市場調査レポート
商品コード
1619968

燃料電池船舶の世界市場 - 産業規模、シェア、動向、機会、予測:タイプ別、用途別、出力別、地域別、競合別(2019年~2029年)

Fuel Cells Marine Vessels Market -Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application, By Power Output, By Region & Competition, 2019-2029F


出版日
ページ情報
英文 185 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

燃料電池船舶の世界市場 - 産業規模、シェア、動向、機会、予測:タイプ別、用途別、出力別、地域別、競合別(2019年~2029年)
出版日: 2024年12月20日
発行: TechSci Research
ページ情報: 英文 185 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の燃料電池船舶の市場規模は、2023年に1億1,026万米ドルとなり、予測期間中のCAGRは6.30%で2029年には1億5,908万米ドルに達する見込みです。

世界の燃料電池船舶市場は、持続可能で環境に優しい海洋推進システムの需要増加に牽引されて力強い成長を遂げています。クリーンで効率的なプロセスによって化学エネルギーを電気エネルギーに変換する燃料電池は、従来の船舶用燃料に代わる有力な選択肢として支持を集めています。この変化の主な要因は、海事産業からの温室効果ガス排出削減を目的とした厳しい環境規制です。世界中の規制機関がより厳しい排出基準を施行する中、船舶への燃料電池技術の採用は加速しています。さらに、船主や運航者の間で環境持続可能性に対する意識と取り組みが高まっていることも、市場をさらに前進させています。

市場概要
予測期間 2025年~2029年
市場規模:2023年 1億1,026万米ドル
市場規模:2029年 1億5,908万米ドル
CAGR:2024年~2029年 6.30%
急成長セグメント PEMFC
最大市場 欧州・CIS

いくつかの注目すべき動向と機会が燃料電池船舶市場を形成しています。主な動向のひとつは、燃料電池の効率と性能を高めるための研究開発投資の増加です。高温プロトン交換膜(PEM)燃料電池や固体酸化物燃料電池(SOFC)の開発などの技術的進歩は、海洋用途における燃料電池の出力と耐久性を向上させることで市場成長を促進すると予想されます。もう一つの大きな動向は、造船業者、燃料電池メーカー、技術プロバイダーが協力して、船舶への燃料電池システムのシームレスな実装と運用を保証する統合ソリューションを構築していることです。この協力的なアプローチは、技術革新を促進し、燃料電池船舶の商業化を加速させています。

有望な見通しとは裏腹に、燃料電池船舶市場は、その成長を妨げかねないいくつかの課題に直面しています。大きな課題の1つは、燃料電池システムの初期コストが高いことであり、特に小規模の船舶運航会社においては、これが普及の大きな障壁となる可能性があります。さらに、ほとんどの船舶用燃料電池の主燃料である水素の補給インフラが不足している現状は、物流上のハードルとなっています。水素の生産と流通の可用性と拡張性を確保することは、燃料電池を搭載した船舶の長期的な実行可能性にとって極めて重要です。

市場促進要因

厳しい排出規制と環境への懸念

燃料電池技術の進歩

投資と資金調達の増加

主な市場課題

燃料電池システムの初期投資とコストの高さ

限られた水素インフラとサプライチェーン

燃料電池の耐久性と寿命

主な市場動向

脱炭素化と排出削減への注目の高まり

燃料電池技術の急速な進歩

グリーン水素製造の成長

目次

第1章 イントロダクション

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 世界の燃料電池船舶市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別(PEMFC、SOFC、PAFC、DMFC、その他)
    • 用途別(防衛、商業)
    • 出力別(200KW以下、200KW超)
    • 地域別
    • 上位5社別、その他企業別(2023年)
  • 世界の燃料電池船舶市場マッピングと機会評価
    • タイプ別
    • 用途別
    • 出力別
    • 地域別

第5章 北米の燃料電池船舶市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 出力別
    • 国別

第6章 欧州・CISの燃料電池船舶市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 出力別
    • 国別

第7章 アジア太平洋の燃料電池船舶市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 出力別
    • 国別

第8章 中東・アフリカの燃料電池船舶市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 出力別
    • 国別

第9章 南米の燃料電池船舶市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 出力別
    • 国別

第10章 市場力学

  • 促進要因
  • 課題

第11章 世界の燃料電池船舶市場におけるCOVID-19の影響

第12章 市場動向と発展

第13章 競合情勢

  • 企業プロファイル
    • Fiskerstrand Verft AS
    • MEYER WERFT GmbH & Co. KG
    • Hyster-Yale Materials Handling, Inc.
    • Guangdong Dyna International Shipping Agency Company Limited
    • Powercell Australia Pty Ltd
    • Ballard Power Systems Inc.
    • Toshiba Energy Systems & Solutions Corporation
    • Bloom Energy Corporation
    • Proton Motor Fuel Cell GmbH
    • WATT Fuel Cell Corp

第14章 戦略的提言・アクションプラン

  • 主要な重点分野
  • ターゲット:タイプ別
  • ターゲット:用途別
  • ターゲット:出力別

第15章 調査会社について・免責事項

目次
Product Code: 22513

The Global Fuel Cells Marine Vessels market was valued at USD 110.26 Million in 2023 and is expected to reach USD 159.08 Million by 2029 with a CAGR of 6.30% during the forecast period. The global fuel cells marine vessels market is experiencing robust growth driven by the increasing demand for sustainable and eco-friendly marine propulsion systems. Fuel cells, which convert chemical energy into electrical energy through a clean and efficient process, are gaining traction as a viable alternative to traditional marine fuels. This shift is primarily fueled by stringent environmental regulations aimed at reducing greenhouse gas emissions from the maritime industry. As regulatory bodies worldwide enforce stricter emission standards, the adoption of fuel cell technology in marine vessels is accelerating. Additionally, the growing awareness and commitment to environmental sustainability among shipowners and operators are further propelling the market forward.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 110.26 Million
Market Size 2029USD 159.08 Million
CAGR 2024-20296.30%
Fastest Growing SegmentPEMFC
Largest MarketEurope & CIS

Several notable trends and opportunities are shaping the fuel cells marine vessels market. One key trend is the increasing investment in research and development to enhance fuel cell efficiency and performance. Technological advancements, such as the development of high-temperature proton exchange membrane (PEM) fuel cells and solid oxide fuel cells (SOFCs), are expected to drive market growth by improving the power output and durability of fuel cells in marine applications. Another significant trend is the collaboration between shipbuilders, fuel cell manufacturers, and technology providers to create integrated solutions that ensure seamless implementation and operation of fuel cell systems on marine vessels. This collaborative approach is fostering innovation and accelerating the commercialization of fuel cell-powered ships.

Despite the promising outlook, the fuel cells marine vessels market faces several challenges that could impede its growth. One major challenge is the high initial cost of fuel cell systems, which can be a significant barrier for widespread adoption, especially among smaller ship operators. Additionally, the current lack of refueling infrastructure for hydrogen, the primary fuel for most marine fuel cells, poses a logistical hurdle. Ensuring the availability and scalability of hydrogen production and distribution is critical for the long-term viability of fuel cell-powered marine vessels.

Market Drivers

Stringent Emission Regulations and Environmental Concerns

One of the primary drivers of the global fuel cells in marine vessels market is the increasing focus on environmental sustainability and the implementation of stringent emission regulations. As concerns about climate change and air pollution continue to grow, the maritime industry is under pressure to reduce its carbon footprint and adopt cleaner technologies. International and regional regulations, such as the International Maritime Organization's (IMO) MARPOL Annex VI, have set strict limits on sulfur emissions and are progressively tightening restrictions on nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from ships. These regulations aim to significantly reduce the environmental impact of the shipping industry. Traditional marine propulsion systems, primarily relying on diesel engines, are notorious for their emissions of harmful pollutants and greenhouse gases. In contrast, fuel cell technology offers a more environmentally friendly alternative.

Advancements in Fuel Cell Technology

Advancements in fuel cell technology represent a critical driver in the global fuel cells in marine vessels market. The development of fuel cells for maritime applications has been driven by innovations that enhance efficiency, reliability, and scalability. One of the key advancements is the development of proton exchange membrane (PEM) fuel cells, which are particularly well-suited for marine use. PEM fuel cells are compact, lightweight, and can operate at high efficiency. They can provide a stable source of electrical power, which is crucial for meeting the varying energy demands of marine vessels. Moreover, improvements in fuel cell durability and longevity have made them more reliable for long-duration maritime operations. These advancements are essential for addressing the challenging conditions of the marine environment, including saltwater exposure, temperature fluctuations, and vibrations. Additionally, innovations in hydrogen storage and delivery systems are contributing to the feasibility of fuel cell-powered marine vessels. Hydrogen can be stored onboard in various forms, including gaseous or liquid hydrogen, metal hydrides, or ammonia.

Increasing Investment and Funding

The growing interest in fuel cells for marine vessels is accompanied by increasing investment and funding in research, development, and commercialization efforts. This financial support is a significant driver in propelling the fuel cell marine vessels market forward. Governments, research institutions, and private companies are directing resources into fuel cell technology to accelerate its adoption in the maritime sector. Various nations have recognized the potential of fuel cells to reduce greenhouse gas emissions and improve air quality in their ports and coastal areas. Government incentives, grants, and subsidies are often available to support research and development in fuel cell technology, as well as the deployment of fuel cell-powered vessels. These financial incentives help to reduce the capital costs associated with fuel cell adoption, making it a more attractive option for ship owners. Private investors and venture capital firms are also actively investing in startups and established companies working on fuel cell propulsion solutions for marine vessels. This funding supports product development, testing, and market entry, further driving the commercialization of fuel cell technology in the maritime industry.

Key Market Challenges

High Initial Investment and Cost of Fuel Cell Systems

One of the foremost challenges facing the global fuel cells in marine vessels market is the high initial investment and the overall cost of fuel cell systems. Fuel cell technology, while promising for reducing emissions and improving efficiency, is currently associated with substantial capital expenses. The cost of manufacturing fuel cell systems, including the fuel cell stack, power electronics, and balance of plant components, can be prohibitively high. In particular, the expense of proton exchange membrane (PEM) fuel cells, which are often preferred for marine applications due to their efficiency and power density, remains a significant barrier to adoption. Additionally, the cost of ancillary components, such as hydrogen storage and supply systems, adds to the overall price tag. This high initial investment poses a challenge for shipowners and operators, as they must carefully evaluate the return on investment (ROI) and the potential cost savings over the operational lifetime of a fuel cell system. In some cases, the ROI period may be longer than the expected lifespan of the vessel, making it financially unviable for certain operators.

Limited Hydrogen Infrastructure and Supply Chain

A critical challenge in the adoption of fuel cells in marine vessels is the limited infrastructure for hydrogen production, storage, and distribution. Hydrogen is a key component of fuel cell technology, and the availability of a reliable hydrogen supply chain is essential for the successful deployment of fuel cell-powered vessels. Hydrogen infrastructure includes hydrogen production facilities, storage solutions, and transportation methods. The development of this infrastructure is necessary to ensure a consistent and accessible supply of hydrogen fuel for marine vessels. However, the establishment of a comprehensive hydrogen supply chain is a complex and costly endeavor. One major issue is the limited number of hydrogen production facilities and refueling stations, which restricts the range and operational flexibility of fuel cell vessels. In many regions, the infrastructure for producing and distributing hydrogen is still in its infancy.

Fuel Cell Durability and Longevity

Fuel cell durability and longevity are significant challenges in the adoption of fuel cells in marine vessels. Vessels are subjected to demanding operating conditions, including exposure to saltwater, temperature fluctuations, vibrations, and continuous operation for extended durations. These conditions can impact the performance and reliability of fuel cell systems over time. While fuel cell technology has advanced significantly in recent years, challenges remain in achieving the durability required for marine applications. Marine vessels operate in harsh environments, and fuel cell systems must be capable of withstanding the corrosive effects of saltwater, extreme temperatures, and the constant vibrations associated with maritime operations.

Key Market Trends

Increasing Focus on Decarbonization and Emission Reduction

One of the most prominent trends in the global fuel cells in marine vessels market is the increasing focus on decarbonization and emission reduction within the maritime industry. Stringent environmental regulations and global commitments to reduce greenhouse gas emissions have prompted shipowners and operators to seek cleaner and more sustainable propulsion solutions. The International Maritime Organization (IMO) has set ambitious targets for reducing carbon emissions from the shipping sector. These targets aim to cut the industry's total greenhouse gas emissions by at least 50% by 2050 compared to 2008 levels. To achieve these goals, vessel operators are actively exploring and adopting technologies that can minimize their carbon footprint. Fuel cell technology offers a promising solution for the maritime industry to achieve decarbonization. Fuel cells produce electricity through an electrochemical reaction between hydrogen and oxygen, emitting only water vapor as a byproduct.

Rapid Advancements in Fuel Cell Technology

Fuel cell technology is advancing at a rapid pace, and this trend is pivotal in the global fuel cells in marine vessels market. These advancements are driving the development of more efficient, reliable, and powerful fuel cell systems specifically designed for maritime applications. One of the key innovations is the development of proton exchange membrane (PEM) fuel cells. PEM fuel cells offer high power density, compact design, and quick start-up times, making them well-suited for marine propulsion. These attributes enable fuel cells to meet the varying power demands of different vessel types, ensuring smooth and responsive performance. Advancements in fuel cell durability and longevity are also significant. Researchers and manufacturers are continuously improving the robustness of fuel cell components to withstand the challenging conditions of the marine environment.

Growth of Green Hydrogen Production

Green hydrogen production is a significant trend that directly impacts the global fuel cells in marine vessels market. Green hydrogen is produced using renewable energy sources, such as wind, solar, or hydropower, to power the electrolysis process, which splits water into hydrogen and oxygen. This sustainable method of hydrogen production aligns with the maritime industry's environmental goals and regulatory requirements. Green hydrogen is of particular importance for the maritime sector as it offers a cleaner and more sustainable source of fuel for fuel cell systems. The use of green hydrogen significantly reduces the carbon footprint of fuel cell-powered vessels, making them an attractive option for shipowners and operators striving to reduce emissions. Several regions and countries are investing in the development of green hydrogen production facilities and infrastructure.

Segmental Insights

Application Insights

The global fuel cell marine vessels market is segmented by application type into commercial and defense sectors, each playing a distinct role in shaping the market's growth and development. The commercial segment is projected to dominate the market during the forecast period due to the increasing push toward environmentally friendly shipping solutions. The rising pressure on the maritime industry to reduce carbon emissions, driven by stringent environmental regulations and global sustainability goals, is a key factor influencing this shift. Commercial shipping companies are increasingly adopting fuel cell technology to comply with stricter emission norms and to lower operational costs, as fuel cells offer higher energy efficiency and reduced maintenance needs compared to traditional propulsion systems. The adoption of fuel cells for both large cargo ships and smaller vessels is gaining momentum, as these technologies support longer voyages with reduced environmental impact.

On the other hand, the defense sector is also witnessing a steady growth in the application of fuel cell technology, but its share remains smaller compared to the commercial segment. Military vessels, including submarines, surface combatants, and auxiliary ships, are turning to fuel cells due to their advantages in stealth operations and energy efficiency. Fuel cells provide a quieter and more energy-dense alternative to conventional power systems, making them ideal for defense applications where discretion and extended endurance are critical. However, the adoption of fuel cells in defense vessels is constrained by factors such as high initial investment costs and the need for further technological development to ensure reliability in extreme environments.

The commercial application segment holds a significant share of the market due to its faster adoption rate and the increasing focus on meeting international emission reduction targets. The defense sector, while important, is more focused on niche applications where fuel cells can offer specific operational benefits, but it is not expected to surpass the commercial sector in terms of overall market contribution.

Region Insights

In 2023, Europe & CIS emerged as the dominant region in the global fuel cell marine vessels market. The region's strong commitment to reducing carbon emissions and transitioning to sustainable energy sources has significantly accelerated the adoption of fuel cell technology in marine vessels. Europe & CIS has been at the forefront of pushing for stringent environmental regulations, which have driven the maritime industry to explore cleaner propulsion alternatives. The European Union has implemented ambitious goals to decarbonize the maritime sector, including adopting renewable energy technologies such as fuel cells to meet emissions targets set under international agreements like the Paris Agreement. These policies have created a favorable environment for the development and deployment of fuel cell-powered vessels, especially in countries such as Norway, Germany, and the Netherlands, where renewable energy initiatives are being integrated into the shipping industry.

The presence of established maritime nations in Europe further strengthens the region's dominance in the market. European governments and organizations are heavily investing in research and development to refine fuel cell technologies and increase their efficiency, making them more viable for commercial and defense applications. Furthermore, the European maritime sector has witnessed the successful implementation of several pilot projects and demonstrations of fuel cell-powered ships, which has helped build confidence in the technology's potential. These initiatives have demonstrated the feasibility of using fuel cells in large-scale commercial vessels and have set the stage for their broader adoption.

Key Market Players

  • Fiskerstrand Verft AS
  • MEYER WERFT GmbH & Co. KG
  • Hyster-Yale Materials Handling, Inc.
  • Guangdong Dyna International Shipping Agency Company Limited
  • Powercell Australia Pty Ltd
  • Ballard Power Systems Inc.
  • Toshiba Energy Systems & Solutions Corporation
  • Bloom Energy Corporation
  • Proton Motor Fuel Cell GmbH
  • WATT Fuel Cell Corp

Report Scope:

In this report, the Global Fuel Cells Marine Vessels market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Fuel Cells Marine Vessels Market, By Type:

  • PEMFC
  • SOFC
  • PAFC
  • DMFC
  • Others

Fuel Cells Marine Vessels Market, By Application:

  • Commercial
  • Defense

Fuel Cells Marine Vessels Market, By Power Output:

  • <200 KW
  • >200KW

Fuel Cells Marine Vessels Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe & CIS
    • France
    • Germany
    • Spain
    • Italy
    • United Kingdom
    • Rest of Europe
  • Asia-Pacific
    • China
    • Japan
    • India
    • Vietnam
    • South Korea
    • Thailand
    • Australia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey
  • South America
    • Brazil
    • Argentina

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Fuel Cells Marine Vessels Market.

Available Customizations:

Global Fuel Cells Marine Vessels Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Market Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Global Fuel Cells Marine Vessels Market Outlook

  • 4.1. Market Size & Forecast
    • 4.1.1. By Value
  • 4.2. Market Share & Forecast
    • 4.2.1. By Type Market Share Analysis (PEMFC, SOFC, PAFC, DMFC, Others)
    • 4.2.2. By Application Market Share Analysis (Defense, Commercial)
    • 4.2.3. By Power Output Market Share Analysis (<200 KW, >200KW)
    • 4.2.4. By Regional Market Share Analysis
      • 4.2.4.1. North America Market Share Analysis
      • 4.2.4.2. Europe & CIS Market Share Analysis
      • 4.2.4.3. Asia-Pacific Market Share Analysis
      • 4.2.4.4. Middle East & Africa Market Share Analysis
      • 4.2.4.5. South America Market Share Analysis
    • 4.2.5. By Top 5 Companies Market Share Analysis, Others (2023)
  • 4.3. Global Fuel Cells Marine Vessels Market Mapping & Opportunity Assessment
    • 4.3.1. By Type Market Mapping & Opportunity Assessment
    • 4.3.2. By Application Market Mapping & Opportunity Assessment
    • 4.3.3. By Power Output Market Mapping & Opportunity Assessment
    • 4.3.4. By Regional Market Mapping & Opportunity Assessment

5. North America Fuel Cells Marine Vessels Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type Market Share Analysis
    • 5.2.2. By Application Market Share Analysis
    • 5.2.3. By Power Output Market Share Analysis
    • 5.2.4. By Country Market Share Analysis
      • 5.2.4.1. United States Fuel Cells Marine Vessels Market Outlook
        • 5.2.4.1.1. Market Size & Forecast
        • 5.2.4.1.1.1. By Value
        • 5.2.4.1.2. Market Share & Forecast
        • 5.2.4.1.2.1. By Type Market Share Analysis
        • 5.2.4.1.2.2. By Application Market Share Analysis
        • 5.2.4.1.2.3. By Power Output Market Share Analysis
      • 5.2.4.2. Canada Fuel Cells Marine Vessels Market Outlook
        • 5.2.4.2.1. Market Size & Forecast
        • 5.2.4.2.1.1. By Value
        • 5.2.4.2.2. Market Share & Forecast
        • 5.2.4.2.2.1. By Type Market Share Analysis
        • 5.2.4.2.2.2. By Application Market Share Analysis
        • 5.2.4.2.2.3. By Power Output Market Share Analysis
      • 5.2.4.3. Mexico Fuel Cells Marine Vessels Market Outlook
        • 5.2.4.3.1. Market Size & Forecast
        • 5.2.4.3.1.1. By Value
        • 5.2.4.3.2. Market Share & Forecast
        • 5.2.4.3.2.1. By Type Market Share Analysis
        • 5.2.4.3.2.2. By Application Market Share Analysis
        • 5.2.4.3.2.3. By Power Output Market Share Analysis

6. Europe & CIS Fuel Cells Marine Vessels Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type Market Share Analysis
    • 6.2.2. By Application Market Share Analysis
    • 6.2.3. By Power Output Market Share Analysis
    • 6.2.4. By Country Market Share Analysis
      • 6.2.4.1. France Fuel Cells Marine Vessels Market Outlook
        • 6.2.4.1.1. Market Size & Forecast
        • 6.2.4.1.1.1. By Value
        • 6.2.4.1.2. Market Share & Forecast
        • 6.2.4.1.2.1. By Type Market Share Analysis
        • 6.2.4.1.2.2. By Application Market Share Analysis
        • 6.2.4.1.2.3. By Power Output Market Share Analysis
      • 6.2.4.2. Germany Fuel Cells Marine Vessels Market Outlook
        • 6.2.4.2.1. Market Size & Forecast
        • 6.2.4.2.1.1. By Value
        • 6.2.4.2.2. Market Share & Forecast
        • 6.2.4.2.2.1. By Type Market Share Analysis
        • 6.2.4.2.2.2. By Application Market Share Analysis
        • 6.2.4.2.2.3. By Power Output Market Share Analysis
      • 6.2.4.3. Spain Fuel Cells Marine Vessels Market Outlook
        • 6.2.4.3.1. Market Size & Forecast
        • 6.2.4.3.1.1. By Value
        • 6.2.4.3.2. Market Share & Forecast
        • 6.2.4.3.2.1. By Type Market Share Analysis
        • 6.2.4.3.2.2. By Application Market Share Analysis
        • 6.2.4.3.2.3. By Power Output Market Share Analysis
      • 6.2.4.4. Italy Fuel Cells Marine Vessels Market Outlook
        • 6.2.4.4.1. Market Size & Forecast
        • 6.2.4.4.1.1. By Value
        • 6.2.4.4.2. Market Share & Forecast
        • 6.2.4.4.2.1. By Type Market Share Analysis
        • 6.2.4.4.2.2. By Application Market Share Analysis
        • 6.2.4.4.2.3. By Power Output Market Share Analysis
      • 6.2.4.5. United Kingdom Fuel Cells Marine Vessels Market Outlook
        • 6.2.4.5.1. Market Size & Forecast
        • 6.2.4.5.1.1. By Value
        • 6.2.4.5.2. Market Share & Forecast
        • 6.2.4.5.2.1. By Type Market Share Analysis
        • 6.2.4.5.2.2. By Application Market Share Analysis
        • 6.2.4.5.2.3. By Power Output Market Share Analysis

7. Asia-Pacific Fuel Cells Marine Vessels Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type Market Share Analysis
    • 7.2.2. By Application Market Share Analysis
    • 7.2.3. By Power Output Market Share Analysis
    • 7.2.4. By Country Market Share Analysis
      • 7.2.4.1. China Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.1.1. Market Size & Forecast
        • 7.2.4.1.1.1. By Value
        • 7.2.4.1.2. Market Share & Forecast
        • 7.2.4.1.2.1. By Type Market Share Analysis
        • 7.2.4.1.2.2. By Application Market Share Analysis
        • 7.2.4.1.2.3. By Power Output Market Share Analysis
      • 7.2.4.2. Japan Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.2.1. Market Size & Forecast
        • 7.2.4.2.1.1. By Value
        • 7.2.4.2.2. Market Share & Forecast
        • 7.2.4.2.2.1. By Type Market Share Analysis
        • 7.2.4.2.2.2. By Application Market Share Analysis
        • 7.2.4.2.2.3. By Power Output Market Share Analysis
      • 7.2.4.3. India Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.3.1. Market Size & Forecast
        • 7.2.4.3.1.1. By Value
        • 7.2.4.3.2. Market Share & Forecast
        • 7.2.4.3.2.1. By Type Market Share Analysis
        • 7.2.4.3.2.2. By Application Market Share Analysis
        • 7.2.4.3.2.3. By Power Output Market Share Analysis
      • 7.2.4.4. Vietnam Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.4.1. Market Size & Forecast
        • 7.2.4.4.1.1. By Value
        • 7.2.4.4.2. Market Share & Forecast
        • 7.2.4.4.2.1. By Type Market Share Analysis
        • 7.2.4.4.2.2. By Application Market Share Analysis
        • 7.2.4.4.2.3. By Power Output Market Share Analysis
      • 7.2.4.5. South Korea Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.5.1. Market Size & Forecast
        • 7.2.4.5.1.1. By Value
        • 7.2.4.5.2. Market Share & Forecast
        • 7.2.4.5.2.1. By Type Market Share Analysis
        • 7.2.4.5.2.2. By Application Market Share Analysis
        • 7.2.4.5.2.3. By Power Output Market Share Analysis
      • 7.2.4.6. Australia Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.6.1. Market Size & Forecast
        • 7.2.4.6.1.1. By Value
        • 7.2.4.6.2. Market Share & Forecast
        • 7.2.4.6.2.1. By Type Market Share Analysis
        • 7.2.4.6.2.2. By Application Market Share Analysis
        • 7.2.4.6.2.3. By Power Output Market Share Analysis
      • 7.2.4.7. Thailand Fuel Cells Marine Vessels Market Outlook
        • 7.2.4.7.1. Market Size & Forecast
        • 7.2.4.7.1.1. By Value
        • 7.2.4.7.2. Market Share & Forecast
        • 7.2.4.7.2.1. By Type Market Share Analysis
        • 7.2.4.7.2.2. By Application Market Share Analysis
        • 7.2.4.7.2.3. By Power Output Market Share Analysis

8. Middle East & Africa Fuel Cells Marine Vessels Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type Market Share Analysis
    • 8.2.2. By Application Market Share Analysis
    • 8.2.3. By Power Output Market Share Analysis
    • 8.2.4. By Country Market Share Analysis
      • 8.2.4.1. South Africa Fuel Cells Marine Vessels Market Outlook
        • 8.2.4.1.1. Market Size & Forecast
        • 8.2.4.1.1.1. By Value
        • 8.2.4.1.2. Market Share & Forecast
        • 8.2.4.1.2.1. By Type Market Share Analysis
        • 8.2.4.1.2.2. By Application Market Share Analysis
        • 8.2.4.1.2.3. By Power Output Market Share Analysis
      • 8.2.4.2. Saudi Arabia Fuel Cells Marine Vessels Market Outlook
        • 8.2.4.2.1. Market Size & Forecast
        • 8.2.4.2.1.1. By Value
        • 8.2.4.2.2. Market Share & Forecast
        • 8.2.4.2.2.1. By Type Market Share Analysis
        • 8.2.4.2.2.2. By Application Market Share Analysis
        • 8.2.4.2.2.3. By Power Output Market Share Analysis
      • 8.2.4.3. UAE Fuel Cells Marine Vessels Market Outlook
        • 8.2.4.3.1. Market Size & Forecast
        • 8.2.4.3.1.1. By Value
        • 8.2.4.3.2. Market Share & Forecast
        • 8.2.4.3.2.1. By Type Market Share Analysis
        • 8.2.4.3.2.2. By Application Market Share Analysis
        • 8.2.4.3.2.3. By Power Output Market Share Analysis
      • 8.2.4.4. Turkey Fuel Cells Marine Vessels Market Outlook
        • 8.2.4.4.1. Market Size & Forecast
        • 8.2.4.4.1.1. By Value
        • 8.2.4.4.2. Market Share & Forecast
        • 8.2.4.4.2.1. By Type Market Share Analysis
        • 8.2.4.4.2.2. By Application Market Share Analysis
        • 8.2.4.4.2.3. By Power Output Market Share Analysis

9. South America Fuel Cells Marine Vessels Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type Market Share Analysis
    • 9.2.2. By Application Market Share Analysis
    • 9.2.3. By Power Output Market Share Analysis
    • 9.2.4. By Country Market Share Analysis
      • 9.2.4.1. Brazil Fuel Cells Marine Vessels Market Outlook
        • 9.2.4.1.1. Market Size & Forecast
        • 9.2.4.1.1.1. By Value
        • 9.2.4.1.2. Market Share & Forecast
        • 9.2.4.1.2.1. By Type Market Share Analysis
        • 9.2.4.1.2.2. By Application Market Share Analysis
        • 9.2.4.1.2.3. By Power Output Market Share Analysis
      • 9.2.4.2. Argentina Fuel Cells Marine Vessels Market Outlook
        • 9.2.4.2.1. Market Size & Forecast
        • 9.2.4.2.1.1. By Value
        • 9.2.4.2.2. Market Share & Forecast
        • 9.2.4.2.2.1. By Type Market Share Analysis
        • 9.2.4.2.2.2. By Application Market Share Analysis
        • 9.2.4.2.2.3. By Power Output Market Share Analysis

10. Market Dynamics

  • 10.1. Drivers
  • 10.2. Challenges

11. Impact of COVID-19 on the Global Fuel Cells Marine Vessels Market

12. Market Trends & Developments

13. Competitive Landscape

  • 13.1. Company Profiles
    • 13.1.1. Fiskerstrand Verft AS
      • 13.1.1.1. Company Details
      • 13.1.1.2. Products
      • 13.1.1.3. Financials (As Per Availability)
      • 13.1.1.4. Key Market Focus & Geographical Presence
      • 13.1.1.5. Recent Developments
      • 13.1.1.6. Key Management Personnel
    • 13.1.2. MEYER WERFT GmbH & Co. KG
      • 13.1.2.1. Company Details
      • 13.1.2.2. Products
      • 13.1.2.3. Financials (As Per Availability)
      • 13.1.2.4. Key Market Focus & Geographical Presence
      • 13.1.2.5. Recent Developments
      • 13.1.2.6. Key Management Personnel
    • 13.1.3. Hyster-Yale Materials Handling, Inc.
      • 13.1.3.1. Company Details
      • 13.1.3.2. Products
      • 13.1.3.3. Financials (As Per Availability)
      • 13.1.3.4. Key Market Focus & Geographical Presence
      • 13.1.3.5. Recent Developments
      • 13.1.3.6. Key Management Personnel
    • 13.1.4. Guangdong Dyna International Shipping Agency Company Limited
      • 13.1.4.1. Company Details
      • 13.1.4.2. Products
      • 13.1.4.3. Financials (As Per Availability)
      • 13.1.4.4. Key Market Focus & Geographical Presence
      • 13.1.4.5. Recent Developments
      • 13.1.4.6. Key Management Personnel
    • 13.1.5. Powercell Australia Pty Ltd
      • 13.1.5.1. Company Details
      • 13.1.5.2. Products
      • 13.1.5.3. Financials (As Per Availability)
      • 13.1.5.4. Key Market Focus & Geographical Presence
      • 13.1.5.5. Recent Developments
      • 13.1.5.6. Key Management Personnel
    • 13.1.6. Ballard Power Systems Inc.
      • 13.1.6.1. Company Details
      • 13.1.6.2. Products
      • 13.1.6.3. Financials (As Per Availability)
      • 13.1.6.4. Key Market Focus & Geographical Presence
      • 13.1.6.5. Recent Developments
      • 13.1.6.6. Key Management Personnel
    • 13.1.7. Toshiba Energy Systems & Solutions Corporation
      • 13.1.7.1. Company Details
      • 13.1.7.2. Products
      • 13.1.7.3. Financials (As Per Availability)
      • 13.1.7.4. Key Market Focus & Geographical Presence
      • 13.1.7.5. Recent Developments
      • 13.1.7.6. Key Management Personnel
    • 13.1.8. Bloom Energy Corporation
      • 13.1.8.1. Company Details
      • 13.1.8.2. Products
      • 13.1.8.3. Financials (As Per Availability)
      • 13.1.8.4. Key Market Focus & Geographical Presence
      • 13.1.8.5. Recent Developments
      • 13.1.8.6. Key Management Personnel
    • 13.1.9. Proton Motor Fuel Cell GmbH
      • 13.1.9.1. Company Details
      • 13.1.9.2. Products
      • 13.1.9.3. Financials (As Per Availability)
      • 13.1.9.4. Key Market Focus & Geographical Presence
      • 13.1.9.5. Recent Developments
      • 13.1.9.6. Key Management Personnel
    • 13.1.10. WATT Fuel Cell Corp
      • 13.1.10.1. Company Details
      • 13.1.10.2. Products
      • 13.1.10.3. Financials (As Per Availability)
      • 13.1.10.4. Key Market Focus & Geographical Presence
      • 13.1.10.5. Recent Developments
      • 13.1.10.6. Key Management Personnel

14. Strategic Recommendations/Action Plan

  • 14.1. Key Focus Areas
  • 14.2. Target By Type
  • 14.3. Target By Application
  • 14.4. Target By Power Output

15. About Us & Disclaimer