time recommendation systems that adapt instantly to user interactions, providing immediate and contextually relevant suggestions to enhance user experience and engagement. For instance, In February 2024, Salesforce unveiled an update to its Marketing Cloud platform, introducing real-time recommendation capabilities that adjust marketing content based on immediate user interactions across web and mobile applications.

Omnichannel Recommendations:

Companies are increasingly focusing on delivering consistent recommendations across multiple platforms and devices, integrating data from various touchpoints to create a seamless and cohesive user experience. For instance, In January 2024, Target announced the launch of a new omnichannel recommendation system that integrates data from in-store purchases, online browsing, and mobile app usage to provide consistent product suggestions across all customer touchpoints.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Global Recommendation Engine Market Regional Analysis

Here is a more detailed regional analysis of the global Recommendation Engine market:

North America

North America stands as the dominant region in the global recommendation engine market, driven by its sophisticated technological landscape and early adoption of advanced digital solutions. The region benefits from a well-established infrastructure and a robust ecosystem of technology companies that drive innovation in AI and machine learning.

Several factors contribute to North America's leadership in the recommendation engine market. The high adoption rates of artificial intelligence and machine learning technologies are pivotal, enabling companies to deliver highly personalized user experiences. Additionally, the substantial investment in digital transformation initiatives across industries such as e-commerce, media, and entertainment fuels the widespread deployment of recommendation engines, enhancing their effectiveness and reach.

Key trends in North America's recommendation engine market include the increasing integration of AI-driven personalization in various sectors, such as retail and streaming services. The region is also seeing a rise in sophisticated recommendation algorithms that leverage big data analytics and real-time processing to offer more accurate and relevant suggestions. Furthermore, the strong presence of major tech firms and ongoing advancements in cloud computing and data analytics are shaping the future of recommendation engines, reinforcing North America's market leadership.

Europe:

Europe is rapidly emerging as the second-largest market for recommendation engines, driven by the region's commitment to digital transformation and innovation. The adoption of these systems is growing across various sectors, including retail, finance, and healthcare, as organizations seek to enhance user experiences and operational efficiency through personalized recommendations.

The growth of recommendation engines in Europe is primarily fueled by increasing digitalization efforts and the need for advanced analytics in various industries. The European Union's stringent data protection and privacy regulations, such as GDPR, play a crucial role in shaping the development and implementation of recommendation technologies. These regulations ensure that recommendation systems are designed with strong data privacy and security measures, driving compliance and fostering trust among users.

Key trends in Europe include the integration of recommendation engines with emerging technologies such as artificial intelligence and machine learning to offer more sophisticated and personalized experiences. There is also a growing emphasis on ethical data practices and transparency, influenced by stringent regulatory requirements. Leading countries like Germany, the UK, and France are at the forefront of these advancements, continually pushing the boundaries of recommendation technology while adhering to regulatory standards.

Global Recommendation Engine Market: Segmentation Analysis

The Global Recommendation Engine Market is Segmented on the basis of Type, Application, End-User, and Geography.

Recommendation Engine Market, By Type

  • Collaborative Filtering
  • Content-Based Filtering
  • Hybrid Recommendation Systems

Based on Type, the Global Recommendation Engine Market is bifurcated into Collaborative Filtering, Content-Based Filtering, and Hybrid Recommendation Systems. In the recommendation engine market, collaborative filtering is the dominant segment, as it is widely used across various applications due to its ability to leverage user behavior and preferences to make personalized recommendations. This method is particularly effective in e-commerce and streaming services, where user interactions generate rich data for generating relevant suggestions. Hybrid recommendation systems are the second rapidly growing segment, combining collaborative filtering with content-based filtering to enhance recommendation accuracy and overcome the limitations of each individual approach. The increasing demand for more nuanced and accurate recommendations is driving the adoption of hybrid systems, which offer a balanced and comprehensive solution for personalization.

Recommendation Engine Market, By Application

  • E-commerce
  • Media and Entertainment
  • Social Networking

Based on Application, the Global Recommendation Engine Market is bifurcated into E-commerce, Media and Entertainment, and Social Networking. In the recommendation engine market, e-commerce is the dominant segment, leveraging recommendation systems to enhance customer experiences and drive sales by providing personalized product suggestions based on user behavior and preferences. This sector's extensive use of recommendation engines is crucial for increasing conversion rates and improving customer satisfaction. Media and entertainment is the second rapidly growing segment, fueled by the rising demand for personalized content recommendations on streaming platforms and digital media services. As consumers seek tailored content experiences, recommendation engines in this sector are becoming increasingly sophisticated, driving significant growth and innovation.

Recommendation Engine Market, By End-User

  • Retail
  • Media and Entertainment Platforms
  • Social Media Platforms

Based on End-User, the Global Recommendation Engine Market is bifurcated into Retail, Media and Entertainment Platforms, and Social Media Platforms. In the recommendation engine market, the retail sector is the dominant end-user, driven by its extensive use of recommendation systems to enhance shopping experiences and boost sales through personalized product suggestions. Retailers leverage these engines to analyze consumer behavior and preferences, leading to increased customer engagement and conversion rates. The media and entertainment platforms segment is the second rapidly growing end-user, fueled by the rising demand for personalized content recommendations on streaming services and digital media. As consumers seek tailored content experiences, recommendation engines are becoming critical in delivering relevant media and enhancing user satisfaction in this sector.

Recommendation Engine Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Based on Geography, the Global Recommendation Engine Market is classified into North America, Europe, Asia Pacific, and the Rest of the World. In the recommendation engine market, North America is the dominant region, driven by its advanced technological infrastructure, high adoption rates of AI and machine learning, and a strong presence of leading tech companies. The region's extensive use of recommendation systems across various industries, including e-commerce and media, solidifies its leading position. Asia Pacific is the second rapidly growing region, propelled by rapid digitalization, increasing internet penetration, and the expansion of e-commerce and media platforms in countries like China and India. The region's growing consumer base and technological advancements contribute significantly to its rapid market growth.

Key Players

  • The "Global Recommendation Engine Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are
  • IBM, SAP, Salesforce, Microsoft, Google, Amazon Web Services, Oracle, and Intel.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with its product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Global Recommendation Engine Market Key Developments

  • In March 2023, Amazon Web Services (AWS) unveiled its latest machine learning service, Amazon Personalize, which significantly enhances recommendation capabilities. The updated service integrates advanced algorithms and real-time data processing to provide more accurate and personalized product recommendations across various platforms.
  • In June 2022, Netflix introduced a new recommendation algorithm that leverages deep learning techniques to better understand user preferences and viewing habits. This update aims to improve content suggestions and user engagement by providing more tailored and relevant viewing options.
  • In September 2021, Google launched its upgraded recommendation system as part of Google Cloud AI, featuring enhanced contextual understanding and real-time adaptability. The system aims to deliver highly personalized recommendations across different applications, from e-commerce to digital content platforms.
  • In January 2022, Microsoft announced advancements in its Azure Cognitive Services, including new capabilities for recommendation engines. These enhancements focus on improving the accuracy of personalized content suggestions and integrating more seamlessly with existing business applications.

TABLE OF CONTENTS

1. Introduction

  • Market Definition
  • Market Segmentation
  • Research Methodology

2. Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4. Recommendation Engine Market, By Type

  • Collaborative Filtering
  • Content-Based Filtering
  • Hybrid Recommendation Systems

5 Recommendation Engine Market, By Application

  • E-commerce
  • Media and Entertainment
  • Social Networking

6 Recommendation Engine Market, By End-User

  • Retail
  • Media and Entertainment Platforms
  • Social Media Platforms
  • Others

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8. Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • IBM
  • SAP
  • Salesforce
  • Microsoft
  • Google
  • Amazon Web Services
  • Oracle
  • Intel
  • HPE
  • Sentient Technologies

11. Market Outlook and Opportunities

  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References