デフォルト表紙
市場調査レポート
商品コード
1485073

農業用生物学的検査市場- 世界の産業規模、シェア、動向、機会、予測、タイプ別、製品別、エンドユーザー別、地域別、競合別、2019-2029年

Agricultural Biologicals Testing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Product, By End User, By Region and Competition, 2019-2029F


出版日
ページ情報
英文 186 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

農業用生物学的検査市場- 世界の産業規模、シェア、動向、機会、予測、タイプ別、製品別、エンドユーザー別、地域別、競合別、2019-2029年
出版日: 2024年05月24日
発行: TechSci Research
ページ情報: 英文 186 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の農業用生物学的検査市場は、2023年に27億8,000万米ドルと評価され、2029年までCAGR 7.69%で安定した成長を遂げると予測されています。

農業生物学的製剤は、細菌、真菌、線虫、植物抽出物のような生物またはその誘導体であり、作物の害虫や病気を駆除するために使用することができます。化学合成農薬に代わる自然で環境に優しい農薬であり、有害な化学物質への依存を減らし、農業生態系における生物多様性を促進します。化学的特性が明確に定義された合成農薬とは異なり、生物学的製剤は固有の可変性を持つ生物体です。その有効性は、系統、環境条件、他の生物との相互作用など、さまざまな要因によって影響を受ける可能性があります。ハイスループット配列決定やバイオセンサーなどの開発により、より迅速で正確、かつ費用対効果の高い試験方法が提供されつつあります。管理された環境から実地試験に移行することで、生物学的製剤の性能をより現実的に把握することができます。研究者、試験所、業界関係者間の協力関係の強化は、標準化されたプロトコルとベストプラクティスの開発を加速させる。信頼性が高く効果的な生物学的薬剤は、農家が持続可能な慣行へと移行することを促すことができます。生物剤は土壌の健全性、生物多様性、および生態系全体のバランスを促進することができます。

市場概要
予測期間 2025-2029
市場規模:2023年 27億8,000万米ドル
市場規模:2029年 43億2,000万米ドル
CAGR:2024年~2029年 7.69%
急成長セグメント バイオ肥料
最大市場 北米

化学合成農薬や化学肥料が環境や健康に与える影響への懸念から、持続可能な有機農法で生産された食品を求める消費者が増えています。このような嗜好の変化は、バイオ肥料、バイオ農薬、バイオ刺激剤の需要を押し上げ、その安全性と有効性を確保するための包括的試験の必要性につながっています。世界各地の規制機関は、人間の健康や環境に悪影響を及ぼす可能性があるとして、合成農薬の使用に対してより厳しい規制を実施しています。このため、一般により安全で環境にやさしいとされる生物学的代替農薬の採用に有利な環境が整いつつあります。その結果、こうした代替農薬の検査サービスに対する需要が増加しています。新しく効率的な試験技術により、生物学的製剤の有効性と安全性の評価が容易かつ迅速になり、製品開発プロセスが合理化されています。このことは、こうした環境に優しい代替品の開発と採用をさらに後押ししています。

市場促進要因

農業慣行に対する社会的批判の高まり

持続可能な有機農業に対する需要の高まり

農業用生物学的検査手法の技術的進歩

主な市場課題

標準化された検査プロトコルの欠如

高い検査コスト

主要市場動向

生物学的製品の多様化

現場ベースの検査への注力

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の農業用生物学的検査市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別(生物農薬、生物肥料、生物刺激剤)
    • 製品別(フィールドサポート、分析、規制)
    • エンドユーザー別(生物製剤メーカー、政府機関など)
    • 地域別
    • 企業別(2023)
  • 市場マップ

第6章 北米の農業用生物学的検査市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 製品別
    • エンドユーザー別
    • 国別
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 欧州の農業用生物学的検査市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 製品別
    • エンドユーザー別
    • 国別
  • 欧州:国別分析
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン

第8章 アジア太平洋地域の農業用生物学的検査市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 製品別
    • エンドユーザー別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア

第9章 南米の農業用生物学的検査市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 製品別
    • エンドユーザー別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの農業用生物学的検査市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 製品別
    • エンドユーザー別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 合併および買収(該当する場合)
  • 製品の発売(ある場合)
  • 最近の動向

第13章 ポーターのファイブフォース分析

  • 業界内の競合
  • 新規参入の可能性
  • サプライヤーの力
  • 顧客の力
  • 代替品の脅威

第14章 競合情勢

  • Eurofins Scientific SE
  • Biotecnologie B.T. Srl.
  • SynTech Research Inc.
  • R J Hill Laboratories Limited
  • LAUS GmbH
  • Intertek Group plc
  • Bureau Veritas SA
  • ALS Limited
  • TUV NORD AG

第15章 戦略的提言

第16章 調査会社について・免責事項

目次
Product Code: 23374

Global Agricultural Biologicals Testing Market was valued at USD 2.78 Billion in 2023 and is expected to achieve a steady growth in the forecast period at a CAGR of 7.69% through 2029. Agricultural Biologicals are living organisms or their derivatives, like bacteria, fungi, nematodes, and plant extracts, that can be used to control pests and diseases in crops. They offer a natural and eco-friendly alternative to synthetic pesticides, reducing reliance on harmful chemicals and promoting biodiversity in the agricultural ecosystem. Unlike synthetic pesticides with well-defined chemical properties, biologicals are living entities with inherent variability. Their effectiveness can be influenced by various factors like strain, environmental conditions, and interactions with other organisms. Developments like high-throughput sequencing and biosensors are providing faster, more accurate, and cost-effective testing methods. Moving beyond controlled environments to field trials provides a more realistic picture of the biological agent's performance. Increased collaboration between researchers, testing labs, and industry players can accelerate the development of standardized protocols and best practices. Reliable and effective biological agents can encourage farmers to transition towards sustainable practices. Biologicals can promote soil health, biodiversity, and overall ecosystem balance.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 2.78 Billion
Market Size 2029USD 4.32 Billion
CAGR 2024-20297.69%
Fastest Growing SegmentBiofertilizers
Largest MarketNorth America

Consumers are increasingly seeking food produced using sustainable and organic practices, driven by concerns about the environmental and health impacts of synthetic pesticides and fertilizers. This shift in preference is boosting the demand for biofertilizers, biopesticides, and biostimulants, leading to a need for comprehensive testing to ensure their safety and efficacy. Regulatory bodies worldwide are implementing stricter regulations on the use of synthetic pesticides due to their potential harmful effects on human health and the environment. This creates a favorable environment for the adoption of biological alternatives, which are generally considered safer and more environmentally friendly. Consequently, the demand for testing services for these alternatives is increasing. New and more efficient testing technologies are making it easier and faster to assess the efficacy and safety of biological products, streamlining the product development process. This further encourages the development and adoption of these environmentally friendly alternatives.

Key Market Drivers

Increased Public Scrutiny of Agricultural Practices

Consumers are becoming increasingly informed and concerned about the environmental and ethical implications of conventional agriculture. Concerns about the potential health risks associated with residues of synthetic pesticides on food are driving consumers to seek out alternatives like organic produce or food grown using biopesticides. The impact of conventional agriculture on soil health, water quality, and biodiversity is under growing scrutiny. This is leading to a preference for practices that are more sustainable and less damaging to the environment, such as the use of biofertilizers and biostimulants. Concerns about the welfare of animals raised in factory farms are prompting consumers to seek out meat and dairy products produced using more humane practices. This can open doors for the use of biological pest control methods in animal agriculture. Increased media coverage and activism around these issues raise public awareness and put pressure on policymakers and the agricultural industry to adopt more sustainable practices.

Regulatory bodies are tightening regulations on the use of synthetic pesticides and promoting the adoption of more sustainable alternatives. This, in turn, creates a favorable environment for the use of biologicals and drives the need for rigorous testing to ensure their compliance with regulations. Retailers and food companies are responding to consumer demand by offering more organic and sustainable food options. This creates market incentives for farmers to adopt practices that utilize biologicals, further increasing the demand for testing services. Consumers are increasingly demanding transparency and traceability in food supply chains. This means they want to know how their food was grown and raised, and whether it was produced using sustainable and ethical practices. The use of biologicals can be a part of this transparency movement, as testing can verify the use of these alternatives and build consumer trust. In an era of heightened public scrutiny, the agricultural industry needs to rebuild trust with consumers. Demonstrating a commitment to using safe and sustainable practices, including the use of tested and certified biologicals, can be a key step in regaining public confidence. This factor will help in the development of the Global Agricultural Biologicals Testing Market.

Rising Demand for Sustainable and Organic Agriculture

The quest for a more sustainable and organic approach to agriculture is rapidly transforming the market landscape. As consumers become increasingly concerned about the environmental and health impacts of conventional farming practices, the demand for agricultural biologicals is skyrocketing. This, in turn, is fueling the need for comprehensive and rigorous agricultural biologicals testing. The use of synthetic pesticides and fertilizers has been linked to soil degradation, water pollution, and biodiversity loss. Consumers are increasingly seeking alternatives that minimize these harmful effects. Residues of synthetic pesticides can linger on fruits and vegetables, raising concerns about potential health risks for consumers. Organic farming and the use of biopesticides offer a safer alternative. Many consumers believe that food grown using sustainable and organic methods is more nutritious and flavorful.

Biofertilizers are naturally occurring microorganisms that improve soil health and fertility, reducing the need for synthetic fertilizers. Biopesticides are naturally derived pest control agents that offer a safer and more environmentally friendly alternative to synthetic pesticides. Biostimulants are plant-derived substances that enhance plant growth and resilience, helping them resist diseases and pests. Testing assesses potential risks associated with the use of biologicals, ensuring they don't harm consumers or ecosystems. Testing confirms that the biologicals effectively control pests, improve soil health, or enhance plant growth as intended. Governments often have strict regulations governing the use of agricultural biologicals, and testing is necessary for compliance. Consumers are increasingly demanding transparency and traceability in food production. Rigorous testing provides evidence of the quality and effectiveness of biologicals, fostering trust in sustainable and organic agriculture.

The market for agricultural biologicals testing is experiencing significant growth, driven by the rising demand for sustainable and organic agriculture. This trend is expected to continue in the coming years, as consumers become even more conscious of the choices they make and the impact they have on the environment and their health. This presents a promising opportunity for companies involved in developing and providing testing services for agricultural biologicals. By investing in innovative technologies and ensuring accurate and reliable testing, these companies can contribute to a more sustainable and healthy food system for all. The rise of sustainable and organic agriculture, along with the increasing demand for agricultural biologicals testing, marks a significant shift in the way we approach food production. As we move towards a future that prioritizes environmental protection and human health, biologicals have the potential to play a crucial role in creating a more sustainable and responsible food system. This factor will pace up the demand of the Global Agricultural Biologicals Testing Market.

Technological Advancements in Agricultural Biologicals Testing Methods

The world of agricultural biologicals testing is undergoing a revolution, fueled by rapid advancements in technology. These innovations are not only streamlining the testing process but also enhancing its accuracy, efficiency, and cost-effectiveness. Traditionally, identifying microorganisms in biologicals relied on slow and laborious culture-based methods. HTS has disrupted this landscape by rapidly sequencing the DNA of all present microbes, providing a comprehensive picture of the microbial community in a single test. Biosensors and Bioassays are innovative techniques that are replacing time-consuming and resource-intensive traditional bioassays for assessing the efficacy of biologicals. Biosensors utilize specific biological interactions to detect and quantify target molecules, while bioassays employ living organisms to measure the biological activity of a substance. High-resolution imaging technologies, such as confocal microscopy and micro-computed tomography, are providing unparalleled insights into the interactions between biologicals and plants or pests.

AI and ML algorithms are rapidly transforming data analysis in agricultural biologicals testing. Robotic systems are increasingly automating repetitive tasks in biologicals testing, such as sample preparation, handling, and analysis. These technological advancements hold immense promise for the future of agricultural biologicals testing. By embracing these innovations, we can create a faster, more accurate, and sustainable testing system that supports the development and adoption of safe and effective biological solutions for a healthier and more productive agricultural future. The integration of these cutting-edge technologies into agricultural biologicals testing is paving the way for several positive outcomes, Reduced reliance on synthetic pesticides and fertilizers, fostering a more sustainable agricultural system. Development of more targeted and effective biological control agents, leading to improved pest and disease management. This factor will accelerate the demand of the Global Agricultural Biologicals Testing Market.

Key Market Challenges

Lack of Standardized Testing Protocols

The rapid expansion of the Agricultural Biologicals Testing Market comes with its own set of challenges, and the lack of standardized testing protocols stands out as a particularly significant roadblock. This issue holds back the widespread adoption of biological control agents and hinders a truly sustainable approach to agriculture. Unlike their synthetic counterparts, biological control agents (BCAs) are living organisms. This inherent variability, influenced by factors like strain, storage conditions, and environmental parameters, makes it difficult to assess their efficacy and safety consistently. Currently, different countries and even laboratories employ diverse testing protocols and methodologies for BCAs. This inconsistency breeds confusion and hinders fair comparisons between products, ultimately impacting market access and adoption. Varying testing protocols lead to data inconsistencies, making it difficult to interpret results definitively and draw reliable conclusions about efficacy and safety. This can create ambiguity for regulators and uncertainty for potential users. Farmers rely on reliable data and clear evidence before transitioning to new approaches. The lack of standardized testing makes it difficult for them to compare BCAs and assess their viability for their specific needs. Without robust and consistent testing protocols, there's a potential for unforeseen impacts on environmental health and human well-being due to ineffective or harmful BCAs reaching the market.

High Testing Costs

The burgeoning Agricultural Biologicals Testing Market holds immense promise for a more sustainable future, but one significant hurdle stands in the way: high testing costs. Compared to their synthetic counterparts, these living agents face a much more complex and multifaceted testing process, driving up expenses and creating a barrier for both manufacturers and farmers. Unlike synthetic pesticides with consistent chemical properties, biologicals are living organisms susceptible to environmental factors, storage conditions, and even strain variations. This inherent variability demands extensive, multifaceted testing to ensure efficacy and safety across diverse conditions. Assessing the effectiveness of biologicals often requires lengthy field trials under real-world conditions. This includes monitoring their impact on pests, plant health, and the environment over multiple seasons, significantly pushing up the time and expense of testing. Compared to synthetic pesticide testing, evaluating biologicals often requires specialized laboratories, equipment, and trained personnel equipped to handle living organisms and analyze complex biological interactions. This specialized infrastructure contributes to higher testing costs. Start-ups and smaller players entering the biologicals market face a significant disadvantage due to high testing costs. This can stifle innovation and limit the diversity of available solutions. Farmers, particularly those in developing nations, might be hesitant to switch to biologicals due to the perceived higher cost associated with testing and certification. This slows down the overall transition towards sustainable agricultural practices.

Key Market Trends

Diversifying Biological Products

Traditionally, the market primarily focused on biopesticides as alternatives to synthetic pesticides. The wider adoption of diverse biological products can significantly reduce dependence on synthetic fertilizers and pesticides, minimizing environmental harm and promoting biodiversity. Biofertilizers and microbial inoculants enhance soil fertility and plant health, leading to improved crop yields and resilience against pests and diseases. Farmers can choose biological products tailored to their specific soil conditions, crop types, and pest issues, promoting more efficient and effective pest and disease management. Development of new testing methods and technologies specifically designed for different types of biological products is crucial to provide accurate and reliable data. Collaboration between testing labs, researchers, and industry players is key to developing standardized protocols and best practices for testing diverse biological products. As consumer demand for sustainable food grows, transparent and reliable data on the efficacy and safety of diverse biological products through rigorous testing will build trust and foster wider adoption.

Focus on Field-Based Testing

Traditional lab testing often struggles to capture the intricate interactions between biologicals, plants, and the environment. Field trials, conducted under real-world conditions, provide a more accurate picture of a biological product's efficacy and long-term impacts on soil health, pest control, and crop yields. Unlike synthetic pesticides with consistent chemical properties, biologicals are living organisms susceptible to environmental factors like temperature, humidity, and soil conditions. Field testing helps account for this variability and assess the effectiveness of biologicals across diverse agricultural settings. Farmers, who ultimately make the decision to adopt these solutions, need convincing evidence of their effectiveness under real-world conditions. Field-based testing data provides the level of assurance they seek before making the switch from synthetic methods. Field trials generate valuable data on how different environmental factors and agricultural practices influence the performance of biologicals. This information can be used to develop tailored recommendations for specific regions, crops, and pest scenarios, optimizing their effectiveness. Reliable data from field trials can build trust among farmers and accelerate the adoption of diverse biological control agents and soil health solutions. Data generated from field trials can be used to develop precision agriculture strategies that utilize biologicals in a targeted and efficient manner, optimizing their performance and minimizing environmental impact.

Segmental Insights

Type Insights

Based on type, Biopesticides emerged as the dominating segment in the Global Agricultural Biologicals Testing Market during the forecast period. Biopesticides are derived from natural sources, such as bacteria, fungi, and viruses, and can effectively target a wide range of pests, including insects, mites, and weeds. This versatility makes them a valuable tool for farmers looking to protect their crops without resorting to harmful chemicals. Consumers are increasingly concerned about the potential health and environmental hazards associated with synthetic pesticides. This has led to a growing demand for food produced using safer and more sustainable methods, including the use of biopesticides. Research and development in the biopesticides field is booming, leading to the creation of new and more effective products. This constant innovation necessitates comprehensive testing to ensure the efficacy, safety, and quality of these new biopesticides before they reach the market.

End User Insights

Based on end user, Biological Product Manufacturers segment is projected to experience rapid growth in the Global Agricultural Biologicals Testing Market during the forecast period. Consumers are increasingly seeking food produced using sustainable and organic practices. This shift in preference is driven by concerns about the environmental and health impacts of synthetic pesticides and fertilizers. As a result, the demand for biofertilizers, biopesticides, and biostimulants, which are derived from natural sources, is growing rapidly. Regulatory bodies worldwide are implementing stricter regulations on the use of synthetic pesticides due to their potential harmful effects on human health and the environment. This is creating a favorable environment for the adoption of biological alternatives, which are generally considered safer and more environmentally friendly. Focus on Integrated Pest Management (IPM) is a sustainable approach to pest control that emphasizes preventative measures and the use of multiple control methods, including biological control agents. This integrated approach often incorporates the use of agricultural biologicals to manage pest populations, further driving demand for testing services.

Regional Insights

Based on region, North America emerged as the dominant region in the Global Agricultural Biologicals Testing Market in 2023. North America, particularly the United States, has a large and robust agricultural sector. The size and economic strength of the agriculture industry in the region contribute to its dominance in related markets, including agricultural biologicals testing. The region is known for its advancements in technology and innovation. The adoption of cutting-edge testing technologies and methodologies in agricultural practices may have contributed to North America's leadership in agricultural biologicals testing. North America typically has well-established and stringent regulatory frameworks governing agriculture and related industries. This regulatory environment can create a demand for comprehensive testing services to ensure compliance with standards, leading to a dominant market position. The region often invests significantly in research and development, fostering the growth of new technologies and methodologies in the agricultural sector. This emphasis on innovation can positively impact the agricultural biologicals testing market. The increasing emphasis on sustainable agriculture practices in North America may drive the demand for testing services related to agricultural biologicals, contributing to the region's dominance in this market.

Key Market Players

Eurofins Scientific SE

Biotecnologie B.T. Srl.

SynTech Research Inc.

R J Hill Laboratories Limited

LAUS GmbH

Intertek Group plc

Bureau Veritas SA

ALS Limited

TUV NORD AG

Report Scope:

In this report, the Global Agricultural Biologicals Testing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Agricultural Biologicals Testing Market, By Type:

    Biopesticides Biofertilizers Biostimulants

Agricultural Biologicals Testing Market, By Product:

    Field Support Analytical Regulatory

Agricultural Biologicals Testing Market, By End User:

    Biological Product Manufacturers Government Agencies Others

Agricultural Biologicals Testing Market, By Region:

    North America

United States

Canada

Mexico

    Europe

Germany

United Kingdom

France

Italy

Spain

    Asia Pacific

China

Japan

India

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Agricultural Biologicals Testing Market.

Available Customizations:

Global Agricultural Biologicals Testing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Agricultural Biologicals Testing Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Biopesticides, Biofertilizers and Biostimulants)
    • 5.2.2. By Product (Field Support, Analytical and Regulatory)
    • 5.2.3. By End User (Biological Product Manufacturers, Government Agencies and Others)
    • 5.2.4. By Region
    • 5.2.5. By Company (2023)
  • 5.3. Market Map

6. North America Agricultural Biologicals Testing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Product
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Agricultural Biologicals Testing Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Product
        • 6.3.1.2.3. By End User
    • 6.3.2. Canada Agricultural Biologicals Testing Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Product
        • 6.3.2.2.3. By End User
    • 6.3.3. Mexico Agricultural Biologicals Testing Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Product
        • 6.3.3.2.3. By End User

7. Europe Agricultural Biologicals Testing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Product
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Agricultural Biologicals Testing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Product
        • 7.3.1.2.3. By End User
    • 7.3.2. United Kingdom Agricultural Biologicals Testing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Product
        • 7.3.2.2.3. By End User
    • 7.3.3. Italy Agricultural Biologicals Testing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Product
        • 7.3.3.2.3. By End User
    • 7.3.4. France Agricultural Biologicals Testing Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Product
        • 7.3.4.2.3. By End User
    • 7.3.5. Spain Agricultural Biologicals Testing Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Product
        • 7.3.5.2.3. By End User

8. Asia Pacific Agricultural Biologicals Testing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Product
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Agricultural Biologicals Testing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Product
        • 8.3.1.2.3. By End User
    • 8.3.2. India Agricultural Biologicals Testing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Product
        • 8.3.2.2.3. By End User
    • 8.3.3. Japan Agricultural Biologicals Testing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Product
        • 8.3.3.2.3. By End User
    • 8.3.4. South Korea Agricultural Biologicals Testing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Product
        • 8.3.4.2.3. By End User
    • 8.3.5. Australia Agricultural Biologicals Testing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Product
        • 8.3.5.2.3. By End User

9. South America Agricultural Biologicals Testing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Product
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Agricultural Biologicals Testing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Product
        • 9.3.1.2.3. By End User
    • 9.3.2. Argentina Agricultural Biologicals Testing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Product
        • 9.3.2.2.3. By End User
    • 9.3.3. Colombia Agricultural Biologicals Testing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Product
        • 9.3.3.2.3. By End User

10. Middle East and Africa Agricultural Biologicals Testing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Product
    • 10.2.3. By End User
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Agricultural Biologicals Testing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Product
        • 10.3.1.2.3. By End User
    • 10.3.2. Saudi Arabia Agricultural Biologicals Testing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Product
        • 10.3.2.2.3. By End User
    • 10.3.3. UAE Agricultural Biologicals Testing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Product
        • 10.3.3.2.3. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Eurofins Scientific SE
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Biotecnologie B.T. Srl.
  • 14.3. SynTech Research Inc.
  • 14.4. R J Hill Laboratories Limited
  • 14.5. LAUS GmbH
  • 14.6. Intertek Group plc
  • 14.7. Bureau Veritas SA
  • 14.8. ALS Limited
  • 14.9. TUV NORD AG

15. Strategic Recommendations

16. About Us & Disclaimer