デフォルト表紙
市場調査レポート
商品コード
1488713

遠隔操作車(ROV)の世界市場 - 産業規模、シェア、動向、機会、予測:タイプ別、用途別、活動別、地域別、競合別、2019年~2029年

Remotely Operated Vehicle Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented by Type, Application, Activity, By Region, By Competition, 2019-2029F


出版日
ページ情報
英文 182 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.55円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

遠隔操作車(ROV)の世界市場 - 産業規模、シェア、動向、機会、予測:タイプ別、用途別、活動別、地域別、競合別、2019年~2029年
出版日: 2024年06月03日
発行: TechSci Research
ページ情報: 英文 182 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

遠隔操作車(ROV)の世界市場規模は2023年に25億8,000万米ドルとなり、2029年までのCAGRは7.89%で、予測期間の堅調な成長が予測されています。

ROV市場は、中期的にはアメリカ、アジア太平洋、中東・アフリカにおけるオフショア再生可能技術の成長とオフショア石油・ガス探査活動の増加によって牽引されると予測されます。

市場概要
予測期間 2025年~2029年
市場規模:2023年 25億8,000万米ドル
市場規模:2029年 41億1,000万米ドル
CAGR:2024年~2029年 7.89%
急成長セグメント 石油・ガス
最大市場 北米

世界の遠隔操作車(ROV)市場は拡大を続けており、石油・ガスから海洋調査まで、この洗練された機械への依存度が高まっています。ROVは比類のない多用途性を備えており、オペレーターは危険な環境や手の届きにくい環境でも、正確かつ効率的に複雑な作業を行うことができます。技術の開拓により、より高性能で費用対効果の高いROVが開発され、市場の成長をさらに後押ししています。効率的なデータ収集と監視の必要性と相まって、水中探査と保守活動の需要が高まっており、世界のROV市場は今後数年間で持続的に拡大する構えです。この成長は、伝統的な産業と、オフショアの再生可能エネルギーや深海鉱業などの新興分野の両方によって促進されると予想され、世界中の水中作業におけるROVの極めて重要な役割を確固たるものにしています。

市場促進要因

海洋探査・生産活動の増加

技術の進歩

主な市場課題

初期コストの高さ

操作の複雑さ

限られた電力とバッテリー寿命

主な市場動向

人工知能(AI)と機械学習(ML)の統合

無人水上バイク(USV)とハイブリッドシステムの台頭

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 VOC (顧客の声)

第5章 世界の遠隔操作車市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別(作業用ROVと観測用ROV)
    • 用途別(石油・ガス、防衛、その他)
    • 活動別(調査、検査、修理、保守、埋設、掘削、その他)
    • 地域別
  • 企業別(2023年)
  • 市場マップ

第6章 北米の遠隔操作車市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 活動別
    • 国別
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 アジア太平洋地域の遠隔操作車市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 活動別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • インドネシア

第8章 欧州の遠隔操作車市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 活動別
    • 国別
  • 欧州:国別分析
    • ドイツ
    • 英国
    • フランス
    • ロシア
    • スペイン

第9章 南米の遠隔操作車市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 活動別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン

第10章 中東・アフリカの遠隔操作車市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 活動別
    • 国別
  • 中東・アフリカ:国別分析
    • サウジアラビア
    • 南アフリカ
    • アラブ首長国連邦
    • イスラエル
    • エジプト

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

第13章 企業プロファイル

  • DEEPOCEAN GROUP HOLDING AS
  • DOF Group
  • Helix Energy Solutions Group Inc.
  • TechnipFMC PLC
  • Bourbon Group
  • Fugro Group
  • Oceaneering International Inc.
  • Saab Seaeye Limited
  • Forum Energy Technologies, Inc.
  • Saipem S.p.A

第14章 戦略的提言

第15章 調査会社について・免責事項

目次
Product Code: 22615

Global Remotely Operated Vehicle Market was valued at USD 2.58 Billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 7.89% through 2029. The ROV market is anticipated to be driven by growing offshore renewable technologies and an increase in offshore oil and gas exploration activities in the Americas, Asia-Pacific, Middle East, and Africa over the medium term.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 2.58 Billion
Market Size 2029USD 4.11 Billion
CAGR 2024-20297.89%
Fastest Growing SegmentOil and Gas
Largest MarketNorth America

The Global Remotely Operated Vehicle (ROV) market continues to expand as industries ranging from oil and gas to marine research increasingly rely on these sophisticated machines. ROVs offer unparalleled versatility, allowing operators to conduct complex tasks in hazardous or hard-to-reach environments with precision and efficiency. Advancements in technology have led to the development of more capable and cost-effective ROVs, further driving market growth. With the rising demand for underwater exploration and maintenance activities, coupled with the need for efficient data collection and surveillance, the global ROV market is poised for sustained expansion in the coming years. This growth is expected to be fueled by both traditional industries and emerging sectors such as offshore renewable energy and deep-sea mining, solidifying ROVs' pivotal role in underwater operations worldwide.

Key Market Drivers

Increasing Offshore Exploration and Production Activities

The surge in global offshore exploration and production activities stands as a formidable driver propelling the growth of the Remotely Operated Vehicle (ROV) market. As the world's appetite for energy continues to escalate, particularly in the realm of oil and gas, the demand for ROVs has soared to new heights. ROVs play a pivotal role in the intricate dance of underwater exploration, maintenance, and repair of offshore structures and pipelines. Their significance in enabling companies to extract resources from the ocean depths safely and efficiently cannot be overstated.

Technological advancements constitute another facet of this dynamic landscape, enhancing the capabilities and reliability of ROVs. Improved sensors, more robust communication systems, and refined control mechanisms contribute to the growing efficiency of these remotely operated vehicles. These advancements empower ROVs to navigate and operate in challenging underwater environments with precision and accuracy, pushing the boundaries of what was once deemed inaccessible.

The safety and cost-efficiency afforded by ROVs amplify their appeal in offshore activities. By minimizing human exposure to hazardous conditions beneath the waves, ROVs become indispensable assets for ensuring the well-being of workers involved in offshore operations. Moreover, the cost-effectiveness of employing ROVs in certain scenarios compared to traditional manned submersibles or diving operations adds a pragmatic dimension to their widespread adoption. In essence, the surge in offshore exploration and production activities acts as a catalyst, driving the ROV market to new heights. As nations and industries seek to harness the vast resources lying beneath the ocean's surface, the role of ROVs becomes increasingly integral, promising a future where the depths of the sea are explored and exploited with unprecedented efficiency and safety.

Advancements in Technology

The Global Remotely Operated Vehicle (ROV) market finds itself on the crest of a transformative wave, and at its core lies the driving force of technological advancements. As technology continues to evolve at a rapid pace, ROVs are benefitting from a myriad of innovations that are reshaping their capabilities and expanding their applications.

One of the key areas where advancements in technology are making a significant impact is in the enhancement of sensors. State-of-the-art sensor technologies equipped on ROVs provide a heightened level of data accuracy, enabling these remotely operated vehicles to navigate and interact with the underwater environment with unprecedented precision. This not only ensures the success of tasks such as inspection and maintenance but also opens doors to new frontiers in scientific research and exploration.

Communication systems represent another frontier where technology is steering the course of ROV development. Improved communication capabilities enable real-time data transmission between the ROV and operators, fostering better control and decision-making during underwater operations. As a result, the efficiency and effectiveness of ROVs in diverse applications, from offshore exploration to scientific research missions, are significantly amplified. Control systems have undergone a revolution, with advancements allowing for more intuitive and responsive maneuvering of ROVs. This is particularly crucial in challenging underwater conditions where precision is paramount. The integration of cutting-edge control technologies empowers ROV operators to navigate complex environments with ease, ensuring that these vehicles can undertake a diverse range of tasks with a high degree of accuracy.

The symbiotic relationship between technological progress and the ROV market extends beyond functionality to the realm of cost-effectiveness. As technology evolves, the production and operation costs associated with ROVs are optimized, making them more accessible and attractive to a broader range of industries and applications. In conclusion, the trajectory of the Global ROV market is intricately tied to the relentless march of technological advancements. As sensors become more sophisticated, communication systems more robust, and control mechanisms more intuitive, the capabilities of ROVs will continue to expand, ushering in a new era of exploration and efficiency in underwater operations.

Key Market Challenges

High Initial Costs

The high initial costs associated with Remotely Operated Vehicles (ROVs) stand as a formidable hurdle, casting a shadow over the otherwise promising landscape of the Global ROV market. The sophisticated technology and specialized equipment required for the design and manufacturing of ROVs contribute significantly to their upfront price tag. This financial barrier poses a substantial challenge for businesses, particularly smaller enterprises and industries operating on constrained budgets.

For many companies eyeing the integration of ROVs into their operations, the capital investment required can be prohibitive. The substantial initial costs encompass not only the procurement of the ROV units themselves but also the ancillary expenses related to training personnel, setting up control and monitoring systems, and ensuring compliance with industry standards and regulations. This financial burden can deter potential adopters, restricting the market growth and limiting the transformative impact that ROVs can have on underwater exploration and operations.

The impact of high initial costs is particularly pronounced in industries where margins are tight, and capital expenditure decisions are scrutinized rigorously. Offshore exploration, subsea interventions, and underwater infrastructure maintenance, while benefiting greatly from ROV technology, often face budgetary constraints that impede the seamless integration of these advanced underwater vehicles.

To overcome this challenge, there is a pressing need for concerted efforts within the industry to drive innovation in manufacturing processes, materials, and technology. Cost-effective alternatives and scalable solutions must be explored to make ROVs more accessible to a broader range of businesses. Collaborative initiatives, both between industry players and with governmental support, can play a pivotal role in creating a conducive environment for the development and adoption of cost-efficient ROV solutions. As technological advancements continue and economies of scale come into play, there is optimism that the high initial costs bottlenecking the ROV market will gradually ease. In the interim, strategic partnerships, innovative financing models, and a collective commitment to overcoming financial barriers are essential to unlock the full potential of ROVs in revolutionizing underwater exploration and operations.

Complexity of Operations

The Global Remotely Operated Vehicle (ROV) market faces a significant challenge in the form of the complexity of operations, acting as a potential bottleneck to widespread adoption. Operating ROVs demands a specialized skill set due to the intricate nature of controlling these unmanned vehicles in challenging underwater environments. The complexity arises not only from the need for technical proficiency in operating the ROV itself but also from the dynamic and often unpredictable conditions of the underwater terrain. The intricate maneuvering required during ROV operations demands a level of expertise that may not be readily available, limiting the pool of qualified operators. Training personnel to navigate through underwater obstacles, perform intricate tasks, and effectively utilize the ROV's capabilities adds an additional layer of complexity. The shortage of skilled operators can impede the seamless integration of ROVs into various industries, from offshore exploration to scientific research and subsea infrastructure maintenance.

Moreover, the learning curve associated with mastering ROV operations can be steep, potentially slowing down deployment timelines. As industries seek to harness the benefits of ROVs for tasks such as inspection, maintenance, and exploration in challenging underwater environments, the complexity of operations becomes a critical factor influencing decision-making. Addressing this challenge requires a multi-faceted approach. Investment in comprehensive training programs and educational initiatives aimed at developing a skilled workforce proficient in ROV operations is paramount. Simultaneously, advancements in user-friendly control interfaces and automation technologies can simplify the operational complexities, making ROVs more accessible to a broader range of users.

Collaboration between industry stakeholders, educational institutions, and technology developers is essential to streamline the learning curve associated with ROV operations. By fostering a supportive ecosystem that prioritizes skill development and innovation in control systems, the industry can mitigate the impact of operational complexity, paving the way for a more widespread and efficient utilization of ROVs in diverse underwater applications.

Limited Power and Battery Life

The Global Remotely Operated Vehicle (ROV) market faces a substantial hurdle in the form of limited power and battery life, casting a shadow over the efficiency and versatility of these underwater vehicles. ROVs, by their nature, rely on battery power to operate in the depths of the ocean, and the constraints imposed by limited energy storage present a significant challenge. One of the primary concerns is the impact on operational duration. The finite energy stored in ROV batteries dictates the amount of time these vehicles can spend underwater, conducting tasks such as inspections, maintenance, and data collection. This limitation is particularly pronounced in scenarios where extended missions or exploration in remote and deep-sea environments is required.

The challenge of limited battery life becomes even more critical when considering the time required for deployment, navigation to the operational site, and the actual execution of tasks. As industries increasingly rely on ROVs for critical operations, the need for prolonged operational periods becomes paramount. The struggle to balance power consumption with mission duration places a strain on the effectiveness of ROVs in fulfilling their intended roles. Addressing this challenge demands innovation in battery technology, exploring alternatives with higher energy density, longer lifespan, and faster recharging capabilities. Research and development efforts focused on optimizing power consumption through the use of energy-efficient components and systems are crucial to extending the operational life of ROVs.

Additionally, the development of autonomous recharging stations or tethered power options can provide a solution to the limited battery life challenge. By allowing ROVs to recharge or connect to a power source during operations, the constraints imposed by battery limitations can be mitigated, enabling more continuous and efficient underwater exploration and tasks.

Overcoming the limitations of limited power and battery life is essential for unlocking the full potential of ROVs across various industries. As technology advances and the energy storage landscape evolves, addressing this challenge will be a key determinant in shaping the trajectory of the global ROV market.

Key Market Trends

Integration of Artificial Intelligence (AI) and Machine Learning (ML)

The Global Remotely Operated Vehicle (ROV) market is undergoing a profound transformation, propelled by the integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This convergence of advanced computational capabilities is reshaping the capabilities and efficiency of ROVs, positioning them as intelligent and adaptable assets in the underwater exploration and operations landscape. The infusion of AI and ML empowers ROVs with autonomous decision-making, enabling them to navigate and respond to dynamic underwater environments more effectively. These technologies enhance the ability of ROVs to recognize and interpret complex underwater scenarios, allowing for real-time adjustments in their operations. This level of adaptability is crucial for tasks such as underwater inspections, maintenance, and data collection, where conditions can vary unpredictably.

One of the significant contributions of AI and ML to the ROV market is in the realm of object recognition and classification. ROVs equipped with advanced algorithms can identify and categorize underwater features, structures, and anomalies with a high degree of accuracy. This capability is particularly valuable in industries such as offshore oil and gas, where precise identification of subsea infrastructure is essential for maintenance and risk assessment. Moreover, AI and ML enable ROVs to learn from experience, improving their operational efficiency over time. By analyzing vast amounts of data from previous missions, these technologies allow ROVs to optimize their navigation, sensor usage, and overall performance. The learning aspect enhances the adaptability of ROVs to specific underwater conditions, contributing to more reliable and precise outcomes in a variety of applications.

The integration of AI and ML also plays a crucial role in predictive maintenance, helping identify potential issues before they escalate. By analyzing data from sensors and historical performance, ROVs can anticipate equipment failures or deterioration, enabling proactive maintenance strategies and minimizing downtime. As industries continue to embrace the potential of AI and ML in underwater operations, the Global ROV market is poised for significant growth. The intelligent, learning capabilities afforded by these technologies not only enhance the efficiency and accuracy of ROVs but also pave the way for a new era of autonomous and adaptive underwater exploration and operations.

Rise in Unmanned Surface Vehicles (USVs) and Hybrid Systems

The Global Remotely Operated Vehicle (ROV) market is experiencing a significant boost propelled by the rising adoption of Unmanned Surface Vehicles (USVs) and the emergence of innovative hybrid systems. This trend marks a transformative shift in underwater exploration and operations, enhancing the capabilities and efficiency of ROVs across various industries. The integration of USVs and ROVs creates a synergistic relationship, unlocking new dimensions of operational flexibility and extended mission duration. USVs, acting as deployment and recovery platforms, offer a dynamic solution to the challenges of reaching remote or difficult-to-access underwater locations. This collaborative approach enhances the overall mobility of ROV systems, enabling them to cover larger areas and conduct more extensive surveys and inspections.

Hybrid systems, combining the strengths of both ROVs and USVs, present a holistic solution to the evolving needs of the underwater industry. These systems often feature autonomous capabilities, allowing them to work collaboratively and adapt to changing environmental conditions. The hybrid approach optimizes the utilization of resources, streamlines deployment processes, and facilitates seamless transitions between surface and subsea operations. The rise of USVs and hybrid systems is particularly prominent in industries such as offshore oil and gas, marine research, and underwater infrastructure maintenance. Offshore exploration and production activities, in particular, benefit from the increased efficiency and operational range afforded by these integrated systems. The ability to deploy ROVs from USVs reduces the dependency on larger vessels, leading to cost savings and improved response times.

Moreover, the collaborative nature of these hybrid systems aligns with the industry's growing emphasis on optimizing operational workflows. As the demand for underwater inspections, repairs, and maintenance tasks continues to rise, the integration of USVs and ROVs positions itself as a key driver in enhancing the overall productivity and effectiveness of subsea operations. In conclusion, the rise of Unmanned Surface Vehicles and the development of hybrid systems mark a pivotal trend driving the Global ROV market. This evolution not only addresses logistical challenges but also sets the stage for a more interconnected and technologically advanced approach to underwater exploration, positioning ROVs at the forefront of transformative developments in the maritime and subsea industries.

Segmental Insights

Application Insights

Oil and Gas segment dominated the Global Remotely Operated Vehicle Market in 2023. Since major economies around the world continue to rely heavily on petroleum-based products, there is an increasing dependence on oil and gas. The oil and gas sector has a significant impact on global economic and political affairs. This sector's reliance on ROVs for a myriad of tasks, ranging from subsea inspections and maintenance to pipeline monitoring and intervention, propelled its leadership position. With the increasing complexity of offshore operations and the demand for cost-effective solutions in challenging environments, ROVs have become indispensable tools for the oil and gas industry. Their ability to perform intricate tasks with precision and efficiency, even in deep-sea and hazardous conditions, has cemented their role in driving operational excellence and safety standards within the sector. As oil and gas companies continue to explore and exploit offshore reserves, the demand for ROVs is expected to remain robust, sustaining the segment's dominance in the global market landscape.

Regional Insights

North America emerged as dominating region in the Global Remotely Operated Vehicle Market in 2023. This dominance can be attributed to several factors, including extensive offshore oil and gas exploration activities, burgeoning investments in underwater infrastructure development, and a strong emphasis on technological innovation. The region's advanced capabilities in research and development, coupled with a supportive regulatory environment, have fostered a thriving ecosystem for ROV deployment across various sectors. Additionally, the presence of key market players and a highly skilled workforce has further bolstered North America's position as a frontrunner in the global ROV market. With a continued focus on enhancing operational efficiency, safety standards, and environmental sustainability, North America is poised to maintain its dominance and drive continued innovation in the remotely operated vehicle sector.

Key Market Players

DEEPOCEAN GROUP HOLDING AS

DOF Group

Helix Energy Solutions Group

TechnipFMC plc

Bourbon Group

Fugro Group

Oceaneering International Inc.

Saab Seaeye Limited

Forum Energy Technologies Inc

Saipem SpA

Report Scope:

In this report, the Global Remotely Operated Vehicle Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Remotely Operated Vehicle Market, By Type:

    Work Class ROV Observatory Class ROV

Remotely Operated Vehicle Market, By Application:

    Oil and Gas Defense Other

Remotely Operated Vehicle Market, By Activity:

    Survey Inspection, Repair, and Maintenance Burial and Trenching Other

Remotely Operated Vehicle Market, By Region:

    North America

United States

Canada

Mexico

    Asia-Pacific

China

India

Japan

South Korea

Indonesia

    Europe

Germany

United Kingdom

France

Russia

Spain

    South America

Brazil

Argentina

    Middle East & Africa

Saudi Arabia

South Africa

Egypt

UAE

Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Remotely Operated Vehicle Market.

Available Customizations:

Global Remotely Operated Vehicle Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
  • 1.3. Markets Covered
  • 1.4. Years Considered for Stud
  • 1.5. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

4. Voice of Customers

5. Global Remotely Operated Vehicle Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Work Class ROV and Observatory Class ROV)
    • 5.2.2. By Application (Oil and gas, Defense, and Other)
    • 5.2.3. By Activity (Survey, Inspection, Repair, and Maintenance, Burial and Trenching, and Other)
    • 5.2.4. By Region
  • 5.3. By Company (2023)
  • 5.4. Market Map

6. North America Remotely Operated Vehicle Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Activity
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Remotely Operated Vehicle Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By Activity
    • 6.3.2. Canada Remotely Operated Vehicle Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By Activity
    • 6.3.3. Mexico Remotely Operated Vehicle Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By Activity

7. Asia-Pacific Remotely Operated Vehicle Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Activity
    • 7.2.4. By Country
  • 7.3. Asia-Pacific: Country Analysis
    • 7.3.1. China Remotely Operated Vehicle Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By Activity
    • 7.3.2. India Remotely Operated Vehicle Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By Activity
    • 7.3.3. Japan Remotely Operated Vehicle Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By Activity
    • 7.3.4. South Korea Remotely Operated Vehicle Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By Activity
    • 7.3.5. Indonesia Remotely Operated Vehicle Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By Activity

8. Europe Remotely Operated Vehicle Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Activity
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Remotely Operated Vehicle Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By Activity
    • 8.3.2. United Kingdom Remotely Operated Vehicle Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By Activity
    • 8.3.3. France Remotely Operated Vehicle Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By Activity
    • 8.3.4. Russia Remotely Operated Vehicle Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By Activity
    • 8.3.5. Spain Remotely Operated Vehicle Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By Activity

9. South America Remotely Operated Vehicle Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Activity
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Remotely Operated Vehicle Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By Activity
    • 9.3.2. Argentina Remotely Operated Vehicle Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By Activity

10. Middle East & Africa Remotely Operated Vehicle Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Activity
    • 10.2.4. By Country
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Saudi Arabia Remotely Operated Vehicle Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By Activity
    • 10.3.2. South Africa Remotely Operated Vehicle Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By Activity
    • 10.3.3. UAE Remotely Operated Vehicle Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By Activity
    • 10.3.4. Israel Remotely Operated Vehicle Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Application
        • 10.3.4.2.3. By Activity
    • 10.3.5. Egypt Remotely Operated Vehicle Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Application
        • 10.3.5.2.3. By Activity

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenge

12. Market Trends & Developments

13. Company Profiles

  • 13.1. DEEPOCEAN GROUP HOLDING AS
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services
  • 13.2. DOF Group
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel
    • 13.2.5. Key Product/Services
  • 13.3. Helix Energy Solutions Group Inc.
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel
    • 13.3.5. Key Product/Services
  • 13.4. TechnipFMC PLC
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel
    • 13.4.5. Key Product/Services
  • 13.5. Bourbon Group
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel
    • 13.5.5. Key Product/Services
  • 13.6. Fugro Group
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel
    • 13.6.5. Key Product/Services
  • 13.7. Oceaneering International Inc.
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel
    • 13.7.5. Key Product/Services
  • 13.8. Saab Seaeye Limited
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel
    • 13.8.5. Key Product/Services
  • 13.9. Forum Energy Technologies, Inc.
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel
    • 13.9.5. Key Product/Services
  • 13.10. Saipem S.p.A
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel
    • 13.10.5. Key Product/Services

14. Strategic Recommendations

15. About Us & Disclaimer