デフォルト表紙
市場調査レポート
商品コード
1591569

自動車用プラスチック市場- 世界の産業規模、シェア、動向、機会、予測、タイプ別、用途別、地域別、競合、2019年~2029年

Automotive Plastics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application, By Region, Competition, 2019-2029F


出版日
ページ情報
英文 180 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

自動車用プラスチック市場- 世界の産業規模、シェア、動向、機会、予測、タイプ別、用途別、地域別、競合、2019年~2029年
出版日: 2024年11月15日
発行: TechSci Research
ページ情報: 英文 180 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

自動車用プラスチックの世界市場規模は2023年に438億1,000万米ドルとなり、2029年までのCAGRは5.04%で、予測期間中に力強い成長が予測されています。

世界の自動車用プラスチック市場は、軽量で効率的、持続可能な自動車を目指す自動車産業の進化において極めて重要な役割を果たしています。プラスチックは、軽量性、耐久性、設計の柔軟性、費用対効果といった優れた特性により、金属やガラスといった従来の素材に徐々に取って代わっています。過去10年間で、自動車産業はプラスチックと複合材料の採用へと大きく転換しました。この進化は革命的であり、自動車生産にこれらの材料を取り入れることが顕著に増加しました。この転換が意味するものは広範囲に及び、自動車産業の将来を再構築する態勢を整えています。自動車用途におけるプラスチックの利用は着実に増加しており、2030年までに自動車1台当たりのプラスチック使用量が17%増加する可能性があると予測されています。現在、プラスチックは自動車総体積の最大50%を占めており、従来の金属部品とは大きく異なっています。この動向は、自動車製造における車両効率の向上、軽量化、持続可能な製造方法の採用という戦略的な動きを反映しています。

市場概要
予測期間 2025-2029
市場規模:2023年 438億1,000万米ドル
市場規模:2029年 586億7,000万米ドル
CAGR:2024年~2029年 5.04%
急成長セグメント ポリプロピレン
最大市場 アジア太平洋

自動車製造におけるプラスチック採用の主な原動力のひとつは、燃費効率と排出ガス削減の追求です。軽量化された自動車は燃料消費量が少ないため、二酸化炭素排出量を削減し、世界的に厳しい規制基準を満たすことができます。プラスチックは、安全性や性能を犠牲にすることなく、より重い材料に取って代わることで、こうした目標の達成に大きく貢献しています。自動車用プラスチックのもう一つの重要な利点は、デザインにおける汎用性です。製造業者はプラスチックを複雑な形状に成形することができるため、革新的で空気力学的な車両設計が可能になります。このような柔軟性は、現代の自動車の美的魅力と機能的性能の両方を向上させる。

市場促進要因

軽量化の必要性

持続可能で環境に優しいソリューション

プラスチック技術の技術的進歩

電気自動車とハイブリッド車の採用増加

デザインの柔軟性と美観

主な市場課題

材料の限界と性能要件

リサイクルと環境への懸念

コストへの配慮と市場競争

規制遵守と規格

サプライチェーンの混乱と原材料の入手可能性

主な市場動向

電気自動車(EV)革命と軽量化

持続可能なプラスチックと循環型経済

先進複合材料とナノテクノロジー

インテリアデザインの革新と美観の向上

3Dプリンティングと積層造形

目次

第1章 イントロダクション

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 COVID-19が世界の自動車用プラスチック市場に与える影響

第5章 世界の自動車用プラスチック市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別(ポリプロピレン、ポリウレタン、ポリアミド、ポリ塩化ビニル、アクリロニトリルブタジエンスチレン、ポリカーボネート、ポリエチレン、その他)
    • 用途別(内装、外装、ボンネット中)
    • 地域別
    • 企業別(上位5社、その他- 金額別、2023年)
  • 世界の自動車用プラスチック市場マッピング&機会評価
    • タイプ別
    • 用途別
    • 地域別

第6章 アジア太平洋地域の自動車用プラスチック市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • インドネシア
    • タイ
    • 韓国
    • オーストラリア

第7章 欧州・CISの自動車用プラスチック市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 欧州・CIS:国別分析
    • ドイツ
    • スペイン
    • フランス
    • ロシア
    • イタリア
    • 英国
    • ベルギー

第8章 北米の自動車用プラスチック市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 北米:国別分析
    • 米国
    • メキシコ
    • カナダ

第9章 南米の自動車用プラスチック市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • コロンビア
    • アルゼンチン

第10章 中東・アフリカの自動車用プラスチック市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • トルコ
    • サウジアラビア
    • アラブ首長国連邦

第11章 SWOT分析

  • 強み
  • 弱み
  • 機会
  • 脅威

第12章 市場力学

  • 市場促進要因
  • 市場の課題

第13章 市場動向と発展

第14章 競合情勢

  • 企業プロファイル(主要10社まで)
    • Teijin Limited
    • BASF SE
    • Borealis AG
    • DuPont de Nemours, Inc.
    • Koninklijke DSM N.V.
    • Evonik Industries AG
    • Exxon Mobil Corporation
    • Mitsubishi Chemical Group Corporation
    • LG Chem, Ltd.
    • LyondellBasell Industries N.V.

第15章 戦略的提言

  • 主要な重点分野
    • 対象地域
    • 対象タイプ
    • 対象用途

第16章 調査会社について・免責事項

目次
Product Code: 21689

Global Automotive Plastics Market was valued at USD 43.81 Billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 5.04% through 2029. The global automotive plastics market plays a pivotal role in the automotive industry's evolution towards lightweight, efficient, and sustainable vehicles. Plastics have gradually replaced traditional materials like metal and glass due to their superior characteristics such as lightweight nature, durability, design flexibility, and cost-effectiveness. Over the past decade, the automotive sector has experienced a significant transition towards the adoption of plastics and composites. This evolution has been revolutionary, marking a notable increase in the incorporation of these materials in vehicle production. The implications of this shift are extensive and poised to reshape the future of the automotive industry. The utilization of plastics in automotive applications is steadily growing, with forecasts indicating a potential 17% increase in plastic usage per vehicle by 2030. Currently, plastics constitute up to 50% of the total volume of a vehicle, underscoring a substantial departure from conventional metal components. This trend reflects a strategic move towards enhancing vehicle efficiency, reducing weight, and embracing sustainable manufacturing practices in the automotive manufacturing landscape.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 43.81 Billion
Market Size 2029USD 58.67 Billion
CAGR 2024-20295.04%
Fastest Growing SegmentPolypropylene
Largest MarketAsia-Pacific

One of the primary drivers for the adoption of plastics in automotive manufacturing is the pursuit of fuel efficiency and reduced emissions. Lightweight vehicles consume less fuel, thereby lowering carbon emissions and meeting stringent regulatory standards worldwide. Plastics contribute significantly to achieving these goals by replacing heavier materials without compromising on safety or performance. Another key advantage of automotive plastics is their versatility in design. Manufacturers can mold plastics into complex shapes, allowing for innovative and aerodynamic vehicle designs. This flexibility enhances both the aesthetic appeal and functional performance of modern automobiles.

Key Market Drivers

Lightweighting Imperative

One of the primary drivers propelling the Global Automotive Plastics Market is the industry-wide focus on lightweighting vehicles. Lightweight materials, such as plastics and composites, are increasingly preferred by automotive manufacturers to reduce the overall weight of vehicles. This emphasis on weight reduction is driven by the pursuit of improved fuel efficiency and lower emissions, aligning with global efforts to address environmental concerns and meet stringent regulatory standards.

Plastics offer a compelling solution for achieving lightweighting without compromising structural integrity. High-performance engineering plastics and advanced composites replace traditional metal components in various vehicle parts, including interior components, body panels, and under-the-hood applications. The use of automotive plastics not only contributes to fuel efficiency but also enhances overall vehicle performance and handling.

Sustainable and Eco-Friendly Solutions

The automotive industry is undergoing a paradigm shift towards sustainability and eco-friendly practices, and automotive plastics play a pivotal role in this transition. As the world grapples with environmental challenges, including climate change and resource depletion, automakers are increasingly adopting environmentally responsible materials in their manufacturing processes. Automotive plastics, being recyclable and lightweight, align with the industry's sustainability goals.

Recyclable plastics are gaining prominence in the automotive sector, reducing the environmental impact of end-of-life vehicles. Manufacturers are investing in research and development to create bio-based and biodegradable plastics, further enhancing the eco-friendliness of automotive materials. The adoption of sustainable plastics reflects a broader commitment within the automotive industry to minimize its carbon footprint and promote a circular economy.

Technological Advancements in Plastic Technologies

Advancements in plastic technologies are driving innovation in the Global Automotive Plastics Market. The development of high-performance plastics with enhanced mechanical properties, thermal stability, and flame retardancy expands the application scope of automotive plastics across various components. The continuous evolution of plastic formulations allows manufacturers to tailor materials to meet specific performance requirements, ensuring durability and reliability in diverse automotive applications.

Engineers and material scientists are actively exploring new composite materials and polymer blends that offer a balance of strength, flexibility, and weight savings. Nanotechnology is also making inroads, enabling the creation of nanocomposites with superior properties. These technological advancements empower automakers to design vehicles with improved safety, comfort, and efficiency while leveraging the versatility of automotive plastics.

In November 2023, GAC Motor, a Chinese automaker, unveiled an innovative hydrogen car at the Guangzhou Auto Show. The Era concept vehicle incorporates a body constructed from recycled ocean plastic, seaweed, and bio-based materials, alongside a drivetrain powered by hydrogen fuel cells and 200kW electric motors. GAC Motor's ERA model represents a forward-looking approach to new energy vehicles, emphasizing both environmental sustainability and cutting-edge automotive design.

Increasing Adoption of Electric and Hybrid Vehicles

The rise of electric and hybrid vehicles represents a significant driver for the Global Automotive Plastics Market. As the automotive industry undergoes a transformative shift towards electrification, the unique characteristics of plastics make them well-suited for the specific requirements of electric and hybrid vehicles. Plastics contribute to the lightweighting of electric vehicles, extending their range and optimizing energy efficiency.

The shift towards electric powertrains necessitates new design considerations, and plastics offer flexibility in shaping components to accommodate the unique layouts of electric vehicles. Battery enclosures, interior components, and thermal management systems benefit from the application of automotive plastics in the electric vehicle segment. As the demand for electric and hybrid vehicles continues to grow, the Global Automotive Plastics Market is expected to play a crucial role in supporting this transition.

Design Flexibility and Aesthetics

Design flexibility and the ability to achieve complex shapes and aesthetics are driving the increased use of plastics in automotive applications. Unlike traditional materials, such as metals, plastics can be molded into intricate and stylish designs, allowing automakers greater freedom in shaping the exterior and interior elements of vehicles. This design flexibility enables the creation of aerodynamic body panels, distinctive interior features, and innovative lighting solutions.

Automotive plastics contribute to the overall aesthetic appeal of vehicles, enhancing their visual appeal and consumer desirability. The ability to achieve a balance between functionality and aesthetics is a key consideration for automakers, and plastics provide a versatile medium to achieve both. Interior components, such as dashboards, consoles, and door panels, benefit from the design freedom offered by automotive plastics, contributing to a positive and modern driving experience.

Key Market Challenges

Material Limitations and Performance Requirements

One of the primary challenges confronting the Global Automotive Plastics Market is the need to balance material limitations with the stringent performance requirements of automotive applications. While plastics offer versatility and lightweighting benefits, certain performance criteria must be met to ensure the safety, durability, and reliability of automotive components. For instance, critical parts such as engine components and structural elements demand materials with high heat resistance, mechanical strength, and impact resistance.

Meeting these performance requirements becomes particularly challenging as automakers push for continuous innovation and the development of lightweight, fuel-efficient vehicles. Developing plastics that can withstand harsh operating conditions, extreme temperatures, and demanding structural loads without compromising performance is a persistent challenge. Striking the right balance between material limitations and performance demands remains a key consideration for manufacturers in the automotive plastics industry.

Recycling and Environmental Concerns

While automotive plastics contribute to lightweighting and fuel efficiency, the issue of recycling and environmental impact poses a significant challenge. The recyclability of plastics varies, and certain automotive components made from complex plastic blends or reinforced composites may pose challenges for efficient recycling processes. The automotive industry, under increasing pressure to adopt sustainable practices, is actively seeking solutions to address the environmental impact of end-of-life plastics.

Efforts to develop recyclable and bio-based plastics are underway, but widespread adoption faces hurdles such as cost implications and the need for infrastructure to support efficient recycling. Balancing the benefits of lightweighting with the environmental concerns associated with plastic waste disposal requires a holistic approach. Collaborative efforts involving automakers, material suppliers, and recycling facilities are essential to establish effective recycling practices and minimize the environmental footprint of automotive plastics.

Cost Considerations and Market Competition

Cost considerations are a perennial challenge in the Global Automotive Plastics Market, particularly as manufacturers strive to develop high-performance plastics with advanced properties. The research and development costs associated with creating new plastic formulations, meeting regulatory standards, and achieving desired performance characteristics can be substantial. Additionally, the production costs of certain specialty plastics may be higher than traditional materials, impacting the overall cost competitiveness of vehicles.

Market competition further intensifies cost pressures. As automakers seek cost-effective solutions to remain competitive in the global automotive market, the choice between traditional materials and advanced plastics becomes a critical decision. Striking a balance between cost-effectiveness and the performance benefits of automotive plastics is essential for market acceptance and widespread adoption. Manufacturers must navigate this delicate balance to ensure the economic viability of automotive plastics without compromising on quality or safety.

Regulatory Compliance and Standards

The Global Automotive Plastics Market operates within a complex regulatory landscape, with varying standards and compliance requirements across different regions. Meeting these standards is a multifaceted challenge for manufacturers, as regulatory frameworks evolve, and new requirements emerge. Regulatory compliance involves considerations related to material composition, emissions, safety, and recyclability, among other factors.

In the context of automotive plastics, adhering to stringent emissions standards poses a unique challenge. As governments worldwide implement stricter emission regulations to address environmental concerns, automotive manufacturers must ensure that plastic materials used in vehicles comply with these regulations. Navigating the complexities of diverse regulatory environments requires ongoing efforts in research and development, testing, and collaboration with regulatory bodies to stay abreast of evolving standards and ensure compliance.

Supply Chain Disruptions and Raw Material Availability

Global supply chain disruptions and fluctuations in raw material availability present significant challenges for the Automotive Plastics Market. The industry relies on a diverse range of raw materials, including petrochemical derivatives, to produce various plastic formulations. Disruptions in the supply chain, whether due to geopolitical factors, natural disasters, or other unforeseen events, can impact the availability and cost of essential raw materials.

Fluctuations in oil prices, a key determinant of the cost of petrochemical feedstocks for plastics, can influence the overall cost structure of automotive plastics. Manufacturers must navigate these uncertainties to maintain stable production processes and pricing structures. Diversifying the sources of raw materials, developing resilient supply chain strategies, and exploring alternative materials are strategies that can help mitigate the impact of supply chain disruptions on the Automotive Plastics Market.

Key Market Trends

Electric Vehicle (EV) Revolution and Lightweighting

The rapid growth of the electric vehicle market is a pivotal trend shaping the Global Automotive Plastics Market. Electric vehicles, with their focus on energy efficiency and reduced environmental impact, are driving the demand for lightweight materials, and plastics are at the forefront of this transition. The need for lightweighting in electric vehicles is not only driven by the quest for enhanced energy efficiency but also by the imperative to maximize the driving range of electric vehicles on a single charge.

Automotive plastics play a crucial role in achieving lightweighting goals without compromising structural integrity. Components such as battery enclosures, interior elements, and exterior body panels leverage the versatility of plastics to reduce overall vehicle weight. This trend aligns with the broader industry goal of creating sustainable and efficient transportation solutions. As the electric vehicle market expands, the Global Automotive Plastics Market is set to witness increased demand for innovative plastic solutions that contribute to both lightweighting and design flexibility.

Sustainable Plastics and Circular Economy

Sustainability has become a central theme in the Global Automotive Plastics Market, driven by environmental concerns and the automotive industry's commitment to reducing its carbon footprint. The focus on sustainable plastics is evident in efforts to develop recyclable and bio-based materials that align with circular economy principles. Manufacturers are investing in research and development to create automotive plastics that not only meet performance requirements but also address end-of-life concerns through efficient recycling processes.

Recyclability is a key consideration as the industry strives to minimize waste and promote a closed-loop system for automotive plastics. Bio-based plastics, derived from renewable sources such as plant-based feedstocks, are gaining traction as alternatives to traditional petrochemical-based plastics. This trend reflects a broader shift towards a more sustainable and environmentally conscious approach to automotive materials. As consumers increasingly prioritize eco-friendly options, the demand for sustainable plastics is expected to rise, shaping the future of the Global Automotive Plastics Market.

Advanced Composite Materials and Nanotechnology

The exploration of advanced composite materials and nanotechnology is another significant trend in the Global Automotive Plastics Market. As technology continues to advance, the industry is leveraging the unique properties of composite materials and nanocomposites to enhance the performance of automotive plastics. Advanced composite materials, which often combine plastics with reinforcing fibers or fillers, offer superior strength-to-weight ratios and can be tailored to meet specific application requirements.

Nanotechnology, at the nanoscale level, enables the development of nanocomposites with enhanced mechanical, thermal, and barrier properties. These nanocomposites find applications in various automotive components, providing improvements in strength, durability, and flame retardancy. The use of advanced materials facilitates the creation of lightweight and high-performance automotive plastics, contributing to both safety and efficiency in vehicle design. As research in this field progresses, the Global Automotive Plastics Market is likely to witness an increased adoption of advanced composite materials and nanocomposites.

Interior Design Innovation and Enhanced Aesthetics

Interior design innovation is a prominent trend shaping the Global Automotive Plastics Market, with a focus on creating visually appealing and technologically advanced vehicle interiors. Plastics offer design flexibility that enables automakers to experiment with shapes, textures, and colors, contributing to the creation of modern and aesthetically pleasing interiors. Interior components, such as dashboards, door panels, and consoles, benefit from the ability of plastics to be molded into intricate and stylish designs.

Technological integration within vehicle interiors further drives the use of plastics. Touchscreens, ambient lighting, and advanced connectivity features are seamlessly incorporated into plastic components, enhancing both functionality and user experience. As consumer preferences evolve towards more sophisticated and technology-driven interiors, the role of automotive plastics in interior design innovation is expected to grow. This trend not only caters to consumer demands for enhanced aesthetics but also underscores the importance of plastics in creating smart and interactive vehicle interiors.

3D Printing and Additive Manufacturing

The adoption of 3D printing and additive manufacturing processes is gaining traction in the Global Automotive Plastics Market, revolutionizing the way automotive components are designed and produced. 3D printing allows for the rapid prototyping and production of complex and customized parts, offering design freedom that traditional manufacturing methods may not provide. Plastics, as a versatile and easily moldable material, are well-suited for 3D printing applications.

The use of 3D printing in automotive plastics extends to the production of prototypes, interior components, and even structural elements. This trend enables manufacturers to streamline the product development process, reduce time-to-market, and explore novel design concepts. As the technology matures and becomes more cost-effective, the Global Automotive Plastics Market is poised to witness increased integration of 3D printing and additive manufacturing into the production of automotive components. Ford and HP teamed up to utilize recycled 3D printing materials for producing new automotive parts. Following their decision to reintroduce 3D printing in manufacturing, Ford collaborated with HP to achieve a significant industry milestone: repurposing used 3D printed parts and powders for injection molding auto components. This initiative aimed to reduce environmental impact from 3D printing plastics while demonstrating that reusing materials did not compromise the durability or quality of the final parts.

Segmental Insights

Application Insights

The global automotive plastics market is characterized by its diverse applications across various segments within the automotive industry. One prominent area of application is in the interior of vehicles, where plastics play a crucial role in enhancing both functionality and aesthetics. Interior applications encompass a wide range of components such as dashboards, door panels, seats, and center consoles. Plastics are favored in these areas due to their versatility, lightweight nature, and ability to be molded into complex shapes, allowing for innovative and ergonomic designs. Moreover, they contribute to improving fuel efficiency by reducing vehicle weight compared to traditional materials.

In addition to interior applications, automotive plastics are extensively used in exterior components, which are essential for both design appeal and functionality. Exterior parts include bumpers, body panels, grilles, and trim components. These parts benefit significantly from plastics due to their durability, corrosion resistance, and capability to withstand harsh weather conditions. Furthermore, plastics offer design flexibility, enabling automakers to achieve distinct and aerodynamically efficient vehicle designs while meeting stringent safety and regulatory standards.

Another critical area where automotive plastics find widespread application is under the bonnet (engine compartment). Here, plastics are utilized in various components such as engine covers, intake manifolds, radiator tanks, and battery cases. The use of plastics in these parts helps in reducing vehicle weight, which contributes to improved fuel efficiency and lower emissions. Moreover, plastics exhibit excellent thermal and chemical resistance properties, ensuring reliable performance in demanding under-the-hood environments.

The adoption of automotive plastics continues to grow across these diverse applications, driven by their inherent advantages over traditional materials like metal and glass. These advantages include cost-effectiveness, design flexibility, lightweight properties, and enhanced durability. The automotive industry's ongoing emphasis on lightweighting and sustainability further amplifies the demand for advanced plastic materials that can meet stringent performance requirements while reducing environmental impact. As technology and material science continue to advance, automotive plastics are expected to play an increasingly integral role in shaping the future of vehicle design and manufacturing, supporting the industry's drive towards more efficient, safer, and aesthetically appealing automobiles.

Regional Insights

The global automotive plastics market shows strong growth across different regions, each adding a unique dimension to the industry's dynamics. In North America, the use of automotive plastics is driven by their lightweight properties and their role in improving fuel efficiency. The region's strict emissions regulations further promote the adoption of plastics in vehicles, especially for components like interior trim, under-the-hood parts, and exterior panels. Additionally, North American automakers emphasize sustainability, leading to the use of recyclable plastics that meet environmental standards and consumer demand for eco-friendly materials.

In Europe and the CIS region, automotive plastics play a pivotal role in achieving both performance and design objectives. European automakers leverage plastics extensively to optimize vehicle weight, thereby improving energy efficiency and reducing carbon emissions. The region's emphasis on innovative vehicle designs and safety standards fosters continuous advancements in plastic materials, enabling the integration of high-performance plastics in critical automotive applications. The CIS countries, while emerging, are increasingly adopting automotive plastics to align with global automotive manufacturing trends and enhance product competitiveness.

Asia Pacific emerges as a key growth hub for the automotive plastics market, driven by the region's status as a major automotive manufacturing powerhouse. Countries like China, Japan, South Korea, and India are pivotal in the production and consumption of automotive plastics, supported by robust growth in vehicle production and expanding automotive infrastructure. In Asia Pacific, plastics are extensively used across interior, exterior, and under-the-bonnet applications due to their cost-effectiveness, versatility in manufacturing, and ability to meet diverse performance requirements. Furthermore, rapid urbanization and increasing disposable incomes in the region propel demand for lightweight vehicles equipped with advanced plastic components.

South America showcases a growing adoption of automotive plastics, albeit at a slower pace compared to other regions. The region's automotive industry benefits from the use of plastics in enhancing vehicle aesthetics, durability, and cost efficiency. While facing economic fluctuations, South American countries are gradually integrating advanced plastics in automotive applications to improve vehicle performance and comply with regulatory standards.

In the Middle East and Africa, automotive plastics are gaining traction driven by investments in automotive manufacturing and infrastructure development. The region's automotive sector is increasingly focusing on lightweighting vehicles and improving fuel efficiency, which underscores the importance of plastics in modern vehicle design and production. Despite facing unique market challenges, such as varying economic conditions and infrastructure limitations, the adoption of automotive plastics in the Middle East and Africa is poised for growth, supported by increasing automotive production and technological advancements in plastic materials.

Key Market Players

  • Teijin Limited
  • BASF SE
  • Borealis AG
  • DuPont de Nemours, Inc.
  • Koninklijke DSM N.V.
  • Evonik Industries AG
  • Exxon Mobil Corporation
  • Mitsubishi Chemical Group Corporation
  • LG Chem, Ltd.
  • LyondellBasell Industries N.V.

Report Scope:

In this report, the Global Automotive Plastics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automotive Plastics Market, By Type:

  • Polypropylene
  • Polyurethane
  • Polyamide
  • Polyvinylchloride
  • Acrylonitrile Butadiene Styrene
  • Polycarbonate
  • Polyethylene
  • Others

Automotive Plastics Market, By Application:

  • Interior
  • Exterior
  • Under Bonnet

Automotive Plastics Market, By Region:

  • Asia-Pacific
    • China
    • India
    • Japan
    • Indonesia
    • Thailand
    • South Korea
    • Australia
  • Europe & CIS
    • Germany
    • Spain
    • France
    • Russia
    • Italy
    • United Kingdom
    • Belgium
  • North America
    • United States
    • Canada
    • Mexico
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Turkey
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Plastics Market.

Available Customizations:

Global Automotive Plastics Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Product Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Automotive Plastics Market

5. Global Automotive Plastics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type Market Share Analysis (Polypropylene, Polyurethane, Polyamide, Polyvinylchloride, Acrylonitrile Butadiene Styrene, Polycarbonate, Polyethylene, and Others)
    • 5.2.2. By Application Market Share Analysis (Interior, Exterior, and Under Bonnet)
    • 5.2.3. By Regional Market Share Analysis
      • 5.2.3.1. Asia-Pacific Market Share Analysis
      • 5.2.3.2. Europe & CIS Market Share Analysis
      • 5.2.3.3. North America Market Share Analysis
      • 5.2.3.4. South America Market Share Analysis
      • 5.2.3.5. Middle East & Africa Market Share Analysis
    • 5.2.4. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2023)
  • 5.3. Global Automotive Plastics Market Mapping & Opportunity Assessment
    • 5.3.1. By Type Market Mapping & Opportunity Assessment
    • 5.3.2. By Application Market Mapping & Opportunity Assessment
    • 5.3.3. By Regional Market Mapping & Opportunity Assessment

6. Asia-Pacific Automotive Plastics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type Market Share Analysis
    • 6.2.2. By Application Market Share Analysis
    • 6.2.3. By Country Market Share Analysis
      • 6.2.3.1. China Market Share Analysis
      • 6.2.3.2. India Market Share Analysis
      • 6.2.3.3. Japan Market Share Analysis
      • 6.2.3.4. Indonesia Market Share Analysis
      • 6.2.3.5. Thailand Market Share Analysis
      • 6.2.3.6. South Korea Market Share Analysis
      • 6.2.3.7. Australia Market Share Analysis
      • 6.2.3.8. Rest of Asia-Pacific Market Share Analysis
  • 6.3. Asia-Pacific: Country Analysis
    • 6.3.1. China Automotive Plastics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type Market Share Analysis
        • 6.3.1.2.2. By Application Market Share Analysis
    • 6.3.2. India Automotive Plastics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type Market Share Analysis
        • 6.3.2.2.2. By Application Market Share Analysis
    • 6.3.3. Japan Automotive Plastics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type Market Share Analysis
        • 6.3.3.2.2. By Application Market Share Analysis
    • 6.3.4. Indonesia Automotive Plastics Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Type Market Share Analysis
        • 6.3.4.2.2. By Application Market Share Analysis
    • 6.3.5. Thailand Automotive Plastics Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Type Market Share Analysis
        • 6.3.5.2.2. By Application Market Share Analysis
    • 6.3.6. South Korea Automotive Plastics Market Outlook
      • 6.3.6.1. Market Size & Forecast
        • 6.3.6.1.1. By Value
      • 6.3.6.2. Market Share & Forecast
        • 6.3.6.2.1. By Type Market Share Analysis
        • 6.3.6.2.2. By Application Market Share Analysis
    • 6.3.7. Australia Automotive Plastics Market Outlook
      • 6.3.7.1. Market Size & Forecast
        • 6.3.7.1.1. By Value
      • 6.3.7.2. Market Share & Forecast
        • 6.3.7.2.1. By Type Market Share Analysis
        • 6.3.7.2.2. By Application Market Share Analysis

7. Europe & CIS Automotive Plastics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type Market Share Analysis
    • 7.2.2. By Application Market Share Analysis
    • 7.2.3. By Country Market Share Analysis
      • 7.2.3.1. Germany Market Share Analysis
      • 7.2.3.2. Spain Market Share Analysis
      • 7.2.3.3. France Market Share Analysis
      • 7.2.3.4. Russia Market Share Analysis
      • 7.2.3.5. Italy Market Share Analysis
      • 7.2.3.6. United Kingdom Market Share Analysis
      • 7.2.3.7. Belgium Market Share Analysis
      • 7.2.3.8. Rest of Europe & CIS Market Share Analysis
  • 7.3. Europe & CIS: Country Analysis
    • 7.3.1. Germany Automotive Plastics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type Market Share Analysis
        • 7.3.1.2.2. By Application Market Share Analysis
    • 7.3.2. Spain Automotive Plastics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type Market Share Analysis
        • 7.3.2.2.2. By Application Market Share Analysis
    • 7.3.3. France Automotive Plastics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type Market Share Analysis
        • 7.3.3.2.2. By Application Market Share Analysis
    • 7.3.4. Russia Automotive Plastics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type Market Share Analysis
        • 7.3.4.2.2. By Application Market Share Analysis
    • 7.3.5. Italy Automotive Plastics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type Market Share Analysis
        • 7.3.5.2.2. By Application Market Share Analysis
    • 7.3.6. United Kingdom Automotive Plastics Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Type Market Share Analysis
        • 7.3.6.2.2. By Application Market Share Analysis
    • 7.3.7. Belgium Automotive Plastics Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Type Market Share Analysis
        • 7.3.7.2.2. By Application Market Share Analysis

8. North America Automotive Plastics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type Market Share Analysis
    • 8.2.2. By Application Market Share Analysis
    • 8.2.3. By Country Market Share Analysis
      • 8.2.3.1. United States Market Share Analysis
      • 8.2.3.2. Mexico Market Share Analysis
      • 8.2.3.3. Canada Market Share Analysis
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Automotive Plastics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type Market Share Analysis
        • 8.3.1.2.2. By Application Market Share Analysis
    • 8.3.2. Mexico Automotive Plastics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type Market Share Analysis
        • 8.3.2.2.2. By Application Market Share Analysis
    • 8.3.3. Canada Automotive Plastics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type Market Share Analysis
        • 8.3.3.2.2. By Application Market Share Analysis

9. South America Automotive Plastics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type Market Share Analysis
    • 9.2.2. By Application Market Share Analysis
    • 9.2.3. By Country Market Share Analysis
      • 9.2.3.1. Brazil Market Share Analysis
      • 9.2.3.2. Argentina Market Share Analysis
      • 9.2.3.3. Colombia Market Share Analysis
      • 9.2.3.4. Rest of South America Market Share Analysis
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Automotive Plastics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type Market Share Analysis
        • 9.3.1.2.2. By Application Market Share Analysis
    • 9.3.2. Colombia Automotive Plastics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type Market Share Analysis
        • 9.3.2.2.2. By Application Market Share Analysis
    • 9.3.3. Argentina Automotive Plastics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type Market Share Analysis
        • 9.3.3.2.2. By Application Market Share Analysis

10. Middle East & Africa Automotive Plastics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type Market Share Analysis
    • 10.2.2. By Application Market Share Analysis
    • 10.2.3. By Country Market Share Analysis
      • 10.2.3.1. South Africa Market Share Analysis
      • 10.2.3.2. Turkey Market Share Analysis
      • 10.2.3.3. Saudi Arabia Market Share Analysis
      • 10.2.3.4. UAE Market Share Analysis
      • 10.2.3.5. Rest of Middle East & Africa Market Share Analysis
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. South Africa Automotive Plastics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type Market Share Analysis
        • 10.3.1.2.2. By Application Market Share Analysis
    • 10.3.2. Turkey Automotive Plastics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type Market Share Analysis
        • 10.3.2.2.2. By Application Market Share Analysis
    • 10.3.3. Saudi Arabia Automotive Plastics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type Market Share Analysis
        • 10.3.3.2.2. By Application Market Share Analysis
    • 10.3.4. UAE Automotive Plastics Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type Market Share Analysis
        • 10.3.4.2.2. By Application Market Share Analysis

11. SWOT Analysis

  • 11.1. Strength
  • 11.2. Weakness
  • 11.3. Opportunities
  • 11.4. Threats

12. Market Dynamics

  • 12.1. Market Drivers
  • 12.2. Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

  • 14.1. Company Profiles (Up to 10 Major Companies)
    • 14.1.1. Teijin Limited
      • 14.1.1.1. Company Details
      • 14.1.1.2. Key Product Offered
      • 14.1.1.3. Financials (As Per Availability)
      • 14.1.1.4. Recent Developments
      • 14.1.1.5. Key Management Personnel
    • 14.1.2. BASF SE
      • 14.1.2.1. Company Details
      • 14.1.2.2. Key Product Offered
      • 14.1.2.3. Financials (As Per Availability)
      • 14.1.2.4. Recent Developments
      • 14.1.2.5. Key Management Personnel
    • 14.1.3. Borealis AG
      • 14.1.3.1. Company Details
      • 14.1.3.2. Key Product Offered
      • 14.1.3.3. Financials (As Per Availability)
      • 14.1.3.4. Recent Developments
      • 14.1.3.5. Key Management Personnel
    • 14.1.4. DuPont de Nemours, Inc.
      • 14.1.4.1. Company Details
      • 14.1.4.2. Key Product Offered
      • 14.1.4.3. Financials (As Per Availability)
      • 14.1.4.4. Recent Developments
      • 14.1.4.5. Key Management Personnel
    • 14.1.5. Koninklijke DSM N.V.
      • 14.1.5.1. Company Details
      • 14.1.5.2. Key Product Offered
      • 14.1.5.3. Financials (As Per Availability)
      • 14.1.5.4. Recent Developments
      • 14.1.5.5. Key Management Personnel
    • 14.1.6. Evonik Industries AG
      • 14.1.6.1. Company Details
      • 14.1.6.2. Key Product Offered
      • 14.1.6.3. Financials (As Per Availability)
      • 14.1.6.4. Recent Developments
      • 14.1.6.5. Key Management Personnel
    • 14.1.7. Exxon Mobil Corporation
      • 14.1.7.1. Company Details
      • 14.1.7.2. Key Product Offered
      • 14.1.7.3. Financials (As Per Availability)
      • 14.1.7.4. Recent Developments
      • 14.1.7.5. Key Management Personnel
    • 14.1.8. Mitsubishi Chemical Group Corporation
      • 14.1.8.1. Company Details
      • 14.1.8.2. Key Product Offered
      • 14.1.8.3. Financials (As Per Availability)
      • 14.1.8.4. Recent Developments
      • 14.1.8.5. Key Management Personnel
    • 14.1.9. LG Chem, Ltd.
      • 14.1.9.1. Company Details
      • 14.1.9.2. Key Product Offered
      • 14.1.9.3. Financials (As Per Availability)
      • 14.1.9.4. Recent Developments
      • 14.1.9.5. Key Management Personnel
    • 14.1.10. LyondellBasell Industries N.V.
      • 14.1.10.1. Company Details
      • 14.1.10.2. Key Product Offered
      • 14.1.10.3. Financials (As Per Availability)
      • 14.1.10.4. Recent Developments
      • 14.1.10.5. Key Management Personnel

15. Strategic Recommendations

  • 15.1. Key Focus Areas
    • 15.1.1. Target Regions
    • 15.1.2. Target Type
    • 15.1.3. Target Application

16. About Us & Disclaimer