![]() |
市場調査レポート
商品コード
1616869
フロー電池市場:電池タイプ、材料、貯蔵、用途、地域別、2024年~2031年Flow Battery Market By Battery Type (Redox, Hybrid), Material (Vanadium, Zinc Bromine, All Iron), Storage (Small-scale, Large-scale), Application (Utilities, Commercial & Industrial), & Region for 2024-2031 |
||||||
|
フロー電池市場:電池タイプ、材料、貯蔵、用途、地域別、2024年~2031年 |
出版日: 2024年11月24日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
|
特に遠隔地や新興諸国におけるマイクログリッドの拡大が、フロー電池アプリケーションの新たな機会を生み出しています。したがって、マイクログリッド市場の急増に伴い、市場規模は2024年に22億4,000万米ドルを突破し、2031年には96億4,000万米ドルの評価額に達します。
フロー電池は、長時間のエネルギー貯蔵アプリケーションに優れており、グリッド回復力と再生可能エネルギー統合のためにますます重要になってきています。したがって、長時間エネルギー貯蔵への注目の高まりにより、市場は2024年から2031年にかけてCAGR 22.10%で成長します。
フロー電池市場定義/概要
フロー電池は、膜で仕切られた2つの別々の化学溶液にエネルギーを貯蔵する再充電可能な電気化学エネルギー貯蔵デバイスです。この電池のエネルギー容量は、電解質タンクのサイズを大きくすることで拡張可能であり、大規模なエネルギー貯蔵に理想的です。これらの電池は、風力発電や太陽光発電のような再生可能エネルギー源から発電された余剰エネルギーを貯蔵し、需要が高い時間帯や発電量が低い時間帯に使用できる、グリッド規模のアプリケーションに特に適しています。
フロー電池は、需要が低いときに余剰エネルギーを貯蔵し、必要なときに放出することで、再生可能エネルギーの断続的な性質に対処し、送電網の安定性と信頼性を高めます。また、オフピーク時に充電し、ピーク時に放電することで、電力需要のピークを抑えることができ、消費者と電力会社の双方にとって電気料金の削減につながります。
太陽光発電や風力発電のような再生可能エネルギー源の利用が増加しているため、断続性や変動性に対処するための効率的なエネルギー貯蔵ソリューションが必要とされています。フロー電池は、低発電量時や高需要時に余剰の再生可能エネルギーを貯蔵する信頼性の高い方法を提供します。国際エネルギー機関(IEA)によると、2023年の再生可能エネルギー容量は2022年比で107GW(33%)増加し、合計440GWに達する見込みです。再生可能エネルギーの統合により送電網が複雑化するにつれ、送電網の安定性とエネルギー安全保障を実現する技術の必要性が高まっています。米国エネルギー省のエネルギー貯蔵グランド・チャレンジは、2030年までに米国市場のすべての需要を満たすことができるエネルギー貯蔵技術を開発し、国産化することを目標としており、市場規模は年間350億米ドルと予測されています。
継続的な研究開発努力により、フロー電池技術のコストは低下し、エネルギー貯蔵市場における競争力は高まっています。国立再生可能エネルギー研究所(NREL)の報告書によると、バナジウム・レドックス・フロー電池のコストは2018年から2050年の間に66%低下し、555ドル/kWhから190ドル/kWhになると予測されています。政府の支援政策とインセンティブが、フロー電池を含むエネルギー貯蔵技術の採用を後押ししています。米国の2022年インフレ削減法には、2025年以前に着工するプロジェクトに対して30%のエネルギー貯蔵投資税額控除(ITC)が単独で盛り込まれており、フロー電池に適用されます。米国エネルギー省は、2030年までに長時間エネルギー貯蔵のコストを90%削減し、10時間以上のシステムの平準化コストを0.05ドル/kWhにするという目標を掲げており、フロー電池のような技術の採用を大幅に後押しする可能性があります。
フロー電池は通常、リチウムイオン電池のようないくつかの競合技術に比べてエネルギー密度が低く、同等のエネルギー貯蔵容量を得るためにはより大きな設置面積が必要になる可能性があります。米国エネルギー省のGlobal Energy Storage Databaseによると、バナジウムレドックスフロー電池のエネルギー密度は通常20~40Wh/Lであるのに対し、リチウムイオン電池は200~400Wh/Lです。フロー電池は、他のエネルギー貯蔵技術に比べて初期費用が高いことが多く、これが導入の障壁となる可能性があります。米国国立再生可能エネルギー研究所(NREL)の報告書によると、2020年、持続時間4時間のバナジウムレドックスフロー電池システムの設置コストは約460ドル/kWhであるのに対し、同程度の持続時間のリチウムイオンシステムの設置コストは380ドル/kWhです。
フロー電池には、ポンプ、タンク、膜などの複雑なシステムがあり、メンテナンスの必要性や運用上の課題が高くなる可能性があります。Journal of Energy Storageに掲載された研究によると、フロー電池システムの年間メンテナンスコストは、初期資本コストの1.5%から2.5%であるのに対し、リチウムイオン電池システムは0.5%から1%です。リチウムイオン電池のような確立された技術に比べ、フロー電池は商業的な歴史が浅いため、投資家や電力会社が採用をためらう可能性があります。米国エネルギー省のGlobal Energy Storage Databaseによると、2021年現在、世界で稼働中のフロー電池プロジェクトは約70件であるのに対し、リチウムイオン電池プロジェクトは700件を超えています。
The expansion of microgrids, particularly in remote areas and developing countries, is creating new opportunities for flow battery applications. Thus, with the increasing microgrid market surge the growth of market size surpassing USD 2.24 Billion in 2024 to reach the valuation of USD 9.64 Billion by 2031.
Flow batteries excel in long-duration energy storage applications, which are becoming increasingly important for grid resilience and renewable energy integration. Thus, the increasing focus on long-duration energy storage enables the market to grow at a CAGR of 22.10% from 2024 to 2031.
Flow Battery Market: Definition/ Overview
A flow battery is a rechargeable electrochemical energy storage device that stores energy in two separate chemical solutions, divided by a membrane. The battery's energy capacity is scalable by increasing the size of the electrolyte tanks, making it ideal for large-scale energy storage. These batteries are particularly well-suited for grid-scale applications, where they can store surplus energy generated from renewable sources like wind and solar for use during periods of high demand or low generation.
Flow batteries address the intermittent nature of renewable energy by storing excess energy when demand is low and releasing it when needed, thereby enhancing grid stability and reliability. They also help reduce peak electricity demand by charging during off-peak hours and discharging during peak periods, resulting in lower electricity costs for both consumers and utilities.
Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.
The increasing use of renewable energy sources like solar and wind power necessitates efficient energy storage solutions to address intermittency and variability. Flow batteries offer a reliable method for storing excess renewable energy during low-generation or high-demand periods. According to the International Energy Agency (IEA), renewable energy capacity additions are on track to increase by 107 GW (33%) in 2023 compared to 2022, reaching a total of 440 GW. As power grids become more complex with the integration of renewables, there's a growing need for technologies that can provide grid stability and energy security. The U.S. Department of Energy's Energy Storage Grand Challenge aims to develop and domestically manufacture energy storage technologies that can meet all U.S. market demands by 2030, with a projected market size of USD 35 Billion annually.
Ongoing research and development efforts are driving down the costs of flow battery technology, making it more competitive in the energy storage market. According to a report by the National Renewable Energy Laboratory (NREL), the cost of vanadium redox flow batteries is projected to decrease by 66% between 2018 and 2050, from $555/kWh to $190/kWh. Supportive government policies and incentives are encouraging the adoption of energy storage technologies, including flow batteries. The U.S. Inflation Reduction Act of 2022 includes a standalone energy storage Investment Tax Credit (ITC) of 30% for projects commencing construction before 2025, which applies to flow batteries. The U.S. Department of Energy has set a goal to reduce the cost of long-duration energy storage by 90% to $0.05/kWh levelized cost for 10+ hour systems by 2030, which could significantly boost the adoption of technologies like flow batteries.
The flow batteries typically have lower energy density compared to some competing technologies like lithium-ion batteries, which may require larger footprints for equivalent energy storage capacity. According to the U.S. Department of Energy's Global Energy Storage Database, the energy density of vanadium redox flow batteries typically ranges from 20-40 Wh/L, while lithium-ion batteries can achieve 200-400 Wh/L. Flow batteries often have higher upfront costs compared to other energy storage technologies, which can be a barrier to adoption. A report by the National Renewable Energy Laboratory (NREL) estimated that in 2020, the installed cost for a 4-hour duration vanadium redox flow battery system was approximately $460/kWh, compared to $380/kWh for a lithium-ion system of similar duration.
Flow batteries have more complex systems with pumps, tanks, and membranes, potentially leading to higher maintenance needs and operational challenges. A study published in the Journal of Energy Storage found that the annual maintenance costs for flow battery systems can range from 1.5% to 2.5% of the initial capital cost, compared to 0.5% to 1% for lithium-ion battery systems. Compared to more established technologies like lithium-ion batteries, flow batteries have a shorter commercial history, which can make investors and utilities hesitant to adopt them. According to the U.S. Department of Energy's Global Energy Storage Database, as of 2021, there were approximately 70 operational flow battery projects worldwide, compared to over 700 lithium-ion battery projects.
The vanadium segment, dominates in the flow battery market owing to their high energy efficiency, long cycle life, and scalability, making them a preferred choice for grid-scale energy storage applications. One of the key advantages of VRFBs is the use of vanadium electrolytes, which allow for reliable charging and discharging over numerous cycles without significant degradation. This durability is made possible by vanadium's electrochemical properties, which enable the easy transfer of electrons in and out of the element.
In a VRFB, vanadium redox couples V2+/V3+ in the negative half-cell and V4+/V5+ in the positive half-cell are utilized to store energy. This design allows the battery to maintain stable performance over time. A unique advantage of vanadium flow batteries is that their power and energy ratings are independent, meaning they can be optimized separately for specific applications. This flexibility makes VRFBs particularly suited for large-scale energy storage solutions, where both energy capacity and power output can be tailored according to the needs of the grid.
The redox segment, particularly vanadium redox flow batteries (VRFBs), holds a dominant position in the flow battery market owing to their exceptional scalability, long cycle life, and reliable performance in grid-scale energy storage applications. VRFBs are especially valued for their ability to maintain capacity over thousands of charge and discharge cycles, making them an ideal solution for large-scale, long-term energy storage needs. Their unique ability to decouple power and energy capacity allows for flexible system design, where power output and storage capacity can be independently scaled to suit specific applications.
VRFBs durability, leads to a shorter payback period, enhancing their cost-effectiveness for utilities and other large-scale energy storage operators. Unlike other battery types, VRFBs experience minimal degradation over time, providing consistent performance throughout their lifespan. This makes them a preferred choice for renewable energy integration, where they can store excess energy from sources like wind and solar for later use, improving grid reliability.
North America substantially dominates the flow battery market owing to the rapid growth of renewable energy sources in North America is driving the need for effective energy storage solutions like flow batteries to manage intermittency and ensure grid stability. According to the U.S. Energy Information Administration (EIA), renewable energy sources accounted for about 20% of electricity generation in the United States in 2021, up from about 10% in 2011. The EIA projects that renewables will provide 35% of total electricity generation by 2030.
With increasing extreme weather events and aging infrastructure, there's a rising focus on enhancing grid resilience and reliability in North America, driving demand for advanced energy storage solutions like flow batteries. The U.S. Department of Energy's Grid Deployment Office is overseeing the investment of over USD 10.5 Billion to enhance grid resilience and reliability, as part of the Bipartisan Infrastructure Law. This includes significant funding for energy storage projects.
North American governments, particularly in the United States, have implemented policies and incentives that are favorable to the energy storage market, including flow batteries. The U.S. Inflation Reduction Act of 2022 includes a standalone energy storage Investment Tax Credit (ITC) of 30% for projects commencing construction before 2025. This applies to flow batteries and is expected to drive significant market growth. The Canadian government has also committed CAD 964 million over four years to the Smart Renewable and Electrification Pathways Program, which includes support for energy storage projects.
Asia Pacific is anticipated to witness the fastest growth in the flow battery market owing to the region's rapidly expanding renewable energy capacity, which drives the need for energy storage solutions like flow batteries. According to the International Renewable Energy Agency (IRENA), Asia accounted for 64% of new renewable energy capacity added globally in 2021. The region's total renewable energy capacity reached 1.17 TW, with China alone accounting for 931 GW. Many countries in the region are implementing supportive policies and increasing investments in energy storage to improve grid stability and power quality. The China Energy Storage Alliance (CNESA) reports that China's energy storage capacity is expected to reach 35.5 GW by 2025, with government policies targeting 30 GW of new energy storage capacity between 2021 and 2025.
In many parts of the Asia Pacific region, especially in remote and island areas, there's an increasing need for off-grid and microgrid solutions, which often incorporate flow batteries. The Asian Development Bank (ADB) estimates that about 350 million people in Asia and the Pacific still lack access to electricity. The bank has committed to supporting the development of microgrids and off-grid solutions, with plans to invest USD 2 Billion annually in energy projects, including energy storage initiatives.
The Flow Battery Market is still in its early stages, and the competitive landscape is likely to evolve as new technologies and companies emerge. However, the established players in the market have a significant head start and are well-positioned to capitalize on the growing demand for energy storage solutions.
The organizations are focusing on innovating their product line to serve the vast population in diverse regions. Some of the prominent players operating in the flow battery market include: