市場調査レポート
商品コード
1542849

5G時代のRAN自動化、SON、RIC、xApps、rApps - 機会、課題、戦略、予測(2024年~2030年)

RAN Automation, SON, RIC, xApps & rApps in the 5G Era: 2024 - 2030 - Opportunities, Challenges, Strategies & Forecasts

出版日: | 発行: SNS Telecom & IT | ページ情報: 英文 580 Pages, 47 Tables and Figures | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.24円
5G時代のRAN自動化、SON、RIC、xApps、rApps - 機会、課題、戦略、予測(2024年~2030年)
出版日: 2024年08月28日
発行: SNS Telecom & IT
ページ情報: 英文 580 Pages, 47 Tables and Figures
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

主な調査結果

当レポートの主な調査結果は以下の通りです。

  • ブラウンフィールド事業者によるOpen RANインフラ展開の第二波と並行して、RIC、SMO、x/rAppsへの世界の支出は2024年~2027年にCAGRで125%を超える成長が予測されています。Open RAN自動化市場は、SMO-to-Non-RT RICインターフェース、RICプラットフォーム間のアプリケーションポータビリティ、x/rApps間の対立緩和などの標準化ギャップや技術的課題が解決されるにつれて、2027年末までに年間投資で7億米ドル近くを占めるようになります。
  • RAN自動化ソフトウェア・サービス市場には、Open RAN自動化、RANベンダーのSONソリューション、サードパーティのC-SONプラットフォーム、ベースバンド統合インテリジェントRANアプリケーション、RAN計画・最適化ソフトウェア、検査/測定ソリューションなどが含まれ、同期間にCAGRで約8%の成長が見込まれます。
  • 従来のD-SONとC-SONアプローチの欠点は、オープンインターフェース、共通情報モデル、仮想化、ソフトウェア駆動型ネットワーキングへのセルラー産業のシフトとともに、RANのプログラマビリティと自動化をより高いレベルで実現する標準ベースのコンポーネントを備えたOpen RAN自動化への移行を促しています。
  • オープンRAN自動化の動きは、アプリケーション開発者の多様なコミュニティからのイノベーションを刺激しています。SMO、Non-RT RIC、Near-RT RICの各製品を提供する十数社に加え、50を超える企業がxAppsやrAppsの開発に積極的に取り組んでいます。
  • モバイル事業者の中には、RAN自動化の専門知識をコモディティ化するために専門の事業部門を設立したところもあります。NTT DoCoMoのOREXブランドとRakuten Mobileの姉妹企業であるRakuten Symphonyは、その代表的な2つの有名なケースです。また、今後数年間は、ノースイースタン大学のzTouch NetworksやTU IlmenauのAiVaderのように、商業グレードのオープンRAN自動化を提供する学術機関のスピンオフが増えると予測されます。
  • SMOとRICのエコシステムは、BroadcomによるVMwareの買収とHPEによるJuniper Networksの買収計画によって、早期の統合の兆しを見せています。サードパーティのRAN自動化プラットフォームの商業的成功次第では、過去10年間のSONブームを彷彿とさせるようなM&A(合併・買収)がさらに進むと予測されます。
  • ライブネットワークにおけるSONベースのRAN自動化の利点はよく知られていますが、RIC、SMO、x/rAppsのアプローチでは、さらに期待が高まっています。例えば、日本のブラウンフィールド事業者であるNTT DoCoMoは、Open RANを利用した自動化によってTCOを最大30%削減し、基地局の消費電力を最大50%削減できると見込んでいます。
  • 国内のライバルであるRakuten Mobileが、RICがホストするRAN自動化アプリケーションを使用して、ライブネットワークでセルあたり約17%の省エネをすでに達成していることは注目に値します。ラボでの試験が成功した後、このグリーンフィールド事業者は、より精巧なAI/MLモデルを使い、節約率を25%まで高めることを目指しています。
  • 公共移動通信事業者ネットワーク以外に、垂直産業や民間の無線セグメントでも関心が高まっています。米国国防総省(DoD)は、RICがホストするx/rAppsの可能性を積極的に探っており、商業と戦闘機の通信シナリオの両方で、Open RANネットワークにおける広範なセキュリティ脅威を検出、分析、緩和する能力を強化しています。その他の例としては、台湾の電子機器メーカーであるInventecが、スマートファクトリー向けのプライベート5Gネットワークソリューションの一部として、屋内測位とトラフィックステアリングにrAppsを組み込んでいます。

当レポートでは、世界のRAN自動化市場について調査分析し、バリューチェーン、市場促進要因、採用の障壁、実現技術、機能分野、ユースケース、主要動向、将来のロードマップ、標準化、ケーススタディ、エコシステム企業のプロファイルと戦略など、詳細な評価を提供しています。

目次

第1章 イントロダクション

  • エグゼクティブサマリー
  • 取り扱うトピック
  • 予測セグメンテーション
  • 主な質問への回答
  • 主な調査結果
  • 調査手法
  • 対象読者

第2章 RAN自動化の概要

  • RAN自動化とは何か
  • インテリジェントRAN実装における自動化のレベル
  • RAN自動化の機能分野
  • RAN自動化のバリューチェーン
  • 市場促進要因
    • 5G時代のRANの複雑化
    • オープンRANとvRAN(仮想化RAN)の採用
    • TCO(総所有コスト)の削減
    • 省エネ、持続可能性、環境保全
    • Operational AI技術と生成AI技術の双方の人気
    • 加入者の体験とネットワークパフォーマンス上の利益
    • ネットワークスライシングと新たな収益創出の機会
    • 共有スペクトル、プライベート5G、ニュートラルホストネットワークの普及
  • 市場障壁
    • サービスプロバイダーの収益停滞とコストカット策
    • ブラウンフィールドRAN再投資サイクルの遅いペース
    • 実装に関連する技術的課題
    • 標準化のギャップと複数ベンダーの相互運用性
    • x/rApps間の対立緩和
    • 既存RANベンダーの優位性
    • 自動化における保守主義と信頼
    • ネットワークセキュリティとプライバシーに関する懸念

第3章 RAN自動化技術、アーキテクチャ、ユースケース

  • 従来のSONソリューション
  • オープン仕様ベースのRIC、SMO、xApps、rApps
  • AIネイティブRANインフラ
  • RAN計画と最適化
  • 検査・測定ソリューション
  • RANを超えた自動化とインテリジェンス
  • ネットワーク自動化のユースケース

第4章 インテリジェントRAN実装の主要動向

  • SONからオープンRANベースのRIC、SMO、xApps、rAppsへの移行
  • より高いレベルの自動化への接近
  • Operational AIとML
  • 生成AI(Generative AI)
  • ネットワークデータアナリティクス
  • ネットワーク運用の可観測性
  • クラウドネイティブとソフトウェア中心のネットワーク
  • その他の動向と発展

第5章 標準化と共同活動

  • 3GPP
  • AI-RAN Alliance
  • ETSI
  • GSMA
  • GTAA
  • IETF
  • ITU
  • Linux Foundation
  • NGMN Alliance
  • ONF
  • O-RAN Alliance
  • OSA
  • OSSii
  • SCF
  • TIP
  • TM Forum
  • その他の活動と学術研究

第6章 RAN自動化のケーススタディ

  • AT&T
  • Bell Canada
  • Bharti Airtel
  • BT Group
  • DT (Deutsche Telekom)
  • Elisa
  • Globe Telecom
  • NTT DoCoMo
  • Ooredoo
  • Orange
  • Rakuten Mobile
  • Singtel
  • SK Telecom
  • STC (Saudi Telecom Company)
  • Telecom Argentina
  • Telefonica Group
  • TIM (Telecom Italia Mobile)
  • Turkcell
  • Verizon Communications
  • Vodafone Group
  • その他の近年の展開と進行中のプロジェクト

第7章 主なエコシステム企業

  • A10 Networks
  • A5G Networks
  • Aalyria
  • Aarna Networks
  • Abside Networks
  • Accedian
  • Accelleran
  • Accuver (InnoWireless)
  • Acentury
  • Actiontec Electronics
  • Adtran
  • Aglocell
  • AI-LINK
  • Aira Technologies
  • AirHop Communications
  • Airspan Networks
  • AiVader
  • Aliniant
  • Allot
  • Alpha Networks
  • Amazon/AWS (Amazon Web Services)
  • AMD (Advanced Micro Devices)
  • Amdocs
  • Anktion (Fujian) Technology
  • Anritsu
  • Antevia Networks
  • Arcadyan Technology Corporation (Compal Electronics)
  • Argela
  • Arm
  • ArrayComm (Chengdu ArrayComm Wireless Technologies)
  • Arrcus
  • Artemis Networks
  • Artiza Networks
  • Arukona
  • AsiaInfo Technologies
  • Askey Computer Corporation (ASUS - ASUSTeK Computer)
  • ASOCS
  • Aspire Technology (NEC Corporation)
  • ASTRI (Hong Kong Applied Science and Technology Research Institute)
  • Ataya
  • ATDI
  • Atesio
  • Atrinet (ServiceNow)
  • Auray Technology (Auden Techno)
  • Aviat Networks
  • Azcom Technology
  • Baicells
  • Betacom
  • BLiNQ Networks (CCI - Communication Components Inc.)
  • Blu Wireless
  • Booz Allen Hamilton
  • BravoCom
  • Broadcom
  • BTI Wireless
  • BubbleRAN
  • B-Yond/Reailize
  • C3Spectra
  • CableFree (Wireless Excellence)
  • Cambium Networks
  • Capgemini Engineering
  • CBNG (Cambridge Broadband Networks Group)
  • Celfinet (Cyient)
  • Celona
  • CelPlan Technologies
  • Ceragon Networks
  • CGI
  • Chengdu NTS
  • CICT - China Information and Communication Technology Group (China Xinke Group)
  • Ciena Corporation
  • CIG (Cambridge Industries Group)
  • Cisco Systems
  • Clavister
  • Cohere Technologies
  • Comarch
  • Comba Telecom
  • CommAgility (E-Space)
  • CommScope
  • Compal Electronics
  • COMSovereign
  • Contela
  • Corning
  • Creanord
  • Cyient
  • DeepSig
  • Dell Technologies
  • DGS (Digital Global Systems)
  • Digis Squared
  • Digitata
  • D-Link Corporation
  • Druid Software
  • DZS
  • ECE (European Communications Engineering)
  • EDX Wireless
  • eino
  • Elisa Polystar
  • Encora
  • Equiendo
  • Ericsson
  • Errigal
  • ETRI (Electronics & Telecommunications Research Institute, South Korea)
  • EXFO
  • F5
  • Fairspectrum
  • Federated Wireless
  • Firecell
  • Flash Networks
  • Forsk
  • Fortinet
  • Foxconn (Hon Hai Technology Group)
  • Fraunhofer HHI (Heinrich Hertz Institute)
  • Fujitsu
  • FullRays (LDAS - LocationDAS)
  • Future Connections
  • FYRA
  • G REIGNS (HTC Corporation)
  • Gemtek Technology
  • GENEViSiO (QNAP Systems)
  • Gigamon
  • GigaTera Communications (KMW)
  • GlobalLogic (Hitachi)
  • Globalstar
  • Google (Alphabet)
  • Groundhog Technologies
  • Guavus (Thales)
  • GXC (Formerly GenXComm)
  • HCLTech (HCL Technologies)
  • Helios (Fujian Helios Technologies)
  • HFR Networks
  • Highstreet Technologies
  • Hitachi
  • HPE (Hewlett Packard Enterprise)
  • HSC (Hughes Systique Corporation)
  • Huawei
  • IBM
  • iBwave Solutions
  • iConNext
  • Infinera
  • Infosys
  • Infovista
  • Inmanta
  • Innovile
  • InnoWireless
  • Intel Corporation
  • InterDigital
  • Intracom Telecom
  • Inventec Corporation
  • ISCO International
  • IS-Wireless
  • Itential
  • ITRI (Industrial Technology Research Institute, Taiwan)
  • JMA Wireless
  • JRC (Japan Radio Company)
  • Juniper Networks (HPE - Hewlett Packard Enterprise)
  • Key Bridge Wireless
  • Keysight Technologies
  • Kleos
  • KMW
  • Kumu Networks
  • Lemko Corporation
  • Lenovo
  • Lime Microsystems
  • LIONS Technology
  • LITE-ON Technology Corporation
  • LitePoint (Teradyne)
  • LS telcom
  • LuxCarta
  • MantisNet
  • Marvell Technology
  • Mavenir
  • Maxar Technologies
  • Meta
  • MicroNova
  • Microsoft Corporation
  • MikroTik
  • MitraStar Technology (Unizyx Holding Corporation)
  • Mobileum
  • MosoLabs (Sercomm Corporation)
  • MYCOM OSI
  • Nash Technologies
  • NEC Corporation
  • Net AI
  • Netcracker Technology (NEC Corporation)
  • NETSCOUT Systems
  • Netsia (Argela)
  • Neutroon Technologies
  • New H3C Technologies (Tsinghua Unigroup)
  • New Postcom Equipment
  • Nextivity
  • Node-H
  • Nokia
  • Novowi
  • NuRAN Wireless
  • NVIDIA Corporation
  • NXP Semiconductors
  • Oceus Networks
  • Omnitele
  • OneLayer
  • Ookla
  • Opanga Networks
  • OREX (NTT DoCoMo)
  • P.I. Works
  • Palo Alto Networks
  • Parallel Wireless
  • Pente Networks
  • Phluido
  • Picocom
  • Pivotal Commware
  • Potevio (CETC - China Electronics Technology Group Corporation)
  • QCT (Quanta Cloud Technology)
  • Qualcomm
  • Quanta Computer
  • Qucell Networks (InnoWireless)
  • RADCOM
  • Radisys (Reliance Industries)
  • Radware
  • Rakuten Symphony
  • Ranlytics
  • Ranplan Wireless
  • Rebaca Technologies
  • Red Hat (IBM)
  • RED Technologies
  • REPLY
  • RIMEDO Labs
  • Rivada Networks
  • Rohde & Schwarz
  • Ruijie Networks
  • RunEL
  • SageRAN (Guangzhou SageRAN Technology)
  • Samji Electronics
  • Samsung
  • Sandvine
  • Sercomm Corporation
  • ServiceNow
  • Shabodi
  • Signalwing
  • SIRADEL
  • Skyvera (TelcoDR)
  • SOLiD
  • Sooktha
  • Spectrum Effect
  • Spirent Communications
  • SRS (Software Radio Systems)
  • SSC (Shared Spectrum Company)
  • Star Solutions
  • Subex
  • Sunwave Communications
  • Supermicro (Super Micro Computer)
  • SynaXG Technologies
  • Systemics-PAB
  • T&W (Shenzhen Gongjin Electronics)
  • Tarana Wireless
  • TCS (Tata Consultancy Services)
  • Tech Mahindra
  • Tecore Networks
  • TECTWIN
  • Telrad Networks
  • TEOCO/Aircom
  • ThinkRF
  • TI (Texas Instruments)
  • TietoEVRY
  • Tropico (CPQD - Center for Research and Development in Telecommunications, Brazil)
  • TTG International
  • Tupl
  • ULAK Communication
  • Vavitel (Shenzhen Vavitel Technology)
  • VHT (Viettel High Tech)
  • VIAVI Solutions
  • VMware (Broadcom)
  • VNL - Vihaan Networks Limited (Shyam Group)
  • Wave Electronics
  • WDNA (Wireless DNA)
  • WIM Technologies
  • Wind River Systems
  • Wipro
  • Wiwynn (Wistron Corporation)
  • WNC (Wistron NeWeb Corporation)
  • Xingtera
  • ZaiNar
  • Z-Com
  • Zeetta Networks
  • Zinkworks
  • ZTE
  • zTouch Networks
  • Zyxel (Unizyx Holding Corporation)

第8章 市場規模の推計と予測

  • モバイルネットワーク自動化
  • ネットワークドメイン二次市場
  • RAN自動化の機能分野
  • SONベース自動化二次市場
  • オープンRAN自動化二次市場
  • アクセス技術の世代
  • 地域セグメンテーション
    • 北米
    • アジア太平洋
    • 欧州
    • 中東・アフリカ
    • ラテンアメリカと中米

第9章 結論と戦略的推奨

  • なぜ市場は成長が見込まれるか
  • 将来のロードマップ(2024年~2030年)
  • RAN自動化の実際の利益とTCO削減の可能性の検討
  • RANエンジニアリングの役割に対するインテリジェント自動化の影響
  • SONからオープンRAN自動化への移行
  • ユースケースとAI/MLアルゴリズムの進化
  • エネルギー効率と持続可能性への注目の高まり
  • 垂直産業と民間無線自動化
  • x/rApp開発者の多様なコミュニティ
  • SMOとRICエコシステムにおける統合の兆し
  • どのRAN自動化プラットフォームとアプリケーションベンダーが市場をリードしているか
  • RANベースバンド製品内でサードパーティアプリケーションのホスティングの見通し
  • AI/MLベースの6Gエアインターフェースへの道を切り開く
  • AIとRANインフラの融合
  • 戦略的推奨

第10章 専門家の意見 - インタビューの記録

  • AirHop Communications
  • Amdocs
  • Groundhog Technologies
  • Innovile
  • Net AI
  • Nokia
  • P.I. Works
  • Qualcomm
  • Rakuten Mobile
  • RIMEDO Labs
目次

Automation of the RAN (Radio Access Network) - the most expensive, technically complex and power-intensive part of cellular infrastructure - is a key aspect of mobile operators' digital transformation strategies aimed at reducing their TCO (Total Cost of Ownership), improving network quality and achieving revenue generation targets. In conjunction with AI (Artificial Intelligence) and ML (Machine Learning), RAN automation has the potential to significantly transform mobile network economics by reducing the OpEx (Operating Expenditure)-to-revenue ratio, minimizing energy consumption, lowering CO2 (Carbon Dioxide) emissions, deferring avoidable CapEx (Captial Expenditure), optimizing performance, improving user experience and enabling new services.

The RAN automation market traces its origins to the beginning of the LTE era when SON (Self-Organizing Network) technology was introduced to reduce cellular network complexity through self-configuration, self-optimization and self-healing. While embedded D-SON (Distributed SON) capabilities such as ANR (Automatic Neighbor Relations) have become a standard feature in RAN products, C-SON (Centralized SON) solutions that abstract control from edge nodes for network-wide actions have been adopted by less than a third of world's approximately 800 national mobile operators due to constraints associated with multi-vendor interoperability, scalability and latency.

These shortcomings, together with the cellular industry's shift towards open interfaces, common information models, virtualization and software-driven networking, are driving a transition from the traditional D-SON and C-SON approach to Open RAN automation with standards-based components - specifically the Near-RT (Real-Time) and Non-RT RICs (RAN Intelligent Controllers), SMO (Service Management & Orchestration) framework, xApps (Extended Applications) and rApps (RAN Applications) - that enable greater levels of RAN programmability and automation.

Along with the ongoing SON to RIC transition, RAN automation use cases have also evolved over the last decade. For example, relatively basic MLB (Mobility Load Balancing) capabilities have metamorphosed into more sophisticated policy-guided traffic steering applications that utilize AI/ML-driven optimization algorithms to efficiently adapt to peaks and troughs in network load and service usage by dynamically managing and redistributing traffic across radio resources and frequency layers.

Due to the much higher density of radios and cell sites in the 5G era, energy efficiency has emerged as one of the most prioritized use cases of RAN automation as forward-thinking mobile operators push ahead with sustainability initiatives to reduce energy consumption, carbon emissions and operating costs without degrading network quality. Some of the other use cases that have garnered considerable interest from the operator community include network slicing enablement, application-aware optimization and anomaly detection.

While the benefits of SON-based RAN automation in live networks are well-known, expectations are even higher with the RIC, SMO and x/rApps approach. For example, Japanese brownfield operator NTT DoCoMo expects to lower its TCO by up to 30% and decrease power consumption at base stations by as much as 50% using Open RAN automation. It is worth highlighting that domestic rival Rakuten Mobile has already achieved approximately 17% energy savings per cell in its live network using RIC-hosted RAN automation applications. Following successful lab trials, the greenfield operator aims to increase savings to 25% with more sophisticated AI/ML models.

Although Open RAN automation efforts seemingly lost momentum beyond the field trial phase for the past couple of years, several commercial engagements have emerged since then, with much of the initial focus on the SMO, Non-RT RIC and rApps for automated management and optimization across Open RAN, purpose-built and hybrid RAN environments. Within the framework of its five-year $14 Billion Open RAN infrastructure contract with Ericsson, AT&T is adopting the Swedish telecommunications giant's SMO and Non-RT RIC solution to replace two legacy C-SON systems. In neighboring Canada, Telus has also initiated the implementation of an SMO and RIC platform along with its multi-vendor Open RAN deployment to transform up to 50% of its RAN footprint and swap out Huawei equipment from its 4G/5G network.

Similar efforts are also underway in other regions. For example, in Europe, Swisscom is deploying an SMO and Non-RT RIC platform to provide multi-technology network management and automation capabilities as part of a wider effort to future-proof its brownfield mobile network, while Deutsche Telekom is progressing with plans to develop its own vendor-independent SMO framework. Open RAN automation is also expected to be introduced as part of Vodafone Group's global tender for refreshing 170,000 cell sites.

Deployments of newer generations of proprietary SON-based RAN automation solutions have not stalled either. In its pursuit of achieving L4 (Highly Autonomous Network) operations, China Mobile has recently initiated the implementation of a hierarchical RAN automation platform and an associated digital twin system, starting with China's Henan province. Among other interesting examples, SoftBank is implementing a closed loop automation solution for cluster-wide RAN optimization in stadiums, event venues, and other strategic locations across Japan, which supports data collection and parameter tuning in 1-5 minute intervals as opposed to the 15-minute control cycle of traditional C-SON systems. It should be noted that the Japanese operator eventually plans to adopt RIC-hosted centralized RAN optimization applications in the future.

In addition, with the support of several mobile operators, including SoftBank, Vodafone, Bell Canada and Viettel, the idea of hosting third party applications for real-time intelligent control and optimization - also referred to as dApps (Distributed Applications) - directly within RAN baseband platforms is beginning to gain traction. As a counterbalance to this approach, Ericsson, Nokia, Huawei and other established RAN vendors are making considerable progress with a stepwise approach towards embedding AI and ML functionalities deeper into their DU (Distributed Unit) and CU (Centralized Unit) products in line with the 3GPP's long-term vision of an AI/ML-based air interface in the 6G era.

SNS Telecom & IT estimates that global spending on RIC, SMO and x/rApps will grow at a CAGR of more than 125% between 2024 and 2027 alongside the second wave of Open RAN infrastructure rollouts by brownfield operators. The Open RAN automation market will eventually account for nearly $700 Million in annual investments by the end of 2027 as standardization gaps and technical challenges in terms of the SMO-to-Non-RT RIC interface, application portability across RIC platforms and conflict mitigation between x/rApps are ironed out. The wider RAN automation software and services market - which includes Open RAN automation, RAN vendor SON solutions, third party C-SON platforms, baseband-integrated intelligent RAN applications, RAN planning and optimization software, and test/measurement solutions - is expected to grow at a CAGR of approximately 8% during the same period.

The "RAN Automation, SON, RIC, xApps & rApps in the 5G Era: 2024 - 2030 - Opportunities, Challenges, Strategies & Forecasts" report presents an in-depth assessment of the RAN automation market, including the value chain, market drivers, barriers to uptake, enabling technologies, functional areas, use cases, key trends, future roadmap, standardization, case studies, ecosystem player profiles and strategies. The report also provides global and regional market size forecasts for RAN and end-to-end mobile network automation from 2024 to 2030. The forecasts cover three network domains, nine functional areas, three access technologies and five regional markets.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

Key Findings

The report has the following key findings:

  • SNS Telecom & IT estimates that global spending on RIC, SMO and x/rApps will grow at a CAGR of more than 125% between 2024 and 2027 alongside the second wave of Open RAN infrastructure rollouts by brownfield operators. The Open RAN automation market will eventually account for nearly $700 Million in annual investments by the end of 2027 as standardization gaps and technical challenges in terms of the SMO-to-Non-RT RIC interface, application portability across RIC platforms and conflict mitigation between x/rApps are ironed out.
  • The wider market for RAN automation software and services - which includes Open RAN automation, RAN vendor SON solutions, third party C-SON platforms, baseband-integrated intelligent RAN applications, RAN planning and optimization software, and test/measurement solutions - is expected to grow at a CAGR of approximately 8% during the same period.
  • The shortcomings of the traditional D-SON and C-SON approach, together with the cellular industry's shift towards open interfaces, common information models, virtualization and software-driven networking, are driving a transition to Open RAN automation with standards-based components that enable greater levels of RAN programmability and automation.
  • The Open RAN automation movement is stimulating innovation from a diversified community of application developers. In addition to well over a dozen providers of SMO, Non-RT RIC and Near-RT RIC products, more than 50 companies are actively engaged in the development of xApps and rApps.
  • Some mobile operators have established dedicated business units to commoditize their RAN automation expertise. NTT DoCoMo's OREX brand and Rakuten Mobile's sister company Rakuten Symphony are two well-known cases in point. In the coming years, we also expect to see more spinoffs of academic institutes with commercial-grade Open RAN automation offerings, such as Northeastern University's zTouch Networks and TU Ilmenau's AiVader.
  • The SMO and RIC ecosystem is exhibiting early signs of consolidation with Broadcom's takeover of VMware and HPE's planned acquisition of Juniper Networks, although both deals have much wider ranging implications for the AI infrastructure and networking industries. Depending on the commercial success of third party RAN automation platforms, we anticipate seeing further M&A (Mergers & Acquisition) activity reminiscent of the SON boom in the previous decade.
  • While the benefits of SON-based RAN automation in live networks are well-known, expectations are even higher with the RIC, SMO and x/rApps approach. For example, Japanese brownfield operator NTT DoCoMo expects to lower its TCO by up to 30% and decrease power consumption at base stations by as much as 50% using Open RAN automation.
  • It is worth highlighting that domestic rival Rakuten Mobile has already achieved approximately 17% energy savings per cell in its live network using RIC-hosted RAN automation applications. Following successful lab trials, the greenfield operator aims to increase savings to 25% with more sophisticated AI/ML models.
  • Outside of public mobile operator networks, interest is also growing in vertical industries and the private wireless segment. The U.S. DOD (Department of Defense) is actively exploring the potential of RIC-hosted x/rApps to enhance the ability to detect, analyze, and mitigate a wide range of security threats in Open RAN networks for both commercial and warfighter communication scenarios. Among other examples, Taiwanese electronics manufacturer Inventec has incorporated rApps for indoor positioning and traffic steering as part of its private 5G network solution for smart factories.
  • Although Open RAN automation efforts seemingly lost momentum beyond the field trial phase for the past couple of years, several commercial engagements have emerged since then, with much of the initial focus on the SMO, Non-RT RIC and rApps for automated management and optimization across Open RAN, purpose-built and hybrid RAN environments.
  • Within the framework of its five-year $14 Billion Open RAN infrastructure contract with Ericsson, AT&T is adopting the Swedish telecommunications giant's SMO and Non-RT RIC solution to replace two legacy C-SON systems. In neighboring Canada, Telus has also initiated the implementation of an SMO and RIC platform along with its multi-vendor Open RAN deployment to transform up to 50% of its RAN footprint and swap out Huawei equipment from its 4G/5G network.
  • Similar efforts are also underway in other regions. For example, in Europe, Swisscom is deploying an SMO and Non-RT RIC platform to provide multi-technology network management and automation capabilities as part of a wider effort to future-proof its brownfield mobile network, while Deutsche Telekom is progressing with plans to develop its own vendor-independent SMO framework. Open RAN automation is also expected to be introduced as part of Vodafone Group's global tender for refreshing 170,000 cell sites.
  • Deployments of newer generations of proprietary SON-based RAN automation solutions have not stalled either. In its pursuit of achieving L4 automation, China Mobile has recently initiated the implementation of a hierarchical RAN automation platform and an associated digital twin system, starting with China's Henan province.
  • Among other interesting examples, SoftBank is implementing a closed loop automation solution for cluster-wide RAN optimization in stadiums, event venues, and other strategic locations across Japan, which supports data collection and parameter tuning in 1-5 minute intervals as opposed to the 15-minute control cycle of traditional C-SON systems. It should be noted that the Japanese operator eventually plans to adopt RIC-hosted centralized RAN optimization applications in the future.
  • In addition, with the support of several mobile operators, including SoftBank, Vodafone, Bell Canada and Viettel, the idea of hosting third party applications for real-time intelligent control and optimization - also referred to as dApps - directly within RAN baseband platforms is beginning to gain traction.
  • As a counterbalance to this approach, Ericsson, Nokia, Huawei and other established RAN vendors are making considerable progress with a stepwise approach towards embedding AI and ML functionalities deeper into their DU and CU products in line with the 3GPP's long-term vision of an AI/ML-based air interface in the 6G era.
  • Beyond AI-driven RAN performance and efficiency improvements, mobile operators, technology suppliers and other stakeholders are also setting their sights on TCO benefits and new revenue opportunities enabled by the convergence of AI and RAN, including co-hosting vRAN and AI workloads on the same underlying infrastructure to maximize asset utilization and leveraging the RAN as a platform for edge AI services.

Topics Covered

The report covers the following topics:

  • Introduction to RAN automation
  • Value chain and ecosystem structure
  • Market drivers and challenges
  • Functional areas of RAN automation
  • RAN automation technology and architecture, including D-SON, C-SON, H-SON, Near-RT/Non-RT RICs, SMO, x/rApps, baseband-integrated intelligent RAN applications, RAN planning and optimization software, and test & measurement solutions
  • Review of over 70 RAN automation use cases, ranging from ANR, PCI and RACH optimization to advanced traffic steering, QoE-based resource allocation, energy savings, network slicing, private 5G automation, anomaly detection and dynamic RAN security
  • Key trends in intelligent RAN implementations, including the SON-to-RIC transition, closed loop automation, intent-driven management, operational AI/ML, Gen AI, data analytics and application awareness
  • Cross-domain mobile network automation enablers and application scenarios across the RAN, core and xHaul transport segments of cellular infrastructure
  • Detailed case studies of 20 production-grade RAN automation deployments and examination of ongoing projects covering both traditional SON and Open RAN automation approaches
  • Future roadmap of RAN automation
  • Standardization and collaborative initiatives
  • Profiles and strategies of more than 280 ecosystem players, including RAN infrastructure vendors, SON, RIC and SMO platform providers, x/rApp developers, AI/ML technology specialists, RAN planning and optimization software suppliers, and test/measurement solution providers
  • Exclusive interview transcripts from 10 companies across the RAN automation value chain: AirHop Communications, Amdocs, Groundhog Technologies, Innovile, Net AI, Nokia, P.I. Works, Qualcomm, Rakuten Mobile and RIMEDO Labs
  • Strategic recommendations for RAN automation solution providers and mobile operators
  • Market analysis and forecasts from 2024 to 2030

Forecast Segmentation

Market forecasts are provided for each of the following submarkets and their subcategories:

Mobile Network Automation Submarkets

  • RAN
  • Mobile Core
  • xHaul (Fronthaul, Midhaul & Backhaul) Transport

RAN Automation Functional Areas

  • SON-Based Automation
    • RAN Vendor SON Solutions
    • Third Party C-SON Platforms
  • Open RAN Automation
    • Non-RT RIC & SMO
    • Near-RT RIC
    • rApps
    • xApps
  • Baseband-Integrated Intelligent RAN Applications
  • RAN Planning & Optimization Software
  • Test & Measurement Solutions

Access Technology Generation Submarkets

  • LTE
  • 5G NR
  • 6G

Regional Markets

  • North America
  • Asia Pacific
  • Europe
  • Middle East & Africa
  • Latin & Central America

Key Questions Answered:

The report provides answers to the following key questions:

  • How big is the RAN automation opportunity?
  • What trends, drivers and challenges are influencing its growth?
  • What will the market size be in 2027, and at what rate will it grow?
  • Which submarkets and regions will see the highest percentage of growth?
  • What are the practical and quantifiable benefits of RAN automation based on live commercial deployments?
  • What is the TCO reduction and cost savings potential of RAN automation?
  • What is the adoption status of traditional SON solutions and Open RAN specifications-compliant Near-RT RIC, Non-RT RIC, SMO, xApps and rApps?
  • How can brownfield operators capitalize on Open RAN automation to simplify the management and optimization of hybrid RAN environments?
  • In what way will automation and AI/ML facilitate network slicing, MIMO, beamforming, lower-layer optimization and other advanced RAN capabilities in the 5G era?
  • What are the application scenarios of operational AI/ML and Gen AI in the RAN automation market?
  • What opportunities exist for automation in the mobile core and xHaul transport domains?
  • How does RAN automation ease the deployment and operation of private 5G networks?
  • In what way does intelligent automation impact the role of RAN engineers?
  • Who are the key ecosystem players, and what are their strategies?
  • Which RAN automation platform and application vendors are leading the market?
  • What strategies should RAN automation solution providers and mobile operators adopt to remain competitive?

Table of Contents

1. Chapter 1: Introduction

  • 1.1. Executive Summary
  • 1.2. Topics Covered
  • 1.3. Forecast Segmentation
  • 1.4. Key Questions Answered
  • 1.5. Key Findings
  • 1.6. Methodology
  • 1.7. Target Audience

2. Chapter 2: An Overview of RAN Automation

  • 2.1. What is RAN Automation?
    • 2.1.1. Automating Repetitive Manual Tasks
    • 2.1.2. RAN Analytics & Data-Driven Decision Making
    • 2.1.3. AI (Artificial Intelligence) & ML (Machine Learning) Integration
    • 2.1.4. SMO (Service Management & Orchestration) Frameworks
  • 2.2. Levels of Automation in Intelligent RAN Implementations
    • 2.2.1. L0 - Manual Operation
    • 2.2.2. L1 - Assisted Management
    • 2.2.3. L2 - Partial Autonomous Network
    • 2.2.4. L3 - Conditional Autonomous Network
    • 2.2.5. L4 - Highly Autonomous Network
    • 2.2.6. L5 - Fully Autonomous Network
  • 2.3. Functional Areas of RAN Automation
    • 2.3.1. The SON (Self-Organizing Network) Concept
    • 2.3.2. RIC (RAN Intelligent Controller), xApps & rApps
    • 2.3.3. Native AI Capabilities in RAN Infrastructure
    • 2.3.4. Automation-Assisted RAN Planning & Optimization
    • 2.3.5. RAN Test & Measurement Solutions
  • 2.4. RAN Automation Value Chain
    • 2.4.1. Semiconductor & Enabling AI/ML Technology Specialists
    • 2.4.2. RAN Infrastructure Vendors
    • 2.4.3. SON, xApp/rApp & Automation Application Developers
    • 2.4.4. RIC, SMO & OSS Platform Providers
    • 2.4.5. RAN Planning & Optimization Software Suppliers
    • 2.4.6. Test & Measurement Solution Providers
    • 2.4.7. Wireless Service Providers
      • 2.4.7.1. National Mobile Operators
      • 2.4.7.2. Fixed-Line Service Providers
      • 2.4.7.3. Private 5G Network Operators
      • 2.4.7.4. Neutral Hosts
    • 2.4.8. End Users
      • 2.4.8.1. Consumers
      • 2.4.8.2. Enterprises & Vertical Industries
  • 2.5. Market Drivers
    • 2.5.1. Growing Complexity of RAN in the 5G Era
    • 2.5.2. Open RAN & vRAN (Virtualized RAN) Adoption
    • 2.5.3. TCO (Total Cost of Ownership) Reduction
    • 2.5.4. Energy Savings, Sustainability & Environmental Conservation
    • 2.5.5. Popularity of Both Operational & Generative AI Technologies
    • 2.5.6. Subscriber Experience & Network Performance Benefits
    • 2.5.7. Network Slicing & New Revenue-Generating Opportunities
    • 2.5.8. Proliferation of Shared Spectrum, Private 5G & Neutral Host Networks
  • 2.6. Market Barriers
    • 2.6.1. Service Provider Revenue Stagnation & Cost-Cutting Measures
    • 2.6.2. Slow Pace of Brownfield RAN Reinvestment Cycles
    • 2.6.3. Implementation-Related Technical Challenges
    • 2.6.4. Standardization Gaps & Multi-Vendor Interoperability
    • 2.6.5. Conflict Mitigation Between x/rApps
    • 2.6.6. Dominance of Incumbent RAN Vendors
    • 2.6.7. Conservatism & Trust in Automation
    • 2.6.8. Network Security & Privacy Concerns

3. Chapter 3: RAN Automation Technology, Architecture & Use Cases

  • 3.1. Traditional SON Solutions
    • 3.1.1. Application Areas
      • 3.1.1.1. Self-Configuration
      • 3.1.1.2. Self-Optimization
      • 3.1.1.3. Self-Healing
      • 3.1.1.4. Self-Protection
      • 3.1.1.5. Self-Learning
    • 3.1.2. SON Architecture
      • 3.1.2.1. D-SON (Distributed SON)
      • 3.1.2.2. C-SON (Centralized SON)
      • 3.1.2.3. H-SON (Hybrid SON)
  • 3.2. Open Specifications-Based RIC, SMO, xApps & rApps
    • 3.2.1. Architectural Elements
      • 3.2.1.1. Near-RT (Real-Time) RIC
      • 3.2.1.2. Non-RT RIC
      • 3.2.1.3. SMO Framework
      • 3.2.1.4. xApps (Extended Applications)
      • 3.2.1.5. rApps (RAN Applications)
    • 3.2.2. Open Interfaces
      • 3.2.2.1. A1 Interface Between Non-RT RIC & Near-RT RIC
      • 3.2.2.2. E2 Interface Between Near RT-RIC & RAN Nodes
      • 3.2.2.3. O1 Interface for OAM (Operations, Administration & Maintenance)
      • 3.2.2.4. O2 Interface for Cloud Infrastructure Management
      • 3.2.2.5. R1 Interface for rApp Portability Across RIC Platforms
      • 3.2.2.6. xApp APIs (Application Programming Interfaces)
      • 3.2.2.7. Potential Decoupling of the SMO & Non-RT RIC
      • 3.2.2.8. Open Fronthaul M-Plane Interface
      • 3.2.2.9. Y1 Interface for RAN Analytics Exposure
  • 3.3. AI-Native RAN Infrastructure
    • 3.3.1. AI/ML-Based Air Interface for 6G Networks
    • 3.3.2. Microsecond-Level Intelligent RAN Control & Optimization
    • 3.3.3. Synergies With the dApps (Distributed Applications) Concept
    • 3.3.4. AI-RAN Workload Sharing & RAN as a Platform for Edge AI Services
  • 3.4. RAN Planning & Optimization
    • 3.4.1. RAN Planning & Optimization Software Platforms
    • 3.4.2. Specialized Products for In-Building Wireless Network Design
    • 3.4.3. Other Categories of RAN Operations Support & Optimization Tools
  • 3.5. Test & Measurement Solutions
    • 3.5.1. Testing of RIC Platforms & Other RAN Automation Products
    • 3.5.2. Automation & AI/ML Features in Test & Measurement Solutions
  • 3.6. Automation & Intelligence Beyond the RAN
    • 3.6.1. Mobile Core Networks
    • 3.6.2. xHaul (Fronthaul, Midhaul & Backhaul) Transport
    • 3.6.3. Device-Driven Intelligence & Optimization
  • 3.7. Network Automation Use Cases
    • 3.7.1. Neighbor Relations, PCI & RACH Optimization
      • 3.7.1.1. ANR (Automatic Neighbor Relations)
      • 3.7.1.2. CNR (Centralized Neighbor Relations)
      • 3.7.1.3. PCI (Physical Cell ID) Conflict Detection & Resolution
      • 3.7.1.4. RACH (Random Access Channel)/RSI (Root Sequence Index) Optimization
    • 3.7.2. Mobility & Handover Management
      • 3.7.2.1. MRO/bMRO (Cell & Beam-Based Mobility Robustness Optimization)
      • 3.7.2.2. QoS-Based Adaptive & Intelligent Handover Optimization
      • 3.7.2.3. CHO (Conditional Handover) Management
      • 3.7.2.4. DAPS (Dual Active Protocol Stack) Handover Management
      • 3.7.2.5. Handover Management for V2X, UAV & Railway Communications
    • 3.7.3. RAN Resource Optimization
      • 3.7.3.1. CCO (Coverage & Capacity Optimization)
      • 3.7.3.2. AI/ML-Assisted Dynamic Cell Shaping
      • 3.7.3.3. MLB (Mobility Load Balancing)/LBO (Load Balancing Optimization)
      • 3.7.3.4. Advanced Traffic Steering for Efficient Load Distribution
      • 3.7.3.5. QoS & QoE-Based Dynamic Resource Allocation
      • 3.7.3.6. Policy-Guided QoS/QoE Nudging
      • 3.7.3.7. Application-Aware RAN Optimization
      • 3.7.3.8. Special Event Management
      • 3.7.3.9. Intelligent Control in RAN Sharing Arrangements
      • 3.7.3.10. Dynamic Reallocation of Idle RAN Compute Resources
    • 3.7.4. Energy Efficiency & Sustainability
      • 3.7.4.1. Energy Savings in the RAN
      • 3.7.4.2. Dynamic Transmit Power Adaptation
      • 3.7.4.3. Carrier & Cell On/Off Switching
      • 3.7.4.4. RF Channel Reconfiguration: Massive MIMO Muting
      • 3.7.4.5. Advanced Sleep Mode Control in RUs (Radio Units)
      • 3.7.4.6. DU/CU (Distributed & Centralized Unit) Pooling & Power Management
      • 3.7.4.7. Carbon Footprint Awareness & Emission Control
      • 3.7.4.8. RAN-Driven Optimization of UE Energy Consumption
    • 3.7.5. Spectrum Management & Multi-RAT Connectivity
      • 3.7.5.1. Frequency Layer Management
      • 3.7.5.2. Sector Carrier Orchestration
      • 3.7.5.3. CA (Carrier Aggregation) Optimization
      • 3.7.5.4. MCIM/ICIM (Multi/Inter-Cell Interference Management)
      • 3.7.5.5. Atmospheric Ducting Interference Mitigation
      • 3.7.5.6. Shared & Unlicensed Spectrum Coordination
      • 3.7.5.7. DSS (Dynamic Spectrum Sharing)
      • 3.7.5.8. 4G-5G DC (Dual Connectivity) Control
      • 3.7.5.9. JCAS (Joint Communication & Sensing)
    • 3.7.6. Network Healing & Protection
      • 3.7.6.1. AD (Anomaly Detection) & Remediation
      • 3.7.6.2. COD/COC (Cell Outage Detection & Compensation)
      • 3.7.6.3. SCDR (Sleeping Cell Detection & Recovery)
      • 3.7.6.4. RET (Remote Electrical Tilt) Adjustment in Disaster Scenarios
      • 3.7.6.5. CPM (Congestion Prediction & Management)
      • 3.7.6.6. RF Jamming Detection
      • 3.7.6.7. Signaling Storm Protection
      • 3.7.6.8. Closed Loop RAN Security
    • 3.7.7. Massive MIMO, Beamforming & Lower-Layer Optimization
      • 3.7.7.1. GoB (Grid-of-Beams) Beamforming Optimization
      • 3.7.7.2. Non-GoB (Reciprocity-Based) Beamforming Optimization
      • 3.7.7.3. AI/ML-Assisted Beam Selection & Management
      • 3.7.7.4. Initial Access Optimization in Massive MIMO Systems
      • 3.7.7.5. MU (Multi-User)-MIMO Pairing Enhancement
      • 3.7.7.6. Massive MIMO Grouping Optimization
      • 3.7.7.7. Channel Estimation, Interpolation & Equalization
      • 3.7.7.8. Link Adaptation & Other L1 (PHY)/MAC Algorithms
    • 3.7.8. Network Slicing, Private 5G, NTN & Vertical Applications
      • 3.7.8.1. RAN Slice Resource Allocation Optimization
      • 3.7.8.2. RAN Slice SLA (Service Level Agreement) Assurance
      • 3.7.8.3. Multi-Vendor Slice Management
      • 3.7.8.4. Private 5G & Neutral Host Network Automation
      • 3.7.8.5. IIoT (Industrial IoT) & Enterprise RAN Customization
      • 3.7.8.6. NTN (Non-Terrestrial Network) Resource Orchestration
    • 3.7.9. Network Planning & Evolution
      • 3.7.9.1. RF Design
      • 3.7.9.2. Site Selection
      • 3.7.9.3. Capacity Planning
      • 3.7.9.4. Canary Release
      • 3.7.9.5. Network Digital Twin
      • 3.7.9.6. Legacy Network Shutdown
    • 3.7.10. Automation & AI Enablement
      • 3.7.10.1. Conflict Management & Governance
      • 3.7.10.2. RAN Geolocation Intelligence
      • 3.7.10.3. UE Positioning & Trajectory Prediction
      • 3.7.10.4. KPI (Key Performance Indicator) Monitoring
      • 3.7.10.5. MDT (Minimization of Drive Tests) & RAN Data Collection
      • 3.7.10.6. Integration of Datasets External to the RAN
      • 3.7.10.7. AI/ML-Enabled Network Insights & Diagnostics
      • 3.7.10.8. Traffic Forecasting & QoS/QoE Prediction
    • 3.7.11. Multi-Domain, Core & Transport-Related Use Cases
      • 3.7.11.1. Automated Configuration & Testing
      • 3.7.11.2. Dynamic Autoscaling of Network Resources
      • 3.7.11.3. Service Assurance, Fault Management & Cybersecurity
      • 3.7.11.4. AI/ML-Driven Intelligence for End-to-End Network Slicing
      • 3.7.11.5. Core Network Automation & Intelligent Orchestration
      • 3.7.11.6. NWDAF (Network Data Analytics Function) for Core Network Analytics
      • 3.7.11.7. MDAF (Management Data Analytics Function) for Management Plane Analytics
      • 3.7.11.8. SDN (Software-Defined Networking)-Based xHaul Transport Automation
      • 3.7.11.9. Interference Management in Microwave & mmWave (Millimeter Wave) Transport Links
      • 3.7.11.10. Interworking Between RAN SMO, NWDAF, MDAF & Transport Domain SDN Controllers

4. Chapter 4: Key Trends in Intelligent RAN Implementations

  • 4.1. Transition From SON to Open RAN-Based RIC, SMO, xApps & rApps
    • 4.1.1. AI/ML Integration From the Outset
    • 4.1.2. Granular Insights & Faster Control Loops
    • 4.1.3. Multi-Vendor Interoperability & Scalability
    • 4.1.4. Diversified Ecosystem of RAN Application Developers
    • 4.1.5. SDKs (Software Development Kits) for Accelerated Development
  • 4.2. Moving Closer to Higher Levels of Automation
    • 4.2.1. Building Confidence in Closed Loop Automation
    • 4.2.2. Service-Centric Automated Network Optimization
    • 4.2.3. Intent-Driven Network & Service Management
    • 4.2.4. Long-Term Vision of Zero-Touch Operations
  • 4.3. Operational AI & ML
    • 4.3.1. Replacement of Classic Rule-Based Solutions With AI Algorithms
    • 4.3.2. ML Models for Network Operations Automation
    • 4.3.3. Supervised & Unsupervised Learning
    • 4.3.4. RL (Reinforcement Learning)
    • 4.3.5. Federated Learning
    • 4.3.6. Deep Learning
  • 4.4. Gen AI (Generative AI)
    • 4.4.1. Differences From Conventional AI/ML
    • 4.4.2. GANs (Generative Adversarial Networks)
    • 4.4.3. VAEs (Variational Autoencoders)
    • 4.4.4. Transformer Architecture
    • 4.4.5. LLMs (Large Language Models)
    • 4.4.6. Natural Language Interface for RAN Operations
  • 4.5. Network Data Analytics
    • 4.5.1. Descriptive Analytics
    • 4.5.2. Diagnostic Analytics
    • 4.5.3. Predictive Analytics
    • 4.5.4. Prescriptive Analytics
  • 4.6. Observability of Network Operations
    • 4.6.1. Deeper Visibility Into RAN Telemetry
    • 4.6.2. Integrating Supplementary Data Sources
    • 4.6.3. End-to-End Network Observability Control
  • 4.7. Cloud-Native & Software-Centric Networking
    • 4.7.1. Cloud-Native Technologies
    • 4.7.2. Microservices & SBA (Service-Based Architecture)
    • 4.7.3. Network Virtualization & Containerization
    • 4.7.4. SDN for Network Programmability
    • 4.7.5. DevOps & CI/CD (Continuous Integration & Delivery)
  • 4.8. Other Trends & Developments
    • 4.8.1. RAN Densification & Multi-Layer Coordination
    • 4.8.2. Plug & Play Small Cells in Industrial, Enterprise & Public Venues
    • 4.8.3. RAN Automation for Private 5G Network Management
    • 4.8.4. Support for Vertical Industry-Specific Use Cases
    • 4.8.5. FWA (Fixed Wireless Access) Deployments
    • 4.8.6. Shared & Unlicensed Spectrum
    • 4.8.7. Network Slicing Enablement
    • 4.8.8. AI-RAN & Edge Computing
    • 4.8.9. Application Awareness
    • 4.8.10. Dynamic Security

5. Chapter 5: Standardization & Collaborative Initiatives

  • 5.1. 3GPP (Third Generation Partnership Project)
    • 5.1.1. Releases 8-14: LTE SON Features
    • 5.1.2. Release 15: 5G ANR, NWDAF & MDAF
    • 5.1.3. Release 16: 5G SON, MDT & L2 Measurement Support
    • 5.1.4. Release 17: Expansion of 5G Network Intelligence & Automation
    • 5.1.5. Release 18: Laying the AI/ML Foundation for 5G Advanced Systems
    • 5.1.6. Releases 19, 20, 21 & Beyond: Succession From 5G Advanced to AI-Native 6G Networks
  • 5.2. AI-RAN Alliance
    • 5.2.1. AI for RAN
    • 5.2.2. AI & RAN
    • 5.2.3. AI on RAN
  • 5.3. ETSI (European Telecommunications Standards Institute)
    • 5.3.1. OCG AI (Operational Co-ordination Group on AI)
    • 5.3.2. Specific ISGs (Industry Specification Groups) & TCs (Technical Committees)
      • 5.3.2.1. ENI (Experiential Networked Intelligence) ISG
      • 5.3.2.2. ZSM (Zero-Touch Network & Service Management) ISG
      • 5.3.2.3. TC INT (TC on Core Network & Interoperability Testing)
      • 5.3.2.4. TC SAI (TC on Securing Artificial Intelligence)
      • 5.3.2.5. Other ISGs & TCs
  • 5.4. GSMA (GSM Association)
    • 5.4.1. Efforts Related to AI & Network Automation
  • 5.5. GTAA (Global Telco AI Alliance)
    • 5.5.1. Accelerating Telco AI Transformation
    • 5.5.2. Multi-Lingual LLM for Telco Operations
  • 5.6. IETF (Internet Engineering Task Force)
    • 5.6.1. Standardization for Automated Network Management
  • 5.7. ITU (International Telecommunication Union)
    • 5.7.1. ITU-R (ITU Radiocommunication Sector)
      • 5.7.1.1. Work Related to AI-Native Air Interface & RAN
    • 5.7.2. ITU-T (ITU Telecommunication Standardization Sector)
      • 5.7.2.1. SG13 (Study Group 13): Future Networks & Emerging Technologies
      • 5.7.2.2. FG-AN (Focus Group on Autonomous Networks)
      • 5.7.2.3. FG-ML5G (Focus Group on ML for 5G & Future Networks)
  • 5.8. Linux Foundation
    • 5.8.1. ONAP (Open Network Automation Platform)
    • 5.8.2. Other AI & Network Automation-Related Projects
  • 5.9. NGMN Alliance
    • 5.9.1. SON Definition & Recommendations
    • 5.9.2. Network Automation & Autonomy Based on AI
    • 5.9.3. Green Future Networks for Energy Efficiency & Sustainability
  • 5.10. ONF (Open Networking Foundation)
    • 5.10.1. SMaRT-5G (Sustainable Mobile & RAN Transformation 5G)
    • 5.10.2. SD-RAN (Software-Defined RAN): Near-RT RIC & Exemplar xApps
    • 5.10.3. RRAIL (RAN RIC & Applications Interoperability Lab)
  • 5.11. O-RAN Alliance
    • 5.11.1. RIC Architecture Specifications
    • 5.11.2. xApp & rApp Use Cases
    • 5.11.3. O-RAN SC (Software Community)
    • 5.11.4. Testing & Integration Support
  • 5.12. OSA (OpenAirInterface Software Alliance)
    • 5.12.1. M5G (MOSAIC5G): Flexible RAN & Core Controllers
    • 5.12.2. FlexRIC (Flexible RAN Intelligent Controller) & xApp SDK Framework
  • 5.13. OSSii (Operations Support Systems Interoperability Initiative)
    • 5.13.1. Enabling Multi-Vendor OSS Interoperability
  • 5.14. SCF (Small Cell Forum)
    • 5.14.1. Small Cell SON & RAN Orchestration
  • 5.15. TIP (Telecom Infra Project)
    • 5.15.1. OpenRAN Project Group
      • 5.15.1.1. RIA (RAN Intelligence & Automation) Subgroup
      • 5.15.1.2. ROMA (RAN Orchestration & Lifecycle Management Automation) Subgroup
    • 5.15.2. TelcoAI Project Group
  • 5.16. TM Forum
    • 5.16.1. Addressing Higher-Level Aspects of Autonomous Networks
  • 5.17. Other Initiatives & Academic Research

6. Chapter 6: RAN Automation Case Studies

  • 6.1. AT&T
    • 6.1.1. Vendor Selection
    • 6.1.2. Deployment Review
    • 6.1.3. Results & Future Plans
  • 6.2. Bell Canada
    • 6.2.1. Vendor Selection
    • 6.2.2. Deployment Review
    • 6.2.3. Results & Future Plans
  • 6.3. Bharti Airtel
    • 6.3.1. Vendor Selection
    • 6.3.2. Deployment Review
    • 6.3.3. Results & Future Plans
  • 6.4. BT Group
    • 6.4.1. Vendor Selection
    • 6.4.2. Deployment Review
    • 6.4.3. Results & Future Plans
  • 6.5. DT (Deutsche Telekom)
    • 6.5.1. Vendor Selection
    • 6.5.2. Deployment Review
    • 6.5.3. Results & Future Plans
  • 6.6. Elisa
    • 6.6.1. Vendor Selection
    • 6.6.2. Deployment Review
    • 6.6.3. Results & Future Plans
  • 6.7. Globe Telecom
    • 6.7.1. Vendor Selection
    • 6.7.2. Deployment Review
    • 6.7.3. Results & Future Plans
  • 6.8. NTT DoCoMo
    • 6.8.1. Vendor Selection
    • 6.8.2. Deployment Review
    • 6.8.3. Results & Future Plans
  • 6.9. Ooredoo
    • 6.9.1. Vendor Selection
    • 6.9.2. Deployment Review
    • 6.9.3. Results & Future Plans
  • 6.10. Orange
    • 6.10.1. Vendor Selection
    • 6.10.2. Deployment Review
    • 6.10.3. Results & Future Plans
  • 6.11. Rakuten Mobile
    • 6.11.1. Vendor Selection
    • 6.11.2. Deployment Review
    • 6.11.3. Results & Future Plans
  • 6.12. Singtel
    • 6.12.1. Vendor Selection
    • 6.12.2. Deployment Review
    • 6.12.3. Results & Future Plans
  • 6.13. SK Telecom
    • 6.13.1. Vendor Selection
    • 6.13.2. Deployment Review
    • 6.13.3. Results & Future Plans
  • 6.14. STC (Saudi Telecom Company)
    • 6.14.1. Vendor Selection
    • 6.14.2. Deployment Review
    • 6.14.3. Results & Future Plans
  • 6.15. Telecom Argentina
    • 6.15.1. Vendor Selection
    • 6.15.2. Deployment Review
    • 6.15.3. Results & Future Plans
  • 6.16. Telefonica Group
    • 6.16.1. Vendor Selection
    • 6.16.2. Deployment Review
    • 6.16.3. Results & Future Plans
  • 6.17. TIM (Telecom Italia Mobile)
    • 6.17.1. Vendor Selection
    • 6.17.2. Deployment Review
    • 6.17.3. Results & Future Plans
  • 6.18. Turkcell
    • 6.18.1. Vendor Selection
    • 6.18.2. Deployment Review
    • 6.18.3. Results & Future Plans
  • 6.19. Verizon Communications
    • 6.19.1. Vendor Selection
    • 6.19.2. Deployment Review
    • 6.19.3. Results & Future Plans
  • 6.20. Vodafone Group
    • 6.20.1. Vendor Selection
    • 6.20.2. Deployment Review
    • 6.20.3. Results & Future Plans
  • 6.21. Other Recent Deployments & Ongoing Projects
    • 6.21.1. 1&1: Highly Automated Control of Europe's First Greenfield Open RAN Network
    • 6.21.2. 4iG Group: Closed Loop Network Management & Customer Experience Monitoring
    • 6.21.3. America Movil: SON-Based RAN Automation for 5G Network Rollout & Optimization
    • 6.21.4. Andorra Telecom: Doubling Throughput With Automated RF Interference Mitigation
    • 6.21.5. Axiata Group: Autonomous Network Initiative for Streamlining Operations
    • 6.21.6. Batelco: AI-Powered Energy Savings & Carbon Footprint Reduction
    • 6.21.7. beCloud (Belarusian Cloud Technologies): AI-Enabled Network Management
    • 6.21.8. Beeline Russia (VimpelCom): Transforming the Mobile Experience Using C-SON
    • 6.21.9. BTC (Botswana Telecommunications Corporation): Nationwide Network Optimization
    • 6.21.10. C Spire: SON-Enabled Automation of Regional Wireless Network
    • 6.21.11. Cellfie Mobile: Intelligent RAN Monitoring & Management
    • 6.21.12. CETIN Group: Multi-Domain Automated Network Optimization
    • 6.21.13. China Mobile: Aiming for AI/ML-Assisted L4 Automation by 2025
    • 6.21.14. China Telecom: Co-Governance of Shared 5G Network Infrastructure
    • 6.21.15. China Unicom: CUBE-RAN Intelligent Open Platform
    • 6.21.16. CK Hutchison: Accelerating the Journey Towards Fully Automated RAN Operations
    • 6.21.17. DIGI Communications: Laying the Groundwork for Zero-Touch Automation
    • 6.21.18. DISH Network Corporation: RIC-Based RAN Programmability & Intelligence
    • 6.21.19. Djezzy: Harnessing C-SON for Automated RAN Optimization & Management
    • 6.21.20. Etisalat Group (e&): AI/ML-Enabled Intelligent Network Management Platform
    • 6.21.21. FET (Far EasTone Telecommunications): Advancing Sustainability Goals With ML-Driven RAN Automation
    • 6.21.22. KDDI: Moving Towards RIC-Based Automation for Network Slicing Enablement
    • 6.21.23. KPN: Replacing Labor-Intensive RAN Optimization Tools With SON-Based Automation
    • 6.21.24. KT Corporation: Embracing Intelligent Control of RAN Resources & Operations
    • 6.21.25. LG Uplus: Evaluating the RIC Approach for Vendor-Independent RAN Automation
    • 6.21.26. Liberty Global: Building a Customer-First 5G Network Using Autonomous Optimization Decisions
    • 6.21.27. LTT (Libya Telecom & Technology): Nationwide RAN Automation for Enhanced Network Quality
    • 6.21.28. MASMOVIL: Improving Customer Experience During Peak Hours With ML-Assisted Optimization
    • 6.21.29. MegaFon: Delivering an Exemplary Subscriber Experience Through SON Technology
    • 6.21.30. MEO (Altice Portugal): Automated RAN Optimization & Service Assurance
    • 6.21.31. MTN Group: Pioneering Autonomous Mobile Networks in Africa
    • 6.21.32. MTS (Mobile TeleSystems): Self-Adjusting Intelligent Network
    • 6.21.33. Odido: AI-Driven Cell Site Energy Management Solution
    • 6.21.34. Reliance Jio Infocomm: Improving Customer Experience With C-SON
    • 6.21.35. Rogers Communications: Cross-Domain Service Orchestration & Automation
    • 6.21.36. Smart Communications (PLDT): Planning the SON-to-RIC Transition
    • 6.21.37. Smartfren: Automating Heterogenous Network Management
    • 6.21.38. SoftBank Group: Spearheading AI/ML-Driven Advancements in the RAN
    • 6.21.39. Swisscom: Future-Proofing Brownfield Mobile Network With SMO & Non-RT RIC
    • 6.21.40. TDC NET: Inching Towards Net Zero Goals With RAN Automation
    • 6.21.41. Telia Company: Setting the Foundation for Zero-Touch Mobile Networks
    • 6.21.42. Telkomsel: Autonomous Network Program for Operational Efficiency
    • 6.21.43. Telstra: Advancing Mobile Network Automation Capabilities
    • 6.21.44. Telus: SMO & RIC-Based RAN Network Intelligence Platform
    • 6.21.45. TPG Telecom: Managing Peak Traffic Congestion With C-SON
    • 6.21.46. Turk Telekom: Driving Efficiency Through Network Automation
    • 6.21.47. Ucom (Armenia): AI Functionalities for Mobile Network Modernization
    • 6.21.48. VEON: Leveraging C-SON to Enhance Network Performance
    • 6.21.49. Viettel Group: AI/ML-Enabled Physical Layer Signal Processing
    • 6.21.50. Zain Group: Targeting L4 Automation for Efficient 5G Network Operations

7. Chapter 7: Key Ecosystem Players

  • 7.1. A10 Networks
  • 7.2. A5G Networks
  • 7.3. Aalyria
  • 7.4. Aarna Networks
  • 7.5. Abside Networks
  • 7.6. Accedian
  • 7.7. Accelleran
  • 7.8. Accuver (InnoWireless)
  • 7.9. Acentury
  • 7.10. Actiontec Electronics
  • 7.11. Adtran
  • 7.12. Aglocell
  • 7.13. AI-LINK
  • 7.14. Aira Technologies
  • 7.15. AirHop Communications
  • 7.16. Airspan Networks
  • 7.17. AiVader
  • 7.18. Aliniant
  • 7.19. Allot
  • 7.20. Alpha Networks
  • 7.21. Amazon/AWS (Amazon Web Services)
  • 7.22. AMD (Advanced Micro Devices)
  • 7.23. Amdocs
  • 7.24. Anktion (Fujian) Technology
  • 7.25. Anritsu
  • 7.26. Antevia Networks
  • 7.27. Arcadyan Technology Corporation (Compal Electronics)
  • 7.28. Argela
  • 7.29. Arm
  • 7.30. ArrayComm (Chengdu ArrayComm Wireless Technologies)
  • 7.31. Arrcus
  • 7.32. Artemis Networks
  • 7.33. Artiza Networks
  • 7.34. Arukona
  • 7.35. AsiaInfo Technologies
  • 7.36. Askey Computer Corporation (ASUS - ASUSTeK Computer)
  • 7.37. ASOCS
  • 7.38. Aspire Technology (NEC Corporation)
  • 7.39. ASTRI (Hong Kong Applied Science and Technology Research Institute)
  • 7.40. Ataya
  • 7.41. ATDI
  • 7.42. Atesio
  • 7.43. Atrinet (ServiceNow)
  • 7.44. Auray Technology (Auden Techno)
  • 7.45. Aviat Networks
  • 7.46. Azcom Technology
  • 7.47. Baicells
  • 7.48. Betacom
  • 7.49. BLiNQ Networks (CCI - Communication Components Inc.)
  • 7.50. Blu Wireless
  • 7.51. Booz Allen Hamilton
  • 7.52. BravoCom
  • 7.53. Broadcom
  • 7.54. BTI Wireless
  • 7.55. BubbleRAN
  • 7.56. B-Yond/Reailize
  • 7.57. C3Spectra
  • 7.58. CableFree (Wireless Excellence)
  • 7.59. Cambium Networks
  • 7.60. Capgemini Engineering
  • 7.61. CBNG (Cambridge Broadband Networks Group)
  • 7.62. Celfinet (Cyient)
  • 7.63. Celona
  • 7.64. CelPlan Technologies
  • 7.65. Ceragon Networks
  • 7.66. CGI
  • 7.67. Chengdu NTS
  • 7.68. CICT - China Information and Communication Technology Group (China Xinke Group)
  • 7.69. Ciena Corporation
  • 7.70. CIG (Cambridge Industries Group)
  • 7.71. Cisco Systems
  • 7.72. Clavister
  • 7.73. Cohere Technologies
  • 7.74. Comarch
  • 7.75. Comba Telecom
  • 7.76. CommAgility (E-Space)
  • 7.77. CommScope
  • 7.78. Compal Electronics
  • 7.79. COMSovereign
  • 7.80. Contela
  • 7.81. Corning
  • 7.82. Creanord
  • 7.83. Cyient
  • 7.84. DeepSig
  • 7.85. Dell Technologies
  • 7.86. DGS (Digital Global Systems)
  • 7.87. Digis Squared
  • 7.88. Digitata
  • 7.89. D-Link Corporation
  • 7.90. Druid Software
  • 7.91. DZS
  • 7.92. ECE (European Communications Engineering)
  • 7.93. EDX Wireless
  • 7.94. eino
  • 7.95. Elisa Polystar
  • 7.96. Encora
  • 7.97. Equiendo
  • 7.98. Ericsson
  • 7.99. Errigal
  • 7.100. ETRI (Electronics & Telecommunications Research Institute, South Korea)
  • 7.101. EXFO
  • 7.102. F5
  • 7.103. Fairspectrum
  • 7.104. Federated Wireless
  • 7.105. Firecell
  • 7.106. Flash Networks
  • 7.107. Forsk
  • 7.108. Fortinet
  • 7.109. Foxconn (Hon Hai Technology Group)
  • 7.110. Fraunhofer HHI (Heinrich Hertz Institute)
  • 7.111. Fujitsu
  • 7.112. FullRays (LDAS - LocationDAS)
  • 7.113. Future Connections
  • 7.114. FYRA
  • 7.115. G REIGNS (HTC Corporation)
  • 7.116. Gemtek Technology
  • 7.117. GENEViSiO (QNAP Systems)
  • 7.118. Gigamon
  • 7.119. GigaTera Communications (KMW)
  • 7.120. GlobalLogic (Hitachi)
  • 7.121. Globalstar
  • 7.122. Google (Alphabet)
  • 7.123. Groundhog Technologies
  • 7.124. Guavus (Thales)
  • 7.125. GXC (Formerly GenXComm)
  • 7.126. HCLTech (HCL Technologies)
  • 7.127. Helios (Fujian Helios Technologies)
  • 7.128. HFR Networks
  • 7.129. Highstreet Technologies
  • 7.130. Hitachi
  • 7.131. HPE (Hewlett Packard Enterprise)
  • 7.132. HSC (Hughes Systique Corporation)
  • 7.133. Huawei
  • 7.134. IBM
  • 7.135. iBwave Solutions
  • 7.136. iConNext
  • 7.137. Infinera
  • 7.138. Infosys
  • 7.139. Infovista
  • 7.140. Inmanta
  • 7.141. Innovile
  • 7.142. InnoWireless
  • 7.143. Intel Corporation
  • 7.144. InterDigital
  • 7.145. Intracom Telecom
  • 7.146. Inventec Corporation
  • 7.147. ISCO International
  • 7.148. IS-Wireless
  • 7.149. Itential
  • 7.150. ITRI (Industrial Technology Research Institute, Taiwan)
  • 7.151. JMA Wireless
  • 7.152. JRC (Japan Radio Company)
  • 7.153. Juniper Networks (HPE - Hewlett Packard Enterprise)
  • 7.154. Key Bridge Wireless
  • 7.155. Keysight Technologies
  • 7.156. Kleos
  • 7.157. KMW
  • 7.158. Kumu Networks
  • 7.159. Lemko Corporation
  • 7.160. Lenovo
  • 7.161. Lime Microsystems
  • 7.162. LIONS Technology
  • 7.163. LITE-ON Technology Corporation
  • 7.164. LitePoint (Teradyne)
  • 7.165. LS telcom
  • 7.166. LuxCarta
  • 7.167. MantisNet
  • 7.168. Marvell Technology
  • 7.169. Mavenir
  • 7.170. Maxar Technologies
  • 7.171. Meta
  • 7.172. MicroNova
  • 7.173. Microsoft Corporation
  • 7.174. MikroTik
  • 7.175. MitraStar Technology (Unizyx Holding Corporation)
  • 7.176. Mobileum
  • 7.177. MosoLabs (Sercomm Corporation)
  • 7.178. MYCOM OSI
  • 7.179. Nash Technologies
  • 7.180. NEC Corporation
  • 7.181. Net AI
  • 7.182. Netcracker Technology (NEC Corporation)
  • 7.183. NETSCOUT Systems
  • 7.184. Netsia (Argela)
  • 7.185. Neutroon Technologies
  • 7.186. New H3C Technologies (Tsinghua Unigroup)
  • 7.187. New Postcom Equipment
  • 7.188. Nextivity
  • 7.189. Node-H
  • 7.190. Nokia
  • 7.191. Novowi
  • 7.192. NuRAN Wireless
  • 7.193. NVIDIA Corporation
  • 7.194. NXP Semiconductors
  • 7.195. Oceus Networks
  • 7.196. Omnitele
  • 7.197. OneLayer
  • 7.198. Ookla
  • 7.199. Opanga Networks
  • 7.200. OREX (NTT DoCoMo)
  • 7.201. P.I. Works
  • 7.202. Palo Alto Networks
  • 7.203. Parallel Wireless
  • 7.204. Pente Networks
  • 7.205. Phluido
  • 7.206. Picocom
  • 7.207. Pivotal Commware
  • 7.208. Potevio (CETC - China Electronics Technology Group Corporation)
  • 7.209. QCT (Quanta Cloud Technology)
  • 7.210. Qualcomm
  • 7.211. Quanta Computer
  • 7.212. Qucell Networks (InnoWireless)
  • 7.213. RADCOM
  • 7.214. Radisys (Reliance Industries)
  • 7.215. Radware
  • 7.216. Rakuten Symphony
  • 7.217. Ranlytics
  • 7.218. Ranplan Wireless
  • 7.219. Rebaca Technologies
  • 7.220. Red Hat (IBM)
  • 7.221. RED Technologies
  • 7.222. REPLY
  • 7.223. RIMEDO Labs
  • 7.224. Rivada Networks
  • 7.225. Rohde & Schwarz
  • 7.226. Ruijie Networks
  • 7.227. RunEL
  • 7.228. SageRAN (Guangzhou SageRAN Technology)
  • 7.229. Samji Electronics
  • 7.230. Samsung
  • 7.231. Sandvine
  • 7.232. Sercomm Corporation
  • 7.233. ServiceNow
  • 7.234. Shabodi
  • 7.235. Signalwing
  • 7.236. SIRADEL
  • 7.237. Skyvera (TelcoDR)
  • 7.238. SOLiD
  • 7.239. Sooktha
  • 7.240. Spectrum Effect
  • 7.241. Spirent Communications
  • 7.242. SRS (Software Radio Systems)
  • 7.243. SSC (Shared Spectrum Company)
  • 7.244. Star Solutions
  • 7.245. Subex
  • 7.246. Sunwave Communications
  • 7.247. Supermicro (Super Micro Computer)
  • 7.248. SynaXG Technologies
  • 7.249. Systemics-PAB
  • 7.250. T&W (Shenzhen Gongjin Electronics)
  • 7.251. Tarana Wireless
  • 7.252. TCS (Tata Consultancy Services)
  • 7.253. Tech Mahindra
  • 7.254. Tecore Networks
  • 7.255. TECTWIN
  • 7.256. Telrad Networks
  • 7.257. TEOCO/Aircom
  • 7.258. ThinkRF
  • 7.259. TI (Texas Instruments)
  • 7.260. TietoEVRY
  • 7.261. Tropico (CPQD - Center for Research and Development in Telecommunications, Brazil)
  • 7.262. TTG International
  • 7.263. Tupl
  • 7.264. ULAK Communication
  • 7.265. Vavitel (Shenzhen Vavitel Technology)
  • 7.266. VHT (Viettel High Tech)
  • 7.267. VIAVI Solutions
  • 7.268. VMware (Broadcom)
  • 7.269. VNL - Vihaan Networks Limited (Shyam Group)
  • 7.270. Wave Electronics
  • 7.271. WDNA (Wireless DNA)
  • 7.272. WIM Technologies
  • 7.273. Wind River Systems
  • 7.274. Wipro
  • 7.275. Wiwynn (Wistron Corporation)
  • 7.276. WNC (Wistron NeWeb Corporation)
  • 7.277. Xingtera
  • 7.278. ZaiNar
  • 7.279. Z-Com
  • 7.280. Zeetta Networks
  • 7.281. Zinkworks
  • 7.282. ZTE
  • 7.283. zTouch Networks
  • 7.284. Zyxel (Unizyx Holding Corporation)

8. Chapter 8: Market Sizing & Forecasts

  • 8.1. Mobile Network Automation
  • 8.2. Network Domain Submarkets
    • 8.2.1. RAN Automation
    • 8.2.2. Mobile Core Automation
    • 8.2.3. xHaul Transport Automation
  • 8.3. RAN Automation Functional Areas
    • 8.3.1. SON-Based Automation
    • 8.3.2. Open RAN Automation
    • 8.3.3. Baseband-Integrated Intelligent RAN Applications
    • 8.3.4. RAN Planning & Optimization Software
    • 8.3.5. Test & Measurement Solutions
  • 8.4. SON-Based Automation Submarkets
    • 8.4.1. RAN Vendor SON Solutions
    • 8.4.2. Third Party C-SON Platforms
  • 8.5. Open RAN Automation Submarkets
    • 8.5.1. Non-RT RIC & SMO
    • 8.5.2. Near-RT RIC
    • 8.5.3. rApps
    • 8.5.4. xApps
  • 8.6. Access Technology Generations
    • 8.6.1. LTE
    • 8.6.2. 5G NR
    • 8.6.3. 6G
  • 8.7. Regional Segmentation
    • 8.7.1. North America
    • 8.7.2. Asia Pacific
    • 8.7.3. Europe
    • 8.7.4. Middle East & Africa
    • 8.7.5. Latin & Central America

9. Chapter 9: Conclusion & Strategic Recommendations

  • 9.1. Why is the Market Poised to Grow?
  • 9.2. Future Roadmap: 2024 - 2030
    • 9.2.1. 2024 - 2026: Production-Grade Deployments of SMO & RIC Platforms for Brownfield Networks
    • 9.2.2. 2027 - 2029: Widespread Adoption of Open RAN Automation & Diverse RIC-Hosted Applications
    • 9.2.3. 2030 & Beyond: Towards AI-Native Air Interfaces & Zero-Touch 5G/6G Network Automation
  • 9.3. Reviewing the Real-World Benefits & TCO Savings Potential of RAN Automation
  • 9.4. Impact of Intelligent Automation on RAN Engineering Roles
  • 9.5. Transition From SON to Open RAN Automation
  • 9.6. Evolution of Use Cases & AI/ML Algorithms
  • 9.7. Growing Focus on Energy Efficiency & Sustainability
  • 9.8. Vertical Industries & Private Wireless Automation
  • 9.9. Diversified Community of x/rApp Developers
  • 9.10. Signs of Consolidation in the SMO & RIC Ecosystem
  • 9.11. Which RAN Automation Platform & Application Vendors Are Leading the Market?
  • 9.12. Prospects of Hosting Third Party Applications Within RAN Baseband Products
  • 9.13. Paving the Path to an AI/ML-Based 6G Air Interface
  • 9.14. Convergence of AI & RAN Infrastructure
  • 9.15. Strategic Recommendations
    • 9.15.1. RAN Automation Solution Providers
    • 9.15.2. Mobile Operators

10. Chapter 10: Expert Opinion - Interview Transcripts

  • 10.1. AirHop Communications
  • 10.2. Amdocs
  • 10.3. Groundhog Technologies
  • 10.4. Innovile
  • 10.5. Net AI
  • 10.6. Nokia
  • 10.7. P.I. Works
  • 10.8. Qualcomm
  • 10.9. Rakuten Mobile
  • 10.10. RIMEDO Labs

List of Companies Mentioned

The following companies and organizations have been reviewed, discussed or mentioned in the report:

  • 1&1
  • 3GPP (Third Generation Partnership Project)
  • 4iG Group
  • A10 Networks
  • A5G Networks
  • Aalyria
  • Aarna Networks
  • Abside Networks
  • Accedian
  • Accelleran
  • Accuver
  • Acentury
  • Actiontec Electronics
  • Adtran
  • Aglocell
  • AI-LINK
  • Aira Technologies
  • AI-RAN Alliance
  • Aircom
  • AirHop Communications
  • Airspan Networks
  • AiVader
  • Aliniant
  • Allot
  • Alpha Networks
  • Alphabet
  • Altice Portugal
  • Amazon
  • AMD (Advanced Micro Devices)
  • Amdocs
  • America Movil
  • Andorra Telecom
  • Anktion (Fujian) Technology
  • Anritsu
  • Antevia Networks
  • Arcadyan Technology Corporation
  • Argela
  • ARIB (Association of Radio Industries and Businesses, Japan)
  • Arm
  • ArrayComm (Chengdu ArrayComm Wireless Technologies)
  • Arrcus
  • Artemis Networks
  • Artiza Networks
  • Arukona
  • AsiaInfo Technologies
  • Askey Computer Corporation
  • ASOCS
  • Aspire Technology
  • ASTRI (Hong Kong Applied Science and Technology Research Institute)
  • ASUS (ASUSTeK Computer)
  • AT&T
  • Ataya
  • ATDI
  • Atesio
  • ATIS (Alliance for Telecommunications Industry Solutions)
  • Atrinet
  • Auden Techno
  • Auray Technology
  • Aviat Networks
  • AWS (Amazon Web Services)
  • Axiata Group
  • Azcom Technology
  • Baicells
  • Batelco
  • beCloud (Belarusian Cloud Technologies)
  • Beeline Russia (VimpelCom)
  • Bell Canada
  • Betacom
  • Bharti Airtel
  • BLiNQ Networks
  • Blu Wireless
  • Booz Allen Hamilton
  • BravoCom
  • Broadcom
  • BT Group
  • BTC (Botswana Telecommunications Corporation)
  • BTI Wireless
  • BubbleRAN
  • B-Yond
  • C Spire
  • C3Spectra
  • CableFree (Wireless Excellence)
  • Cambium Networks
  • Capgemini Engineering
  • CBNG (Cambridge Broadband Networks Group)
  • CCI (Communication Components Inc.)
  • CCSA (China Communications Standards Association)
  • Celfinet
  • Cellfie Mobile
  • Celona
  • CelPlan Technologies
  • Ceragon Networks
  • CETC (China Electronics Technology Group Corporation)
  • CETIN Group
  • CGI
  • Chengdu NTS
  • China Mobile
  • China Telecom
  • China Unicom
  • CICT - China Information and Communication Technology Group (China Xinke Group)
  • Ciena Corporation
  • CIG (Cambridge Industries Group)
  • Cisco Systems
  • CK Hutchison
  • Claro Colombia
  • Clavister
  • Cohere Technologies
  • Comarch
  • Comba Telecom
  • CommAgility
  • CommScope
  • Compal Electronics
  • COMSovereign
  • Contela
  • Corning
  • CPQD (Center for Research and Development in Telecommunications, Brazil)
  • Creanord
  • Cyient
  • Datang Telecom Technology & Industry Group
  • DeepSig
  • Dell Technologies
  • DGS (Digital Global Systems)
  • DIGI Communications
  • Digis Squared
  • Digitata
  • DISH Network Corporation
  • Djezzy
  • D-Link Corporation
  • Druid Software
  • DSA (Dynamic Spectrum Alliance)
  • DT (Deutsche Telekom)
  • DZS
  • ECE (European Communications Engineering)
  • EDX Wireless
  • EE
  • eino
  • Elisa
  • Elisa Polystar
  • Encora
  • Equiendo
  • Ericsson
  • Errigal
  • E-Space
  • Etisalat Group (e&)
  • ETRI (Electronics & Telecommunications Research Institute, South Korea)
  • ETSI (European Telecommunications Standards Institute)
  • EXFO
  • F5
  • Fairspectrum
  • Federated Wireless
  • FET (Far EasTone Telecommunications)
  • FiberHome Technologies
  • Firecell
  • Flash Networks
  • Forsk
  • Fortinet
  • Foxconn (Hon Hai Technology Group)
  • Fraunhofer HHI (Heinrich Hertz Institute)
  • Fujitsu
  • FullRays (LDAS - LocationDAS)
  • Future Connections
  • FYRA
  • G REIGNS
  • Gemtek Technology
  • GENEViSiO
  • Gigamon
  • GigaTera Communications
  • GlobalLogic
  • Globalstar
  • Globe Telecom
  • Google
  • Groundhog Technologies
  • GSMA (GSM Association)
  • GTAA (Global Telco AI Alliance)
  • Guavus
  • GXC (Formerly GenXComm)
  • HCLTech (HCL Technologies)
  • Helios (Fujian Helios Technologies)
  • HFR Networks
  • Highstreet Technologies
  • Hitachi
  • HPE (Hewlett Packard Enterprise)
  • HSC (Hughes Systique Corporation)
  • HTC Corporation
  • Huawei
  • Hutchison Drei Austria
  • IBM
  • iBwave Solutions
  • iConNext
  • IETF (Internet Engineering Task Force)
  • Infinera
  • Infosys
  • Infovista
  • Inmanta
  • Innovile
  • InnoWireless
  • Intel Corporation
  • InterDigital
  • Intracom Telecom
  • Inventec Corporation
  • ISCO International
  • IS-Wireless
  • Itential
  • ITRI (Industrial Technology Research Institute, Taiwan)
  • ITU (International Telecommunication Union)
  • JMA Wireless
  • JRC (Japan Radio Company)
  • Juniper Networks
  • KDDI
  • Key Bridge Wireless
  • Keysight Technologies
  • Kleos
  • KMW
  • KPN
  • KT Corporation
  • Kumu Networks
  • Kuzey Kibris Turkcell
  • Kyivstar
  • Lemko Corporation
  • Lenovo
  • LG Uplus
  • Liberty Global
  • life:)/BeST (Belarusian Telecommunications Network)
  • lifecell Ukraine
  • Lime Microsystems
  • Linux Foundation
  • LIONS Technology
  • LITE-ON Technology Corporation
  • LitePoint
  • LS telcom
  • LTT (Libya Telecom & Technology)
  • LuxCarta
  • MantisNet
  • Marvell Technology
  • MASMOVIL
  • Mavenir
  • Maxar Technologies
  • MegaFon
  • MEO
  • Meta
  • MicroNova
  • Microsoft Corporation
  • MikroTik
  • MitraStar Technology
  • Mobileum
  • MosoLabs
  • MTN Group
  • MTS (Mobile TeleSystems)
  • MYCOM OSI
  • Nash Technologies
  • NEC Corporation
  • Net AI
  • Netcracker Technology
  • NETSCOUT Systems
  • Netsia
  • Neutroon Technologies
  • New H3C Technologies
  • New Postcom Equipment
  • Nextivity
  • NGMN Alliance
  • Node-H
  • Nokia
  • Northeastern University
  • Novowi
  • NTT DoCoMo
  • NuRAN Wireless
  • NVIDIA Corporation
  • NXP Semiconductors
  • NYCU (National Yang Ming Chiao Tung University)
  • Oceus Networks
  • Odido
  • Omnitele
  • OneLayer
  • ONF (Open Networking Foundation)
  • OnGo Alliance
  • Ookla
  • Ooredoo
  • Ooredoo Algeria
  • Ooredoo Tunisia
  • Opanga Networks
  • Optus
  • O-RAN Alliance
  • Orange
  • OREX
  • OSA (OpenAirInterface Software Alliance)
  • P.I. Works
  • Palo Alto Networks
  • Parallel Wireless
  • Pente Networks
  • Phluido
  • Picocom
  • Pivotal Commware
  • PLDT
  • Potevio
  • QCT (Quanta Cloud Technology)
  • QNAP Systems
  • Qualcomm
  • Quanta Computer
  • Qucell Networks
  • RADCOM
  • Radisys
  • Radware
  • Rakuten Mobile
  • Rakuten Symphony
  • Ranlytics
  • Ranplan Wireless
  • Reailize
  • Rebaca Technologies
  • Red Hat
  • RED Technologies
  • Reliance Industries
  • Reliance Jio Infocomm
  • REPLY
  • RIMEDO Labs
  • Rivada Networks
  • Rogers Communications
  • Rohde & Schwarz
  • Ruijie Networks
  • RunEL
  • SageRAN (Guangzhou SageRAN Technology)
  • Samji Electronics
  • Samsung
  • Sandvine
  • SCF (Small Cell Forum)
  • Sercomm Corporation
  • ServiceNow
  • Shabodi
  • Shyam Group
  • Signalwing
  • Singtel
  • SIRADEL
  • SK Telecom
  • Skyvera (TelcoDR)
  • Smart Communications
  • Smartfren
  • SoftBank Group
  • SOLiD
  • Sooktha
  • Spectrum Effect
  • Spirent Communications
  • SRS (Software Radio Systems)
  • SSC (Shared Spectrum Company)
  • Star Solutions
  • STC (Saudi Telecom Company)
  • Subex
  • Sunwave Communications
  • Supermicro (Super Micro Computer)
  • SUTD (Singapore University of Technology and Design)
  • Swisscom
  • SynaXG Technologies
  • Systemics-PAB
  • T&W (Shenzhen Gongjin Electronics)
  • Tarana Wireless
  • TCS (Tata Consultancy Services)
  • TDC NET
  • Tech Mahindra
  • Tecore Networks
  • TECTWIN
  • Telecom Argentina
  • Telefonica Germany
  • Telefonica Group
  • Telia Company
  • Telkomsel
  • Telrad Networks
  • Telstra
  • Telus
  • TEOCO
  • Teradyne
  • Texas A&M University
  • Thales
  • ThinkRF
  • TI (Texas Instruments)
  • TietoEVRY
  • TIM (Telecom Italia Mobile)
  • TIM Brasil
  • TIP (Telecom Infra Project)
  • TM Forum
  • TPG Telecom
  • Tropico
  • TSDSI (Telecommunications Standards Development Society, India)
  • Tsinghua Unigroup
  • TTA (Telecommunications Technology Association, South Korea)
  • TTC (Telecommunication Technology Committee, Japan)
  • TTG International
  • Tupl
  • Turk Telekom
  • Turkcell
  • U.S. DOD (Department of Defense)
  • U.S. NTIA (National Telecommunications and Information Administration)
  • Ucom (Armenia)
  • ULAK Communication
  • University of California San Diego
  • University of Lancaster
  • University of Malaga
  • Unizyx Holding Corporation
  • Vavitel (Shenzhen Vavitel Technology)
  • VEON
  • Verizon Communications
  • VHT (Viettel High Tech)
  • Vi (Vodafone Idea)
  • VIAVI Solutions
  • Viettel Group
  • Virgin Media O2
  • VMware
  • VNL (Vihaan Networks Limited)
  • Vodafone Germany
  • Vodafone Group
  • Vodafone Ireland
  • Vodafone Turkey
  • Wave Electronics
  • WDNA (Wireless DNA)
  • WIM Technologies
  • Wind River Systems
  • WInnForum (Wireless Innovation Forum)
  • Wipro
  • Wistron Corporation
  • Wiwynn
  • WNC (Wistron NeWeb Corporation)
  • Xingtera
  • Zain Group
  • Zain Saudi Arabia (Zain KSA)
  • ZaiNar
  • Z-Com
  • Zeetta Networks
  • Zinkworks
  • ZTE
  • zTouch Networks
  • Zyxel