デフォルト表紙
市場調査レポート
商品コード
1797102

バイオベースポリ塩化ビニル市場 - 世界の産業規模、シェア、動向、機会、予測:製品別、用途別、地域別、競合別、2020年~2030年

Bio-based Polyvinyl Chloride Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product, By Application, By Region and Competition, 2020-2030F


出版日
ページ情報
英文 180 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=147.92円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

バイオベースポリ塩化ビニル市場 - 世界の産業規模、シェア、動向、機会、予測:製品別、用途別、地域別、競合別、2020年~2030年
出版日: 2025年08月25日
発行: TechSci Research
ページ情報: 英文 180 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

バイオベースポリ塩化ビニル(PVC)市場は2024年に6億8,236万米ドルと評価され、CAGR 6.01%で2030年には9億5,861万米ドルに達すると予測されています。

世界のバイオベースポリ塩化ビニル(PVC)市場は、持続可能性への取り組みや政府規制の増加、多様な産業分野での需要拡大に牽引され、力強い勢いを見せています。サトウキビエタノール、トウモロコシデンプン、セルロースなどの再生可能な原料から得られるバイオベースPVCは、従来の化石ベースPVCに代わる実行可能な選択肢を提供します。バイオベースPVCは、二酸化炭素排出量の大幅な削減を可能にし、世界の気候変動目標に合致し、持続可能で環境に優しい材料に対するエンドユーザーの嗜好を満たすものです。

市場概要
予測期間 2026-2030
市場規模:2024年 6億8,236万米ドル
市場規模:2030年 9億5,861万米ドル
CAGR:2025年~2030年 6.01%
急成長セグメント パイプ&継手
最大市場 北米

市場促進要因

フィルムおよびシートにおけるバイオベースポリ塩化ビニル(PVC)の需要急増

主な市場課題

性能と耐久性、市場競争力が市場拡大の大きな障害に

主要市場動向

持続可能な素材への需要の高まり

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 混乱:紛争、パンデミック、貿易障壁

第5章 世界バイオベースポリ塩化ビニル(PVC)市場展望

  • 市場規模・予測
    • 金額・数量別
  • 市場シェア・予測
    • 製品別(硬質、軟質)
    • 用途別(フィルム&シート、電線&ケーブル、パイプ&継手、その他)
    • 地域別
    • 企業別(2024)
  • 製品市場マップ

第6章 アジア太平洋地域のバイオベースポリ塩化ビニル(PVC)市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • オーストラリア
    • 日本
    • 韓国

第7章 欧州のバイオベースポリ塩化ビニル(PVC)市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 欧州:国別分析
    • フランス
    • ドイツ
    • スペイン
    • イタリア
    • 英国

第8章 北米のバイオベースポリ塩化ビニル(PVC)市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 北米:国別分析
    • 米国
    • メキシコ
    • カナダ

第9章 南米のバイオベースポリ塩化ビニル(PVC)市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東およびアフリカのバイオベースポリ塩化ビニル(PVC)市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 最近の動向
  • 製品上市
  • 合併と買収

第13章 世界のバイオベースポリ塩化ビニル(PVC)市場:SWOT分析

第14章 価格分析

第15章 PESTEL分析

第16章 ポーターのファイブフォース分析

  • 業界内の競合
  • 新規参入の可能性
  • サプライヤーの力
  • 顧客の力
  • 代替品の脅威

第17章 競合情勢

  • BioPlastic Solutions, LLC
  • Ineos Group Limited
  • BASF SE
  • Mitsubishi Chemical Corporation
  • LG Chem Ltd.
  • Teknor Apex Company, Inc.
  • Vynova Group
  • Sylvin Technologies, Inc.
  • Neste Oyj
  • Evonik Industries AG

第18章 戦略的提言

第19章 調査会社について・免責事項

目次
Product Code: 17637

Bio-based Polyvinyl Chloride (PVC) Market was valued at USD 682.36 Million in 2024 and is expected to reach USD 958.61 Million by 2030 with a CAGR of 6.01%. The global Bio-Based Polyvinyl Chloride (PVC) market is witnessing strong momentum, driven by increasing sustainability initiatives, government regulations, and growing demand across diverse industrial sectors. Bio-based PVC, derived from renewable feedstocks such as sugarcane ethanol, corn starch, or cellulose, offers a viable alternative to traditional fossil-based PVC. It enables significant reductions in carbon emissions, aligns with global climate targets, and satisfies end-user preferences for sustainable and environmentally friendly materials.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 682.36 Million
Market Size 2030USD 958.61 Million
CAGR 2025-20306.01%
Fastest Growing SegmentPipes & Fittings
Largest MarketNorth America

Key Market Drivers

Surging Demand for Bio-Based Polyvinyl Chloride (PVC) in Films and Sheets

In an era of heightened environmental awareness, the demand for sustainable alternatives to traditional plastics has surged across various industries. One such eco-friendly option that has gained prominence is Bio-Based Polyvinyl Chloride (PVC). Among its numerous applications, the use of bio-based PVC in the production of films and sheets has witnessed remarkable growth. The environmental imperative is one of the foremost drivers behind the growing demand for bio-based PVC in films and sheets. Traditional PVC production relies heavily on fossil fuels, contributing significantly to carbon emissions. Bio-based PVC, on the other hand, is derived from renewable feedstocks, such as sugarcane, corn, and soybeans. This shift towards renewable sourcing aligns with global sustainability goals, mitigating the carbon footprint of PVC production. With mounting concerns over climate change and plastic pollution, industries and consumers are seeking alternatives that reduce their ecological impact, making bio-based PVC an attractive choice.Total demand for flexible films across all polymers is estimated at 13-15 million tonnes, with polypropylene (PP) and multi-material multilayer films each accounting for approximately 2-2.5 million tonnes, according to market experts. Smaller volumes are attributed to single-polymer films such as PET and PVC, as well as emerging biodegradable alternatives. This rising demand underscores the potential for bio-based PVC to capture share in sustainable flexible film applications.

Bio-based PVC's versatility is another compelling factor propelling its demand in films and sheets. The film and sheet industry spans a broad spectrum of applications, from packaging materials to construction and agriculture. Bio-based PVC can be tailored to suit a wide array of requirements, making it suitable for diverse applications. It can be manufactured in various thicknesses, colors, and textures, allowing it to replace traditional PVC in a multitude of roles. Whether used for food packaging, greenhouse films, or construction sheets, bio-based PVC offers a sustainable solution that meets the functional needs of these applications. Companies across industries are increasingly integrating sustainability initiatives into their operations. As part of this shift, many are actively seeking out environmentally friendly materials like bio-based PVC. Incorporating bio-based PVC films and sheets into their products allows these companies to demonstrate their commitment to sustainability, meet regulatory requirements, and appeal to environmentally conscious consumers. Sustainability is no longer just a buzzword; it has become a strategic business imperative, and bio-based PVC offers a tangible means of achieving sustainability goals.

Governments and regulatory bodies worldwide are introducing policies and regulations to encourage the use of sustainable materials and reduce reliance on conventional plastics. These measures range from plastic bags and taxes to strict recycling and waste management rules. Bio-based PVC, being a sustainable alternative, aligns well with these regulatory changes. Companies operating in regions with stringent environmental regulations are more likely to adopt bio-based PVC films and sheets to remain compliant and avoid penalties. Consumer preferences are playing a pivotal role in driving the demand for bio-based PVC in films and sheets. Today's consumers are more informed and conscious of their choices, and they are increasingly favoring products that align with their values. Products packaged in bio-based PVC films are perceived as more eco-friendly and are thus preferred by environmentally conscious consumers. The rising demand for sustainable and ethical consumer products directly influences the adoption of bio-based PVC in packaging materials. Technological advancements in the manufacturing processes of bio-based PVC have played a pivotal role in meeting the increasing demand for films and sheets. Innovations in extrusion, lamination, and coating technologies have made it easier to produce high-quality bio-based PVC films and sheets at competitive costs. These advancements have expanded the range of applications for bio-based PVC, making it an attractive choice for industries looking for efficient and sustainable solutions, leading to the demand of market in the forecast period

Key Market Challenges

Performance and Durability and Cost Competitiveness Poses a Significant Obstacle to Market Expansion

One of the primary challenges in the bio-based PVC market is achieving performance and durability comparable to traditional PVC. Traditional PVC is known for its excellent mechanical properties, chemical resistance, and durability, making it a popular choice in various industries. Bio-based PVC, derived from renewable sources like sugarcane or corn, often faces limitations in these aspects.

Moreover, the cost of bio-based PVC production, compared to traditional PVC, remains a significant hurdle. Traditional PVC benefits from decades of efficient production processes and economies of scale, which result in lower costs. In contrast, bio-based PVC production often requires more intricate processes and sustainable sourcing, increasing its production expenses.

Key Market Trends

Increasing Demand for Sustainable Materials

One of the most significant trends in the bio-based PVC market is the growing demand for sustainable materials across various industries. Businesses and consumers are increasingly aware of the environmental impact of their choices and are seeking alternatives to traditional plastics. Bio-based PVC, with its reduced carbon footprint and renewable sourcing, is becoming an attractive option for companies looking to meet sustainability goals and reduce their environmental footprint.

Innovation in bio-based PVC extends beyond just its sourcing. Researchers and manufacturers are working on making bio-PVC biodegradable and recyclable. Biodegradable bio-PVC has the potential to reduce plastic waste in landfills and oceans, addressing one of the most pressing environmental issues. Additionally, the development of recyclable bio-PVC materials can help create a circular economy, reducing the need for virgin materials and minimizing waste.

Key Market Players

  • BioPlastic Solutions, LLC
  • Ineos Group Limited
  • BASF SE
  • Mitsubishi Chemical Corporation
  • LG Chem Ltd.
  • Teknor Apex Company, Inc.
  • Vynova Group
  • Sylvin Technologies, Inc.
  • Neste Oyj
  • Evonik Industries AG

Report Scope:

In this report, the Global Bio-based Polyvinyl Chloride (PVC) Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Bio-based Polyvinyl Chloride (PVC) Market, By Product:

  • Rigid
  • Flexible

Bio-based Polyvinyl Chloride (PVC) Market, By Application:

  • Films and Sheets
  • Wires and Cables
  • Pipes and Fittings
  • Others

Bio-based Polyvinyl Chloride (PVC) Market, By Region:

  • Asia-Pacific
    • China
    • India
    • Australia
    • Japan
    • South Korea
  • Europe
    • France
    • Germany
    • Spain
    • Italy
    • United Kingdom
  • North America
    • United States
    • Mexico
    • Canada
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Bio-based Polyvinyl Chloride (PVC) Market.

Available Customizations:

Global Bio-based Polyvinyl Chloride (PVC) Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Disruptions: Conflicts, Pandemics and Trade Barriers

5. Global Bio-based Polyvinyl Chloride (PVC) Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value & Volume
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Rigid, Flexible)
    • 5.2.2. By Application (Films and Sheets, Wires and Cables, Pipes and Fittings, Others)
    • 5.2.3. By Region
    • 5.2.4. By Company (2024)
  • 5.3. Product Market Map

6. Asia Pacific Bio-based Polyvinyl Chloride (PVC) Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value & Volume
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. Asia Pacific: Country Analysis
    • 6.3.1. China Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value & Volume
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By Application
    • 6.3.2. India Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value & Volume
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By Application
    • 6.3.3. Australia Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value & Volume
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By Application
    • 6.3.4. Japan Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value & Volume
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Product
        • 6.3.4.2.2. By Application
    • 6.3.5. South Korea Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value & Volume
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Product
        • 6.3.5.2.2. By Application

7. Europe Bio-based Polyvinyl Chloride (PVC) Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value & Volume
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value & Volume
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By Application
    • 7.3.2. Germany Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value & Volume
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By Application
    • 7.3.3. Spain Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value & Volume
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By Application
    • 7.3.4. Italy Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value & Volume
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product
        • 7.3.4.2.2. By Application
    • 7.3.5. United Kingdom Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value & Volume
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product
        • 7.3.5.2.2. By Application

8. North America Bio-based Polyvinyl Chloride (PVC) Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value & Volume
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value & Volume
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By Application
    • 8.3.2. Mexico Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value & Volume
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By Application
    • 8.3.3. Canada Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value & Volume
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By Application

9. South America Bio-based Polyvinyl Chloride (PVC) Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value & Volume
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value & Volume
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value & Volume
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value & Volume
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By Application

10. Middle East and Africa Bio-based Polyvinyl Chloride (PVC) Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1.By Value & Volume
  • 10.2. Market Share & Forecast
    • 10.2.1.By Product
    • 10.2.2.By Application
    • 10.2.3.By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1.South Africa Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value & Volume
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product
        • 10.3.1.2.2. By Application
    • 10.3.2.Saudi Arabia Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value & Volume
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product
        • 10.3.2.2.2. By Application
    • 10.3.3.UAE Bio-based Polyvinyl Chloride (PVC) Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value & Volume
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product
        • 10.3.3.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. Global Bio-based Polyvinyl Chloride (PVC) Market: SWOT Analysis

14. Pricing Analysis

15. PESTLE Analysis

16. Porter's Five Forces Analysis

  • 16.1. Competition in the Industry
  • 16.2. Potential of New Entrants
  • 16.3. Power of Suppliers
  • 16.4. Power of Customers
  • 16.5. Threat of Substitute Product

17. Competitive Landscape

  • 17.1. BioPlastic Solutions, LLC
    • 17.1.1.Business Overview
    • 17.1.2.Company Snapshot
    • 17.1.3. Products & Services
    • 17.1.4.Recent Developments
    • 17.1.5.Financials (In Case of Listed Companies)
    • 17.1.6.Key Personnel
    • 17.1.7.SWOT Analysis
  • 17.2. Ineos Group Limited
  • 17.3. BASF SE
  • 17.4. Mitsubishi Chemical Corporation
  • 17.5. LG Chem Ltd.
  • 17.6. Teknor Apex Company, Inc.
  • 17.7. Vynova Group
  • 17.8. Sylvin Technologies, Inc.
  • 17.9. Neste Oyj
  • 17.10. Evonik Industries AG

18. Strategic Recommendations

19. About Us and Disclaimer