![]() |
市場調査レポート
商品コード
1331400
ナノ多孔質膜市場- 世界の産業規模、シェア、動向、機会、予測、2018-2028年Nanoporous Membrane Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Material Type, By Application, By Region and Competition |
||||||
カスタマイズ可能
|
ナノ多孔質膜市場- 世界の産業規模、シェア、動向、機会、予測、2018-2028年 |
出版日: 2023年08月01日
発行: TechSci Research
ページ情報: 英文 115 Pages
納期: 2~3営業日
|
ナノ多孔質膜の世界市場は、清潔な水への需要の高まりにより、2028年まで目覚ましい成長が見込まれています。
2022年、米国における一人当たりの取水量は1,207立方メートルに達します。
清潔な水へのアクセスは世界的に関心が高まっており、ナノ多孔質膜は水のろ過と浄化の有望なソリューションです。これらの膜は、水からバクテリア、ウイルス、塩分などの不純物を除去することができます。特定の不純物を選択的に除去し、他の分子は通過させることができるため、ナノ多孔質膜は水のろ過用途に理想的です。
ナノ多孔質膜は、ガス分離やエネルギー貯蔵などのエネルギー関連用途にも使用されています。膜は、バッテリーやスーパーキャパシターなどのエネルギー貯蔵デバイスの電極としても使用できます。ナノ多孔質膜の細孔径と表面化学を制御する能力により、エネルギー関連用途への応用は高度に調整可能です。エネルギー効率の高いプロセスへのニーズの高まりと代替エネルギー源の需要の増加が、世界のナノ多孔質膜市場の成長を後押ししています。
ナノテクノロジーの進歩がナノ多孔質膜市場の成長を促進しています。新しい材料と製造技術の開発は、ナノスケールでの分子の挙動に関する知識の増加と相まって、ナノ多孔質膜の著しい進歩につながっています。研究開発者は新たな用途を模索し、ナノ多孔質膜の性能を最適化することで、より効率的でコスト効率の高い膜の開発につなげています。
膜の孔径を制御することで、特定の分子は通過させ、他の分子は保持することができます。これにより、薬効を向上させ、副作用を軽減できる可能性があります。ターゲットを絞ったドラッグデリバリーへの需要の高まりと、薬剤の放出制御の必要性が、ヘルスケアと医薬品におけるナノ多孔質膜市場の成長を後押ししています。
世界のナノ多孔質膜市場における重要な課題の1つは、これらの膜の製造と拡張性です。ナノ多孔質膜は、孔径、形状、分布を精密に制御する必要があり、その製造は複雑で高価なプロセスとなります。さらに、膜のサイズが大きくなるほど製造のコストと複雑さが増すため、商業需要を満たすために生産を拡大することは困難です。ナノ多孔質膜をより身近で実用的なものとして普及させるためには、より費用対効果が高く、スケーラブルな製造技術が必要です。
ナノ多孔質膜は、高圧、高温、腐食性環境などの過酷な条件にさらされることが多いです。したがって、その安定性と耐久性は、長期的な性能にとって極めて重要です。残念ながら、多くのナノ多孔質膜は安定性と耐久性が低く、膜のファウリングや劣化、寿命の低下を引き起こしています。研究開発者は、膜の安定性と耐久性を改善し、過酷な条件下での長期使用に適した新しい材料と製造技術を開発する必要があります。
ナノ多孔質膜は、特定の分子を選択的に透過させ、他の分子は保持するように設計されています。しかし、膜表面とろ過される分子との間の複雑な相互作用のために、望ましい選択性と透過性を達成することは困難です。さらに、膜の汚れは時間とともに選択性と透過性を低下させ、膜の性能低下につながります。より効率的で効果的なナノ多孔質膜を設計するためには、選択性と透過性の基本原理をより深く理解する必要があります。
2020年、カリフォルニア大学バークレー校の研究者は、ナノ多孔質膜を作製するための新しい3Dプリンティング技術を開発しました。この技術では、3Dプリンターを使って足場構造を作り、それをポリマーの層でコーティングし、選択的に除去してナノ孔を形成します。3Dプリンティング技術により、孔径を正確に制御した複雑な膜形状の製造が可能になります。
混合マトリックス膜は、ナノ多孔質マトリックスとポリマーまたは金属フィラーからなるハイブリッド膜です。近年、研究者は選択性と透過性を改善した新しい混合マトリックス膜を開発しています。例えば、2021年、オランダのトゥウェンテ大学の研究者は、酸化グラフェンとゼオライトからなる混合マトリックス膜を開発しました。この膜はガス分離用途で高い透過性と選択性を示しました。
自己修復膜は、損傷後に自己修復する新しいタイプの膜です。2019年、メリーランド大学の研究開発は、甲殻類の殻に含まれる天然ポリマーであるキトサンのコーティングを用いた自己修復ナノ多孔質膜を開発しました。この膜は安定性と耐久性の向上を示し、過酷な環境での使用に理想的なものとなっています。
近年、研究者たちはエネルギー貯蔵用途へのナノ多孔質膜の利用を模索しています。例えば2019年、MITの研究者はフロー電池用のナノ多孔質膜電極を開発しました。この膜は効率と安定性の向上を示し、大規模エネルギー貯蔵の有望な候補となっています。
水の浄化は、ナノ多孔質膜の最も有望な用途のひとつです。2021年、パデュー大学の研究者は、浄水用の新しい膜を開発しました。この膜は、酸化グラフェンの層とナノポーラス有機金属骨格の層から構成されています。この膜は浄水用途に高い選択性と透過性を示しました。
TechSciリサーチは、所定の市場データを用いて、企業の特定のニーズに応じたカスタマイズを提供します。レポートでは以下のカスタマイズが可能です:
Global Nanoporous Membrane market is expected to grow at an impressive rate through 2028 due to the increasing demand for clean water. In 2022, water withdrawals per capita in the United States amount to 1,207 cubic meters per inhabitant.
Nanoporous membranes are thin films or sheets with tiny pores, typically less than 100 nanometers in size. These membranes have emerged as promising materials for various applications, including water filtration, gas separation, drug delivery, and sensing. Their distinctive properties, such as high porosity, high surface area, and tunable pore size, make them appealing for a varied range of scientific and technological applications. The fabrication of nanoporous membranes is based on various techniques, such as template synthesis, self-assembly, and block copolymer lithography. In the template synthesis method, a porous material, such as anodized aluminum oxide or silica, is used as a template to create a nanoporous membrane. The template is then removed, leaving behind the nanoporous structure. In the self-assembly method, a surfactant or block copolymer is used to create a micelle or a vesicle structure, which is then cross-linked to form a nanoporous membrane. Block copolymer lithography involves the use of a block copolymer, which self-assembles into a periodic pattern, which is then transferred onto a substrate to create a nanoporous membrane.
One of the key applications of nanoporous membranes is in water filtration. Nanoporous membranes can remove impurities, such as bacteria, viruses, and salts, from water. The pore size of the membrane can be controlled to selectively remove certain impurities while allowing other molecules to pass through. This makes nanoporous membranes useful in desalination, wastewater treatment, and water purification.
The increasing demand for clean water for industrial and domestic use, coupled with the growing need for wastewater treatment and desalination, is driving the growth of the water treatment segment. Nanoporous membranes can remove impurities, such as bacteria, viruses, and salts, from water. The pore size of the membrane can be controlled to selectively remove certain impurities while allowing other molecules to pass through, making it ideal for water filtration applications.
The increasing demand for targeted drug delivery and the need for controlled release of drugs are driving the growth of this segment. Nanoporous membranes can be utilized to load drugs, which can then be released at a controlled rate. This has potential applications in targeted drug delivery, where the drug can be released at a specific location in the body.
Drug delivery is an area where nanoporous membranes are being explored. The high surface area and porosity of the membrane can be utilized to load drugs, which can then be released at a controlled rate. This has potential applications in targeted drug delivery, where the drug can be released at a specific location in the body. In sensing applications, nanoporous membranes can be used to detect various analytes, such as gases, liquids, and biological molecules. The nanoporous structure can enhance the sensitivity of the sensor, making it possible to detect low concentrations of the analyte.
Access to clean water is a growing concern worldwide, and nanoporous membranes are a promising solution for water filtration and purification. These membranes can remove impurities, such as bacteria, viruses, and salts, from water. The ability to selectively remove certain impurities while allowing other molecules to pass through makes nanoporous membranes ideal for water filtration applications.
Nanoporous membranes are also used in energy-related applications, such as gas separation and energy storage. The membranes can also be used as electrodes in energy storage devices such as batteries and supercapacitors. The ability to control the pore size and surface chemistry of nanoporous membranes makes them highly tunable for energy-related applications. The growing need for energy-efficient processes and the increasing demand for alternative energy sources are driving the growth of the global nanoporous membranes market.
Advancements in nanotechnology are driving the growth of the nanoporous membranes market. The development of new materials and fabrication techniques, coupled with increasing knowledge of the behavior of molecules at the nanoscale, has led to significant advancements in nanoporous membranes. Researchers are exploring new applications and optimizing the performance of nanoporous membranes, leading to the development of more efficient and cost-effective membranes.
The pore size of the membrane can be controlled to allow certain molecules to pass through while retaining others, making it possible to selectively release drugs at specific locations in the body. This has the potential to improve drug efficacy and reduce side effects. The increasing demand for targeted drug delivery and the need for controlled release of drugs are driving the growth of the nanoporous membranes market in healthcare and pharmaceuticals.
One of the significant challenges in the global nanoporous membrane market is the fabrication and scalability of these membranes. Nanoporous membranes require precise control over pore size, shape, and distribution, making their fabrication a complex and expensive process. Additionally, scaling up production to meet commercial demand is challenging, as the cost and complexity of fabrication increase with larger membrane sizes. There is a need for more cost-effective and scalable fabrication techniques to make nanoporous membranes more accessible and practical for widespread use.
Nanoporous membranes are often exposed to harsh conditions, such as high pressure, temperature, and corrosive environments. Therefore, their stability and durability are crucial for their long-term performance. Unfortunately, many nanoporous membranes suffer from poor stability and durability, leading to membrane fouling, degradation, and reduced lifespan. Researchers need to develop new materials and fabrication techniques that improve membrane stability and durability, making them suitable for long-term use in harsh conditions.
Nanoporous membranes are designed to selectively allow certain molecules to pass through while retaining others. However, achieving the desired selectivity and permeability can be challenging due to the complex interactions between the membrane surface and the molecules being filtered. Additionally, membrane fouling can reduce selectivity and permeability over time, leading to decreased membrane performance. There is a need for improved understanding of the fundamental principles of selectivity and permeability to design more efficient and effective nanoporous membranes.
In 2020, researchers at the University of California, Berkeley, developed a new 3D printing technique to fabricate nanoporous membranes. The technique uses a 3D printer to create a scaffold structure, which is then coated with a layer of polymer that is selectively removed to create nanopores. The 3D printing technique enables the fabrication of complex membrane geometries with precise pore size control.
Mixed matrix membranes are hybrid membranes consisting of a nanoporous matrix and a polymer or metal filler. In recent years, researchers have developed new mixed matrix membranes with improved selectivity and permeability. For example, in 2021, researchers at the University of Twente, the Netherlands, developed a mixed matrix membrane consisting of graphene oxide and zeolite. The membrane demonstrated high permeability and selectivity for gas separation applications.
Self-healing membranes are a new class of membranes that can repair themselves after damage. In 2019, researchers at the University of Maryland developed a self-healing nanoporous membrane using a coating of chitosan, a natural polymer found in crustacean shells. The membrane demonstrated improved stability and durability, making it ideal for use in harsh environments.
In recent years, researchers have explored the use of nanoporous membranes for energy storage applications. For example, in 2019, researchers at MIT developed a nanoporous membrane electrode for flow batteries. The membrane demonstrated improved efficiency and stability, making it a promising candidate for large-scale energy storage.
Water purification is one of the most promising applications of nanoporous membranes. In 2021, researchers at Purdue University developed a new membrane for water purification. The membrane consisted of a layer of graphene oxide and a layer of nanoporous metal-organic framework. The membrane demonstrated high selectivity and permeability for water purification applications.
Global Nanoporous Membrane Market is segmented based on Material Type, Application, Region, and Competitive Landscape. Based on the Material Type, the market is categorized into Organic, Inorganic, and Hybrid. Based on Application, the market is segmented into Water Treatment, Fuel Cells, Biomedical, Food Processing, and Others. Based on region, the market is divided into North America, Europe, Asia Pacific, South America, Middle East & Africa.
BASF SE, Alfa Laval AB, Applied Membranes Inc., AXEON Water Technologies Inc., DowDuPont Inc., Hunan Keensen Technology Co. Ltd., inopor GmbH, Koch Membrane Systems Inc., Pure-Pro Water Corporation, SiMPore Inc. are some of the key players in the Global Nanoporous Membrane Market.
In this report, Global Nanoporous Membrane market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in Global Nanoporous Membrane market.
With the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report: