![]() |
市場調査レポート
商品コード
1603759
農業における遺伝子工学の世界市場予測(~2030年):技術、用途、エンドユーザー、地域別の分析Genetic Engineering in Agriculture Market Forecasts to 2030 - Global Analysis By Technique, Application, End User and by Geography |
||||||
カスタマイズ可能
|
農業における遺伝子工学の世界市場予測(~2030年):技術、用途、エンドユーザー、地域別の分析 |
出版日: 2024年11月11日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界の農業における遺伝子工学の市場規模は、2024年に10億9,000万米ドルを占め、予測期間中にCAGR8.5%で成長し、2030年には17億7,000万米ドルに達する見込みです。
農業における遺伝子工学は、農作物や家畜のDNAを改変して、収量、害虫抵抗性、干ばつ耐性、栄養分などの特定の形質を強化することを含みます。このバイオテクノロジーの発展により、科学者は植物や動物に有利な遺伝子を直接導入できるようになり、従来の育種では困難であった精密な改良が可能になりました。さらに、害虫抵抗性トウモロコシと除草剤耐性大豆は、遺伝子組み換え(GE)作物の2つの例であり、化学物質の投入を抑えながら生産量を増加させることができるため、世界中で広く受け入れられています。
国連食糧農業機関(FAO)によると、遺伝子組み換え(GE)作物は2022年に世界で約1億9,000万ヘクタールをカバーしました。
遺伝子組み換え作物(GMO)の導入
遺伝子組み換え作物の採用率は、その数々の利点により着実に増加しています。遺伝子組み換え作物は、肥料や水などの投入量が少なくて済むことが多く、病害虫に対する耐性も高いため、農家にとって魅力的です。農家の収益性を高めるだけでなく、化学薬品の使用量を減らすことで環境への影響も軽減できます。遺伝子組み換え作物は、北米のような規制の枠組みがより緩やかな地域では、今や農業慣行において一般的なものとなっています。さらに、栄養価の向上や食品廃棄物の減少など、遺伝子組み換え作物の利点に対する消費者の認識が高まるにつれ、より広範な採用を促す世論の変化も緩やかに進行しています。
社会的・倫理的懸念
遺伝子工学は、自然を「神のように扱う」ことや、人類のために生物を改変することの妥当性について、倫理的な問題を提起します。遺伝子組み換えは自然のプロセスを損ない、意図しない結果をもたらす可能性があるとして批判されています。大手バイオテクノロジー企業が種子の特許を独占することは、農家が収穫した種子を保存して後で使用する能力を制限する可能性があるため、さらなる社会的懸念を引き起こします。さらに、このアプローチは、零細農家が毎年の購入を種子企業に依存することにつながる可能性があり、アクセスや経済的公平性についての懸念が生じます。
新規作物品種の開発
遺伝子工学の市場には、特定の消費者の嗜好や地域の要件に適した革新的な作物品種を生み出すチャンスが豊富にあります。例えば、味や食感が良くなるように作物を改良したり、保存期間を長くしたりすることが可能であり、これによって市場性が向上し、サプライチェーン全体を通じて食品廃棄物が減少します。さらに、グルテンフリーやオーガニック製品のように、特殊市場や新たな消費動向に対応する特殊作物を開拓する可能性もあります。
公衆衛生上の問題
遺伝子組み換え食品の受容は、公衆衛生上の懸念によって依然として深刻な脅威にさらされています。遺伝子組み換え食品の安全性に関する科学的コンセンサスにもかかわらず、遺伝子組み換え食品を摂取した場合の毒性やアレルギーの可能性を懸念する消費者もいます。健康への悪影響が報告されていることから、遺伝子組み換え製品の検査と表示をより徹底することが求められています。さらに、利害関係者が遺伝子組み換えの利点を効果的に伝えることも難しくなっています。というのも、偽情報キャンペーンや好ましくないメディア表現が、こうした不安を高めているからです。
COVID-19の大流行は、サプライチェーンや労働力の確保を妨げ、作物の収量を減少させ、研究開発の遅れを引き起こすことによって、農業における遺伝子工学の市場に大きな影響を与えました。輸出入の制限によって重要なバイオテクノロジーのツールやリソースへのアクセスが制限された一方で、ロックダウンによって農業労働者が不足し、作付けや収穫作業が妨げられました。さらに、パンデミックは食糧安全保障の懸念に対する認識を高め、バイオテクノロジーによる解決策への関心を急増させました。しかし、農家への経済的負担と農業技術革新への投資の減少は、この分野がこうした挫折から立ち直ろうとする中で、市場拡大の長期的な障害となる可能性があります。
予測期間中、DNA・RNAシーケンスセグメントが最大になる見込み
最大のシェアを占めるのは、DNA・RNAシーケンスセグメントと予想されます。正確な遺伝子解析と改変を通じて農業生産性を向上させる上で重要な役割を果たすため、このセグメントは不可欠です。収量、耐病性、栄養価を向上させた遺伝子組み換え作物の開発は、DNA・RNAシーケンシング技術によって可能になる所望の形質に関連する遺伝子マーカーの同定によって容易になります。さらに、このセグメントの重要性は、作物改良のための遺伝子組み換え技術や分子マーカーへの依存が高まっていることによって強調されており、これは品種改良を容易にするだけでなく、植物ゲノムの理解にも役立っています。
予測期間中にCAGRが最も高くなると予測される果物・野菜セグメント
果物・野菜セグメントは最も高いCAGRを示すと予測されています。この成長の主因は、健康食品・ウェルネス食品に対する需要の高まりと、果物・野菜の栄養的利点に対する消費者の意識の高まりです。より多くの消費者が健康的な食生活を重視するようになったため、よりおいしく、保存期間が長く、栄養価の高い改良品種の開発が急務となっています。さらに、この市場の成長を支えているのは、都市部でのガーデニングや地元産の食品生産の人気の高まりであり、遺伝子組み換えの野菜や果物は、健全で新鮮な農産物を求める消費者の特別なニーズを満たすことができるからです。
北米が農業における遺伝子工学の最大市場シェアを占めています。この優位性の主な理由は、米国やカナダなどの国々で農業インフラが発達していること、研究開発能力がしっかりしていること、遺伝子組み換え生物(GMO)に対する規制枠組みが支持されていることです。作物の収量を増やし、害虫耐性を向上させ、化学物質投入への依存を軽減する遺伝子組み換え技術への大規模投資により、北米は農業バイオテクノロジー導入の最前線に立ってきました。さらに、同地域の市場支配的地位は、確立されたバイオテクノロジー部門と、遺伝子組み換え作物に対する農家と消費者の高い受容率によってさらに強固なものとなっています。
農業における遺伝子工学市場は、アジア太平洋で最も高いCAGRで成長すると予想されます。食糧需要を増大させる急激な人口増加と、作物の収量と生産性を向上させるための最先端の分子生物学・遺伝学技術の利用拡大が、この成長の一因となっています。この動向をリードしているのは中国やインドのような国々で、土壌劣化や気候変動といった農業の問題に取り組むため、バイオテクノロジーの研究開発に多額の投資を行っています。さらに、この分野における市場の成長は、重要なバイオテクノロジー企業の存在と、農業革新に対する政府の継続的な支援によってさらに支えられています。
According to Stratistics MRC, the Global Genetic Engineering in Agriculture Market is accounted for $1.09 billion in 2024 and is expected to reach $1.77 billion by 2030 growing at a CAGR of 8.5% during the forecast period. Genetic engineering in agriculture involves modifying the DNA of crops and livestock to enhance specific traits, such as yield, pest resistance, drought tolerance, and nutritional content. Scientists can now directly introduce advantageous genes into plants or animals thanks to this biotechnological development, making precise improvements that would be difficult to accomplish through conventional breeding. Moreover, insect-resistant corn and herbicide-tolerant soybeans are two examples of genetically engineered (GE) crops that have gained widespread acceptance around the world because of their capacity to boost output while lowering the demand for chemical inputs, thereby encouraging more sustainable farming methods.
According to the Food and Agriculture Organization (FAO), genetically engineered (GE) crops covered approximately 190 million hectares globally in 2022.
Genetically modified organism (GMO) adoption
The adoption rate of GMOs has been steadily increasing due to their numerous benefits. Genetically modified crops appeal to farmers because they frequently require fewer inputs, like fertilizer and water, while offering greater resistance to pests and diseases. In addition to making farmers more profitable, this also helps to lessen the impact on the environment by using fewer chemicals. GMOs are now commonplace in agricultural practices in areas with more benevolent regulatory frameworks, such as North America. Furthermore, there is a slow change in public opinion that encourages broader adoption as consumer awareness of the advantages of GMOs, such as increased nutritional value and decreased food waste, increases.
Social and ethical concerns
Genetic engineering raises ethical questions about "playing God" with nature and the propriety of modifying living things for the sake of humanity. Genetic modification is criticized for undermining natural processes and potentially having unintended consequences. Large Biotech Company's monopolization of seed patents raises additional societal concerns because it may restrict farmer's ability to save seeds from their harvests for later use. Moreover, this approach may lead to smallholder farmers becoming dependent on seed companies for yearly purchases, which raises concerns about access and economic equity.
Development of novel crop varieties
The market for genetic engineering offers a wealth of chances to create innovative crop varieties suited to particular consumer preferences or regional requirements. For instance, it is possible to engineer crops to have better taste and texture or longer shelf lives, which will increase their marketability and decrease food waste across the supply chain. Additionally, there is also the possibility of developing specialty crops that serve specialized markets or new consumer trends, like gluten-free or organic products.
Issues with public health
Genetically modified food acceptance is still seriously threatened by public health concerns. Notwithstanding the scientific consensus regarding the safety of genetically modified foods, some consumers are concerned about the possibility of toxicity or allergies when consuming GMOs. Reports of negative health effects have prompted demands for more thorough testing and labeling of genetically modified products. Furthermore, it is also difficult for stakeholders to effectively convey the advantages of genetic engineering because of disinformation campaigns and unfavorable media representations that heighten these anxieties.
The COVID-19 pandemic had a major effect on the market for genetic engineering in agriculture by interfering with supply chains and labor availability, which decreased crop yields and caused delays in R&D. While import and export restrictions restricted access to vital biotechnology tools and resources, lockdowns caused a shortage of agricultural workers, which hampered planting and harvesting operations. Moreover, the pandemic raised awareness of food security concerns and sparked a surge in interest in biotechnology solutions; nevertheless, the financial burden on farmers and decreased investment in agricultural innovation may present long-term obstacles to market expansion as the sector attempts to bounce back from these setbacks.
The DNA & RNA Sequencing segment is expected to be the largest during the forecast period
The largest share is expected to be held by the DNA & RNA sequencing segment. Because it plays a crucial part in increasing agricultural productivity through accurate genetic analysis and modification, this segment is essential. The development of genetically modified crops with increased yields, disease resistance, and nutritional value is made easier by the identification of genetic markers linked to desired traits made possible by DNA and RNA sequencing technologies. Additionally, the importance of the segment is highlighted by the growing reliance on transgenic technology and molecular markers for crop improvement, which not only facilitates breeding but also helps understand plant genomes.
The Fruits & Vegetables segment is expected to have the highest CAGR during the forecast period
The fruits and vegetables segment is projected to exhibit the highest CAGR. This growth is mostly due to rising demand for health and wellness foods as well as growing consumer awareness of the nutritional advantages of fruits and vegetables. It is imperative to develop improved varieties with better taste, longer shelf life, and higher nutritional value as more consumers place a higher priority on eating a healthy diet. Furthermore, supporting the growth of this market is the growing popularity of urban gardening and local food production, as genetically modified fruits and vegetables can satisfy the particular needs of consumers looking for wholesome, fresh produce.
The North American region holds the largest market share for genetic engineering in agriculture. The main reasons for this dominance are the developed agricultural infrastructure, robust R&D capacities, and supportive regulatory framework for genetically modified organisms (GMOs) in nations such as the US and Canada. With large investments in genetic engineering technologies that increase crop yields, improve pest resistance, and lessen dependency on chemical inputs, North America has been at the forefront of the adoption of agricultural biotechnology. Moreover, the region's dominant position in the market is further cemented by its well-established biotech sector and the high rate of farmer and consumer acceptance of GM crops.
The market for genetic engineering in agriculture is anticipated to grow at the highest CAGR in the Asia-Pacific region. Rapid population growth, which raises food demand, and the growing use of cutting-edge molecular biology and genetics technologies to increase crop yield and productivity are some of the factors contributing to this growth. Leading the way in this trend are nations like China and India, which have made significant investments in biotechnology research and development to tackle issues in agriculture like soil degradation and climate variability. Additionally, the market's growth in this area is further supported by the existence of significant biotechnology firms and continuous government assistance for agricultural innovation.
Key players in the market
Some of the key players in Genetic Engineering in Agriculture market include Agilent Technologies, Illumina, Inc., Eurofins Scientific, Qiagen N.V., Neogen Corporation, Traitgenetics GmbH, Keygene, Synthego Corporation, Oxford Nanopore Technologies, Novogene Corporation, GenScript, Trace Genomics, Intellia Therapeutics and NRgene.
In October 2024, Eurofins Scientific, a global scientific leader in bioanalytical testing, with a rapidly developing presence in highly specialised and molecular clinical diagnostics testing and in-vitro diagnostic products, has reached an agreement with SYNLAB to acquire its clinical diagnostics operations in Spain. The transaction is subject to customary conditions, including regulatory approvals, and is expected to close in 2025.
In August 2024, Illumina Inc, a major biotech firm in DNA sequencing and array-based technologies, on Friday announced the setting up of a Global Capability Center in Bengaluru. The centre would be an investment to expand its technology workforce in support of a global customer base.
In July 2024, Agilent Technologies Inc. has signed a definitive agreement to acquire BIOVECTRA, a specialized contract development and manufacturing organization (CDMO), for $925 million. Based in Canada, BIOVECTRA produces biologics, highly potent active pharmaceutical ingredients, and other molecules for targeted therapeutics.