デフォルト表紙
市場調査レポート
商品コード
1616440

航空機搭載風力タービンの世界市場規模:タイプ別、用途別、地域別、範囲および予測

Global Air-Borne Wind Turbine Market Size By Type (Onshore, Offshore), By Application (Power Generation, Transportation, Pumping Water), By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.96円
航空機搭載風力タービンの世界市場規模:タイプ別、用途別、地域別、範囲および予測
出版日: 2024年10月23日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

航空機搭載風力タービンの市場規模と予測

航空機搭載風力タービンの市場規模は、2024年に11億1,000万米ドルと評価され、2024年から2031年にかけてCAGR 5.59%で成長し、2031年には59億米ドルに達すると予測されています。航空機搭載風力タービンは、高高度の風を利用できる信頼性の高い再生可能エネルギー・ソリューションを提供し、効率向上につながります。このタービンはまた、エネルギー需要の多様化と二酸化炭素排出量の削減を目指す政府や投資家にとって、費用対効果が高く拡張可能な方法を提供します。また、これらのタービンは遠隔地でも稼働する能力と機動性を備えており、オフグリッド用途の信頼できる選択肢となっています。さらに、市場各社が現在進めている研究開発イニシアチブは、技術的に先進的なタービンの開発を後押ししており、これが市場成長の原動力になると期待されています。

世界の航空機搭載風力タービン市場の定義

航空機搭載風力タービン(AWT)は、風力エネルギーを利用するための革新的かつ持続可能なアプローチです。従来の地上型風力タービンとは異なり、AWTはより強く安定した風が吹く高高度で稼働します。このシステムは通常、強力なケーブルで地面につながれた飛行装置で構成されています。風が動くと、飛行装置は綱に張力を発生させ、その張力を地上の発電機で電力に変換します。

AWTの主な利点は、従来のタービンに比べてより強力な風力資源にアクセスできることで、その結果、エネルギー生産量が増加します。また、これらのタービンは建設資材が少なくて済み、野生生物の侵入や土地の使用に関する環境への影響も少ないです。さらに、AWTは山間部や沖合、遠隔地などさまざまな場所に設置できるため、再生可能エネルギー発電の可能性が広がります。

航空機搭載風力タービンの世界市場概要

航空機搭載風力タービンは、高高度で利用可能な豊富で強力な風を利用するため、従来の風力タービンよりも高いエネルギーを生産します。簡単にアクセスできる陸上の風力資源が枯渇している現在、AWTは未開発の風力埋蔵量を利用する有望なソリューションとなります。AWTはまた、従来の風力タービンに比べて建設資材が少なくて済むため、拡張性があり、コスト効率も高いです。また、巨大なタワーや基礎も必要ないです。さらに、AWTは遠隔地や非電化地域など、さまざまな場所に簡単に輸送・設置できるため、従来の風力発電所が実現不可能な地域でもクリーン・エネルギーへのアクセスを提供することができます。この可動性により、事業者は風パターンの変化に対応し、エネルギー生産を最適化することもできます。

AWTは従来の風力タービンよりも高い高度で稼働し、環境への影響も少ないです。生息地を乱したり、鳥との衝突を引き起こしたりするような大きな構造物を地上に設置する必要がないため、野生生物へのリスクは最小限に抑えられます。さらに、物理的な設置面積が小さいため、従来の風力発電所への反対が懸念されていた地域でも社会的に受け入れられやすいです。AWTは分散型エネルギー発電を提供し、集中型送電網への依存を減らし、特にサプライチェーンの途絶に脆弱な遠隔地や島嶼地域のエネルギー安全保障を強化します。AWTは、より消費地に近い場所で電力を生産するという利点があり、送電網の安定性を高め、トランスミッションのロスを減らすことができます。

制御システム、材料、空気力学の継続的な進歩により、AWTの信頼性と効率は大幅に向上しています。技術が成熟するにつれて、研究機関、政府、民間投資家はAWTの開発と商業化をますます支援し、さらなる技術革新とコスト削減を推進しています。例えば2021年5月、RWEはアンピクス・パワー社との提携により、革新的な空中風力発電試験場を立ち上げました。

このサイトは、150キロワット(kW)の実証システム、より大規模な商業規模の1メガワット(MW)システム、その他のAWEシステムの試験に使用されます。いくつかの利点はあるもの、AWTは比較的新しい技術であり、さまざまな気象条件下での性能と信頼性に課題があります。さらに、このシステムには、過酷な強風に耐える必要のある飛行部品が含まれており、時間の経過とともに摩耗や破損の可能性があるため、これらのシステムの採用に悪影響を及ぼすと予想されます。

目次

第1章 航空機搭載風力タービンの世界市場:イントロダクション

  • 市場概要
  • 調査範囲
  • 前提条件

第2章 エグゼクティブサマリー

第3章 VERIFIED MARKET RESEARCHの調査手法

  • データマイニング
  • 検証
  • 一次資料
  • データソース一覧

第4章 航空機搭載風力タービンの世界市場展望

  • 概要
  • 市場力学
    • 促進要因
    • 抑制要因
    • 機会
  • ポーターのファイブフォースモデル
  • バリューチェーン分析
  • 規制の枠組み

第5章 航空機搭載風力タービンの世界市場:タイプ別

  • 概要
  • オンショア
  • オフショア

第6章 航空機搭載風力タービンの世界市場:用途別

  • 概要
  • 発電
  • 輸送
  • 揚水

第7章 航空機搭載風力タービンの世界市場:地域別

  • 概要
  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • その他アジア太平洋地域
  • ラテンアメリカ
    • ブラジル
    • アルゼンチン
  • 世界のその他の地域

第8章 航空機搭載風力タービンの世界市場:競争情勢

  • 概要
  • 各社の市場シェア
  • ベンダー情勢
  • 主な開発戦略

第9章 企業プロファイル

  • Enercon
  • Envision Energy
  • GE Energy
  • Goldwind
  • Nordex Group
  • Senvion
  • Siemens
  • Suzlon
  • United Power
  • Vestas

第10章 付録

  • 関連調査
目次
Product Code: 6862

Air-Borne Wind Turbine Market Size And Forecast

Air-Borne Wind Turbine Market size was valued at USD 1.11 Billion in 2024 and is projected to reach USD 5.9 Billion by 2031, growing at a CAGR of 5.59% from 2024 to 2031. The airborne wind turbine offers a reliable renewable energy solution that can harness high-altitude winds, leading to increased efficiency, which is a crucial factor driving the demand for these turbines. The turbines also offer cost-effective and scalable methods for governments and investors looking to diversify their energy demands and reduce carbon emissions. These turbines also have the ability and mobility to operate in remote locations, making them a reliable choice for off-grid applications. Moreover, the ongoing R&D initiatives undertaken by the players in the market are favoring the development of technologically advanced turbines, which is expected to drive market growth.

Global Air-Borne Wind Turbine Market Definition

An airborne wind turbine (AWT) is an innovative and sustainable approach to harnessing wind energy. Unlike traditional ground-based wind turbines, AWTs operate at high altitudes, where stronger and more consistent winds prevail. The system typically consists of a flying device tethered to the ground with strong cables. As the wind moves, the flying device generates tension in the tethers, which is then converted into electrical power through a generator on the ground.

The main advantage of AWTs is their ability to access more powerful wind resources compared to conventional turbines, resulting in an increased energy production potential. These turbines also require fewer construction materials and have a lower environmental impact regarding wildlife disruption and land usage. Additionally, AWTs can be deployed in various locations, such as mountainous areas, offshore, and remote regions, increasing the possibilities for renewable energy generation.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Global Air-Borne Wind Turbine Market Overview

The airborne wind turbines produce higher energy than the conventional wind turbines as they capitalize on the abundant and powerful winds available at higher altitudes; these locations have stronger and more consistent high wind speeds than ground-level ones. With the depletion of easily accessible onshore wind resources, AWTs offer a promising solution to tap into untapped wind reserves. AWTs are also scalable and cost-effective compared to traditional wind turbines, as they require fewer construction materials. These wind turbines also do not require massive towers or foundations. Moreover, AWTs can be easily transported and installed in several locations, such as remote and off-grid areas, providing access to clean energy in regions where traditional wind farms are not feasible. This mobility also allows operators to respond to changes in wind patterns and optimize energy production.

The AWTs operate at higher altitudes and have a lower environmental impact than traditional wind turbines. They pose minimal risks to wildlife, as they do not need large structures on the ground that could disrupt habitats or cause bird collisions. Additionally, their smaller physical footprint makes them more socially acceptable in regions where opposition to traditional wind farms has been a concern. The AWTs offer decentralized energy generation, reducing reliance on centralized power grids and enhancing energy security, especially in remote or island communities vulnerable to supply chain disruptions. AWTs have the advantage of producing electricity closer to the point of consumption, which can enhance grid stability and reduce transmission losses.

Continued advancements in control systems, materials, and aerodynamics have considerably improved AWTs' reliability and efficiency. As the technology matures, research institutions, governments, and private investors increasingly support the development and commercialization of AWTs, driving further innovation and cost reductions. For instance, in May 2021, RWE launched an innovative airborne wind energy testing site in partnership with Ampyx Power.

The site will be used to test a 150 kilowatt (kW) demonstrator system, a larger commercial-scale one-megawatt (MW) system, and other AWE systems. Despite several advantages, AWTs are a relatively new technology with performance and reliability challenges under different weather conditions. Additionally, the systems involve flying components that need to withstand harsh and strong winds and may face potential wear and tear over time, which is anticipated to negatively affect the adoption of these systems.

Global Air-Borne Wind Turbine Market Segmentation Analysis

The Global Air-Borne Wind Turbine Market is Segmented Based on Type, Application, And Geography.

Air-Borne Wind Turbine Market, By Type

  • Onshore
  • Offshore

Based on Type, the market is segmented into Onshore and Offshore. The onshore segment contributed the highest market share in 2022. Onshore Air-Borne Wind Turbines (AWTs) offer advantages such as lower installation and maintenance costs than offshore AWTs, as they can utilize existing land resources and infrastructure. Additionally, onshore AWTs are more accessible for maintenance and repairs, reducing operational downtime and expenses. The onshore AWTs can be installed closer to population centers, which helps to minimize transmission losses and grid connection costs.

Air-Borne Wind Turbine Market, By Application

  • Power Generation
  • Transportation
  • Pumping Water
  • Others

Based on Application, the market is differentiated into Power Generation, Transportation, Pumping Water, and Others. The power generation segment contributed the highest share in 2022 and is projected to grow lucratively during the forecast period. Air-borne wind Turbines (AWTs) have the potential to generate significant amounts of power, harnessing the strong and consistent winds available at higher altitudes, which is anticipated to drive their adoption. The power generation capacity of AWTs depends on various factors, including wind speed, the size and design of the AWT system, and the efficiency of the technology. For instance, a 500-kW AWE device with a 227-m rope length can generate up to 9,029 GW of technical potential, which is equivalent to the 7,827 GW of technical potential of a traditional land-based wind technology.

Air-Borne Wind Turbine Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Middle East and Africa
  • Latin America

Based on Regional Analysis, the Global Air-Borne Wind Turbine Market is classified into Asia Pacific, Europe, North America, Middle East & Africa, and Latin America. Asia Pacific contributed the highest share in 2022. Growing demand for renewable energy and favorable wind resources in countries such as China, Japan, India, Australia, and South Korea is a crucial factor driving the market growth in the region.

  • For instance, the Japanese government plans to set up 10 GW of offshore wind generation plants by 2030. This initiative was announced following the government's plans to reduce carbon emissions. Additionally, supportive Government policies and incentives drive research, development, and commercialization efforts. However, the market is still in its early stages, and challenges like regulatory frameworks and technology scalability need to be addressed for broader adoption in the region.

Key Players

  • The "Global Air-Borne Wind Turbine Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are
  • Enercon. Vestas, GE Energy, Nordex Group, Siemens, Senvion, Goldwind, United Power, Envision Energy, and Suzlon, among others.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide insight into the financial statements of all the major players, along with product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the players mentioned above globally.

Key Developments

  • In January 2021. Skysails Power collaborated with REW Renewables for Kite Power Generator, wherein the companies plan to fly a 120-meter sq. kite to a height of 400m that will be used to produce electricity with the built-in generator from rotational energy.
  • Ace Matrix Analysis
  • The Ace Matrix provided in the report would help to understand how the major key players involved in this industry are performing as we provide a ranking for these companies based on various factors such as service features & innovations, scalability, innovation of services, industry coverage, industry reach, and growth roadmap. Based on these factors, we rank the companies into four categories as
  • Active, Cutting Edge, Emerging, and Innovators.
  • Market Attractiveness
  • The image of market attractiveness provided would further help to get information about the region that is majorly leading in the Global Air-Borne Wind Turbine Market. We cover the major impacting factors driving the industry growth in the given region.
  • Porter's Five Forces
  • The image provided would further help to get information about Porter's five forces framework providing a blueprint for understanding the behavior of competitors and a player's strategic positioning in the respective industry. Porter's five forces model can be used to assess the competitive landscape in the Global Air-Borne Wind Turbine Market, gauge the attractiveness of a certain sector, and assess investment possibilities.

TABLE OF CONTENTS

1 INTRODUCTION OF GLOBAL AIR-BORNE WIND TURBINE MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL AIR-BORNE WIND TURBINE MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4 Value Chain Analysis
  • 4.5 Regulatory Framework

5 GLOBAL AIR-BORNE WIND TURBINE MARKET, BY TYPE

  • 5.1 Overview
  • 5.2 Onshore
  • 5.3 Offshore

6 GLOBAL AIR-BORNE WIND TURBINE MARKET, BY APPLICATION

  • 6.1 Overview
  • 6.2 Power Generation
  • 6.3 Transportation
  • 6.4 Pumping Water

7 GLOBAL AIR-BORNE WIND TURBINE MARKET, BY GEOGRAPHY

  • 7.1 Overview
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
    • 7.2.3 Mexico
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 U.K.
    • 7.3.3 France
    • 7.3.4 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 Japan
    • 7.4.3 India
    • 7.4.4 Rest of Asia Pacific
  • 7.5 Latin America
    • 7.5.1 Brazil
    • 7.5.2 Argentina
  • 7.6 Rest of the World

8 GLOBAL AIR-BORNE WIND TURBINE MARKET COMPETITIVE LANDSCAPE

  • 8.1 Overview
  • 8.2 Company Market Share
  • 8.3 Vendor Landscape
  • 8.4 Key Development Strategies

9 COMPANY PROFILES

  • 9.1 Enercon
    • 9.1.1 Overview
    • 9.1.2 Financial Performance
    • 9.1.3 Product Outlook
    • 9.1.4 Key Developments
  • 9.2 Envision Energy
    • 9.2.1 Overview
    • 9.2.2 Financial Performance
    • 9.2.3 Product Outlook
    • 9.2.4 Key Developments
  • 9.3 GE Energy
    • 9.3.1 Overview
    • 9.3.2 Financial Performance
    • 9.3.3 Product Outlook
    • 9.3.4 Key Developments
  • 9.4 Goldwind
    • 9.4.1 Overview
    • 9.4.2 Financial Performance
    • 9.4.3 Product Outlook
    • 9.4.4 Key Developments
  • 9.5 Nordex Group
    • 9.5.1 Overview
    • 9.5.2 Financial Performance
    • 9.5.3 Product Outlook
    • 9.5.4 Key Developments
  • 9.6 Senvion
    • 9.6.1 Overview
    • 9.6.2 Financial Performance
    • 9.6.3 Product Outlook
    • 9.6.4 Key Developments
  • 9.7 Siemens
    • 9.7.1 Overview
    • 9.7.2 Financial Performance
    • 9.7.3 Product Outlook
    • 9.7.4 Key Developments
  • 9.8 Suzlon
    • 9.8.1 Overview
    • 9.8.2 Financial Performance
    • 9.8.3 Product Outlook
    • 9.8.4 Key Developments
  • 9.9 United Power
    • 9.9.1 Overview
    • 9.9.2 Financial Performance
    • 9.9.3 Product Outlook
    • 9.9.4 Key Developments
  • 9.10 Vestas
    • 9.10.1 Overview
    • 9.10.2 Financial Performance
    • 9.10.3 Product Outlook
    • 9.10.4 Key Developments

10 Appendix

  • 10.1 Related Research