デフォルト表紙
市場調査レポート
商品コード
1577127

ハイブリッド電動航空機市場の2030年までの予測:コンポーネント別、プラットフォーム別、エンジン構成別、地域別の世界分析

Hybrid Electric Aircraft Market Forecasts to 2030 - Global Analysis By Component, Platform, Engine Configuration and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円
ハイブリッド電動航空機市場の2030年までの予測:コンポーネント別、プラットフォーム別、エンジン構成別、地域別の世界分析
出版日: 2024年10月10日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、世界のハイブリッド電動航空機市場は2024年に34億7,000万米ドルを占め、予測期間中のCAGRは23.9%で成長し、2030年には125億5,000万米ドルに達すると予測されています。

ハイブリッド電動航空機は、従来の推進システムと電力源を組み合わせて利用する先進的な航空車両です。これらの航空機は、従来のジェットエンジンやターボプロップ機と電気モーターを統合し、バッテリーや燃料電池からエネルギーを取り出します。この二重のアプローチは、燃料効率の向上、温室効果ガスの排出削減、騒音レベルの低減を目的としており、航空旅行に関連する環境問題の高まりに対応しています。ハイブリッド電気システムは、電気のみの短距離飛行や、電気と従来のエンジンを組み合わせた長距離飛行など、より柔軟な運航を可能にします。

欧州技術革新研究所によると、こうした結果、欧州では年間1,300億円の経済損失が発生しています。

環境に優しい技術への需要の高まり

より環境に優しい技術への需要の高まりは、ハイブリッド電動航空機(HEA)の開発を大きく後押ししています。航空業界が二酸化炭素排出量の削減と気候変動の緩和を目指すなか、HEAは従来のジェットエンジンと電気推進システムを組み合わせた有望なソリューションとして浮上しています。このハイブリッド・アプローチは、燃料効率の向上、排出ガスの低減、騒音レベルの低減を可能にし、世界の持続可能性の目標に合致します。さらに、バッテリー技術と電気モーターの進歩により、環境への影響を最小限に抑えながら短距離の航路を運航できる航空機の設計が実現可能になってきています。

インフラ整備の不足

ハイブリッド電動航空機の開発は、不十分なインフラ支援によって大きく妨げられています。現在、航空エコシステムは主に従来の燃料を動力とする航空機に対応しており、ハイブリッド技術に必要な設備には空白があります。充電ステーション、整備施設、持続可能な航空燃料のサプライチェーンといった主要分野が未発達であるため、ハイブリッド航空機を効果的に導入・運用することが困難になっています。しかし、規制の枠組みは、ハイブリッド・システム特有の要件に対応するためにまだ十分に適応しておらず、複雑さがさらに増しています。

インフラ整備

インフラ整備は、ハイブリッド電動航空機(HEA)技術を発展させ、航空エコシステムへの統合を促進する上で極めて重要な役割を果たします。HEA特有の要件に合わせて特別に設計された強化された充電ステーションは、効率的なバッテリー管理とエネルギー補給を可能にし、フライト間のダウンタイムを最小限に抑えます。空港は、これらの航空機にクリーンなエネルギーを供給するため、太陽光発電や風力発電などの持続可能なエネルギー源に投資しており、二酸化炭素排出量をさらに削減しています。

規制上のハードル

規制上のハードルは、ハイブリッド電動航空機の開発と配備に大きな課題をもたらし、この革新的分野の進展を妨げています。伝統的に従来の航空機向けに設計された航空規制は、ハイブリッド電気システムのユニークな技術や運用パラダイムに対応していないことが多いです。認証プロセス、安全基準、耐空性要件などの問題は複雑で時間がかかることがあります。例えば、規制当局は、新しい電気推進技術の性能を評価したり、騒音や排出ガスの低減が航空交通管理に与える影響を評価したりするのに必要な枠組みを欠いている場合があります。

COVID-19の影響:

COVID-19の大流行は、ハイブリッド電動航空機の開発と導入に大きな影響を与え、航空業界を再編成しました。当初、この危機は航空宇宙産業に大きな混乱をもたらし、航空会社やメーカーが財政難に直面したため、プロジェクトの遅延や資金調達の減少につながった。パンデミックは、持続可能な航空ソリューションの緊急の必要性を浮き彫りにし、排出量と運航コストを削減する手段として、ハイブリッド電気技術への新たな関心を促しました。全体として、COVID-19は当面の課題を提示する一方で、ハイブリッド電動航空機を業界の長期的な回復と、より持続可能な未来に向けた変革の重要な担い手として位置づけ、変革の触媒としての役割も果たしました。

予測期間中は電動モーター部門が最大になる見込み

電動モーター分野は、従来の燃料ベースのシステムと電気推進を組み合わせることで航空に革命を起こすことを目的としており、予測期間中に最大となる見込みです。高効率の電気モーターを統合することで、HEAは排出量の削減と燃料消費の低減を達成し、より持続可能な航空産業に貢献することができます。これらの電気モーターは、エネルギー管理の改善を促進し、離陸、巡航、着陸といった様々な飛行段階において最適化された性能を可能にします。ハイブリッド・アーキテクチャにより、航空機は短距離飛行やタキシングでは電力を活用し、長距離では従来のエンジンに頼ることができます。

予測期間中、民間航空機セグメントのCAGRが最も高くなると予想されます。

民間航空機セグメントは、航空機の環境への影響を軽減することを目的とした有望なソリューションであるため、予測期間中に最も高いCAGRが見込まれます。従来のジェットエンジンと電気推進システムを組み合わせることで、HEAは燃料効率の改善、排出ガスの低減、離着陸時の騒音公害の低減を目指しています。ハイブリッド・システムの統合は、運航コストの削減を可能にするだけでなく、より厳しい環境規制に対応するための世界のイニシアティブにも合致します。大手メーカーは研究機関や政府と協力し、HEAプロトタイプの開発と認証を加速させています。

最大のシェアを占める地域:

北米地域は、技術革新を促進し、持続可能な航空への移行を加速させるため、予測期間中、市場で最大のシェアを占めると予想されます。大手航空宇宙企業、研究機関、新興企業は、独自の専門知識を活用し、リソースを共有し、新技術開発に伴うリスクを軽減するために力を合わせています。協力的な取り組みは、先進推進システム、エネルギー効率の高い設計、持続可能な材料の統合に重点を置いており、これらは航空機の性能を高め、環境への影響を低減するために不可欠です。官民パートナーシップや政府出資の研究プロジェクトなどの取り組みも極めて重要であり、必要な資金や規制上の支援を提供しています。

CAGRが最も高い地域:

欧州地域は、予測期間中に収益性の高い成長を遂げると推定されます。厳しい排出量目標と持続可能性目標を設定することで、欧州当局は航空業界に技術革新とよりクリーンな技術の採用を促しています。欧州連合(EU)のグリーン・ディールや研究開発への資金提供プログラムのようなイニシアチブは、燃料消費の削減とカーボンフットプリントの削減を約束するハイブリッド電気システムへの投資を促進します。

無料カスタマイズサービス:

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場プレーヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査情報源
    • 1次調査情報源
    • 2次調査情報源
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • 新興市場
  • COVID-19の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界のハイブリッド電動航空機市場:コンポーネント別

  • バッテリーと燃料電池
  • 電動モーター
  • ジェネレータ
  • 航空構造物
  • その他のコンポーネント

第6章 世界のハイブリッド電動航空機市場:プラットフォーム別

  • 無人航空機
  • 民間航空機
  • ビジネスジェット

第7章 世界のハイブリッド電動航空機市場:エンジン構成別

  • 電動モーター付きピストンエンジン
  • 電気モーター付きタービンエンジン

第8章 世界のハイブリッド電動航空機市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第9章 主な発展

  • 契約、パートナーシップ、コラボレーション、合弁事業
  • 買収と合併
  • 新製品発売
  • 事業拡大
  • その他の主要戦略

第10章 企業プロファイリング

  • Honeywell International Inc
  • Airbus SE
  • Ampaire Inc
  • Archer Aviation Inc
  • Electric Aircraft Corporation
  • General Electric(GE)Aviation
  • Lockheed Martin Corporation
  • Mitsubishi Aircraft Corporation
  • Northrop Grumman Corporation
  • The Boeing Company
図表

List of Tables

  • Table 1 Global Hybrid Electric Aircraft Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Hybrid Electric Aircraft Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Hybrid Electric Aircraft Market Outlook, By Batteries & Fuel Cells (2022-2030) ($MN)
  • Table 4 Global Hybrid Electric Aircraft Market Outlook, By Electric Motor (2022-2030) ($MN)
  • Table 5 Global Hybrid Electric Aircraft Market Outlook, By Generator (2022-2030) ($MN)
  • Table 6 Global Hybrid Electric Aircraft Market Outlook, By Aerostructures (2022-2030) ($MN)
  • Table 7 Global Hybrid Electric Aircraft Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 8 Global Hybrid Electric Aircraft Market Outlook, By Platform (2022-2030) ($MN)
  • Table 9 Global Hybrid Electric Aircraft Market Outlook, By Unmanned Aerial Vehicle (2022-2030) ($MN)
  • Table 10 Global Hybrid Electric Aircraft Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
  • Table 11 Global Hybrid Electric Aircraft Market Outlook, By Business Jets (2022-2030) ($MN)
  • Table 12 Global Hybrid Electric Aircraft Market Outlook, By Engine Configuration (2022-2030) ($MN)
  • Table 13 Global Hybrid Electric Aircraft Market Outlook, By Piston Engine with Electric Motor (2022-2030) ($MN)
  • Table 14 Global Hybrid Electric Aircraft Market Outlook, By Turbine Engine with Electric Motor (2022-2030) ($MN)
  • Table 15 North America Hybrid Electric Aircraft Market Outlook, By Country (2022-2030) ($MN)
  • Table 16 North America Hybrid Electric Aircraft Market Outlook, By Component (2022-2030) ($MN)
  • Table 17 North America Hybrid Electric Aircraft Market Outlook, By Batteries & Fuel Cells (2022-2030) ($MN)
  • Table 18 North America Hybrid Electric Aircraft Market Outlook, By Electric Motor (2022-2030) ($MN)
  • Table 19 North America Hybrid Electric Aircraft Market Outlook, By Generator (2022-2030) ($MN)
  • Table 20 North America Hybrid Electric Aircraft Market Outlook, By Aerostructures (2022-2030) ($MN)
  • Table 21 North America Hybrid Electric Aircraft Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 22 North America Hybrid Electric Aircraft Market Outlook, By Platform (2022-2030) ($MN)
  • Table 23 North America Hybrid Electric Aircraft Market Outlook, By Unmanned Aerial Vehicle (2022-2030) ($MN)
  • Table 24 North America Hybrid Electric Aircraft Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
  • Table 25 North America Hybrid Electric Aircraft Market Outlook, By Business Jets (2022-2030) ($MN)
  • Table 26 North America Hybrid Electric Aircraft Market Outlook, By Engine Configuration (2022-2030) ($MN)
  • Table 27 North America Hybrid Electric Aircraft Market Outlook, By Piston Engine with Electric Motor (2022-2030) ($MN)
  • Table 28 North America Hybrid Electric Aircraft Market Outlook, By Turbine Engine with Electric Motor (2022-2030) ($MN)
  • Table 29 Europe Hybrid Electric Aircraft Market Outlook, By Country (2022-2030) ($MN)
  • Table 30 Europe Hybrid Electric Aircraft Market Outlook, By Component (2022-2030) ($MN)
  • Table 31 Europe Hybrid Electric Aircraft Market Outlook, By Batteries & Fuel Cells (2022-2030) ($MN)
  • Table 32 Europe Hybrid Electric Aircraft Market Outlook, By Electric Motor (2022-2030) ($MN)
  • Table 33 Europe Hybrid Electric Aircraft Market Outlook, By Generator (2022-2030) ($MN)
  • Table 34 Europe Hybrid Electric Aircraft Market Outlook, By Aerostructures (2022-2030) ($MN)
  • Table 35 Europe Hybrid Electric Aircraft Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 36 Europe Hybrid Electric Aircraft Market Outlook, By Platform (2022-2030) ($MN)
  • Table 37 Europe Hybrid Electric Aircraft Market Outlook, By Unmanned Aerial Vehicle (2022-2030) ($MN)
  • Table 38 Europe Hybrid Electric Aircraft Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
  • Table 39 Europe Hybrid Electric Aircraft Market Outlook, By Business Jets (2022-2030) ($MN)
  • Table 40 Europe Hybrid Electric Aircraft Market Outlook, By Engine Configuration (2022-2030) ($MN)
  • Table 41 Europe Hybrid Electric Aircraft Market Outlook, By Piston Engine with Electric Motor (2022-2030) ($MN)
  • Table 42 Europe Hybrid Electric Aircraft Market Outlook, By Turbine Engine with Electric Motor (2022-2030) ($MN)
  • Table 43 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Country (2022-2030) ($MN)
  • Table 44 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Component (2022-2030) ($MN)
  • Table 45 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Batteries & Fuel Cells (2022-2030) ($MN)
  • Table 46 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Electric Motor (2022-2030) ($MN)
  • Table 47 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Generator (2022-2030) ($MN)
  • Table 48 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Aerostructures (2022-2030) ($MN)
  • Table 49 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 50 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Platform (2022-2030) ($MN)
  • Table 51 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Unmanned Aerial Vehicle (2022-2030) ($MN)
  • Table 52 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
  • Table 53 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Business Jets (2022-2030) ($MN)
  • Table 54 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Engine Configuration (2022-2030) ($MN)
  • Table 55 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Piston Engine with Electric Motor (2022-2030) ($MN)
  • Table 56 Asia Pacific Hybrid Electric Aircraft Market Outlook, By Turbine Engine with Electric Motor (2022-2030) ($MN)
  • Table 57 South America Hybrid Electric Aircraft Market Outlook, By Country (2022-2030) ($MN)
  • Table 58 South America Hybrid Electric Aircraft Market Outlook, By Component (2022-2030) ($MN)
  • Table 59 South America Hybrid Electric Aircraft Market Outlook, By Batteries & Fuel Cells (2022-2030) ($MN)
  • Table 60 South America Hybrid Electric Aircraft Market Outlook, By Electric Motor (2022-2030) ($MN)
  • Table 61 South America Hybrid Electric Aircraft Market Outlook, By Generator (2022-2030) ($MN)
  • Table 62 South America Hybrid Electric Aircraft Market Outlook, By Aerostructures (2022-2030) ($MN)
  • Table 63 South America Hybrid Electric Aircraft Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 64 South America Hybrid Electric Aircraft Market Outlook, By Platform (2022-2030) ($MN)
  • Table 65 South America Hybrid Electric Aircraft Market Outlook, By Unmanned Aerial Vehicle (2022-2030) ($MN)
  • Table 66 South America Hybrid Electric Aircraft Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
  • Table 67 South America Hybrid Electric Aircraft Market Outlook, By Business Jets (2022-2030) ($MN)
  • Table 68 South America Hybrid Electric Aircraft Market Outlook, By Engine Configuration (2022-2030) ($MN)
  • Table 69 South America Hybrid Electric Aircraft Market Outlook, By Piston Engine with Electric Motor (2022-2030) ($MN)
  • Table 70 South America Hybrid Electric Aircraft Market Outlook, By Turbine Engine with Electric Motor (2022-2030) ($MN)
  • Table 71 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Country (2022-2030) ($MN)
  • Table 72 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Component (2022-2030) ($MN)
  • Table 73 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Batteries & Fuel Cells (2022-2030) ($MN)
  • Table 74 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Electric Motor (2022-2030) ($MN)
  • Table 75 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Generator (2022-2030) ($MN)
  • Table 76 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Aerostructures (2022-2030) ($MN)
  • Table 77 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 78 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Platform (2022-2030) ($MN)
  • Table 79 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Unmanned Aerial Vehicle (2022-2030) ($MN)
  • Table 80 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
  • Table 81 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Business Jets (2022-2030) ($MN)
  • Table 82 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Engine Configuration (2022-2030) ($MN)
  • Table 83 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Piston Engine with Electric Motor (2022-2030) ($MN)
  • Table 84 Middle East & Africa Hybrid Electric Aircraft Market Outlook, By Turbine Engine with Electric Motor (2022-2030) ($MN)
目次
Product Code: SMRC27438

According to Stratistics MRC, the Global Hybrid Electric Aircraft Market is accounted for $3.47 billion in 2024 and is expected to reach $12.55 billion by 2030 growing at a CAGR of 23.9% during the forecast period. Hybrid electric aircraft are advanced aviation vehicles that utilize a combination of conventional propulsion systems and electric power sources. These aircraft integrate traditional jet engines or turboprops with electric motors, drawing energy from batteries or fuel cells. This dual approach aims to enhance fuel efficiency, reduce greenhouse gas emissions, and lower noise levels, addressing the growing environmental concerns associated with air travel. Hybrid electric systems allow for more flexible flight operations, including potential for short-range electric-only flights and longer journeys powered by a combination of electric and conventional engines.

According to the European Institute of Innovation and Technology, these consequences cause Europe's economic loss of 130 billion per year.

Market Dynamics:

Driver:

Increased demand for greener technologies

The growing demand for greener technologies is significantly boosting the development of Hybrid Electric Aircraft (HEA). As the aviation industry seeks to reduce its carbon footprint and mitigate climate change, HEAs emerge as a promising solution, combining traditional jet engines with electric propulsion systems. This hybrid approach allows for increased fuel efficiency, lower emissions, and reduced noise levels, aligning with global sustainability goals. Furthermore, advances in battery technology and electric motors are making it feasible to design aircraft that can operate on shorter routes with minimal environmental impact.

Restraint:

Lack of infrastructure support

The development of hybrid electric aircraft is significantly hindered by insufficient infrastructure support. Currently, the aviation ecosystem primarily caters to conventional fuel-powered planes, leaving a gap in the necessary facilities for hybrid technologies. Key areas such as charging stations, maintenance facilities, and supply chains for sustainable aviation fuels are underdeveloped, making it challenging to implement and operate hybrid aircraft effectively. However, regulatory frameworks are not yet fully adapted to accommodate the unique requirements of hybrid systems, adding another layer of complexity.

Opportunity:

Infrastructure development

Infrastructure development plays a crucial role in advancing Hybrid Electric Aircraft (HEA) technology, facilitating their integration into the aviation ecosystem. Enhanced charging stations, designed specifically for the unique requirements of HEAs, enable efficient battery management and energy refueling, ensuring minimal downtime between flights. Airports are investing in sustainable energy sources, such as solar and wind power, to supply clean energy for these aircraft, further reducing carbon footprints.

Threat:

Regulatory hurdles

Regulatory hurdles pose significant challenges to the development and deployment of hybrid electric aircraft, impeding progress in this innovative sector. Aviation regulations, which are traditionally designed for conventional aircraft, often do not accommodate the unique technologies and operational paradigms of hybrid electric systems. Issues such as certification processes, safety standards, and airworthiness requirements can be complex and time-consuming. For instance, regulators may lack the necessary frameworks to evaluate the performance of new electric propulsion technologies or to assess the implications of reduced noise and emissions on air traffic management.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the development and adoption of hybrid electric aircraft, reshaping the aviation landscape. Initially, the crisis caused major disruptions in the aerospace industry, leading to project delays and reduced funding as airlines and manufacturers faced financial strain. The pandemic highlighted the urgent need for sustainable aviation solutions, prompting renewed interest in hybrid electric technologies as a means to lower emissions and operational costs. Overall, while COVID-19 presented immediate challenges, it also served as a catalyst for change, positioning hybrid electric aircraft as a key player in the industry's long-term recovery and transformation toward a more sustainable future.

The Electric Motor segment is expected to be the largest during the forecast period

Electric Motor segment is expected to be the largest during the forecast period, which aim to revolutionize aviation by combining traditional fuel-based systems with electric propulsion. By integrating high-efficiency electric motors, HEAs can achieve reduced emissions and lower fuel consumption, contributing to a more sustainable aviation industry. These electric motors facilitate improved energy management, allowing for optimized performance during various flight phases, such as takeoff, cruising and landing. The hybrid architecture enables aircraft to leverage electric power for short-range flights or taxiing, while relying on conventional engines for longer distances.

The Commercial Aircraft segment is expected to have the highest CAGR during the forecast period

Commercial Aircraft segment is expected to have the highest CAGR during the forecast period due to a promising solution aimed at reducing aviation's environmental impact. By combining traditional jet engines with electric propulsion systems, HEAs aim to improve fuel efficiency, lower emissions, and reduce noise pollution during takeoff and landing. The integration of hybrid systems not only allows for reduced operational costs but also aligns with global initiatives to meet stricter environmental regulations. Leading manufacturers are collaborating with research institutions and governments to accelerate the development and certification of HEA prototypes.

Region with largest share:

North America region is anticipated to command the largest share of the market over the extrapolated period fostering innovation and accelerating the transition to sustainable aviation. Major aerospace companies, research institutions, and startups are joining forces to leverage their unique expertise, share resources, and mitigate risks associated with developing new technologies. Collaborative efforts focus on integrating advanced propulsion systems, energy-efficient designs, and sustainable materials, which are essential for enhancing aircraft performance and reducing environmental impact. Initiatives like public-private partnerships and government-funded research projects are also pivotal, providing necessary funding and regulatory support.

Region with highest CAGR:

Europe region is estimated to witness profitable growth during the extrapolated period. By establishing stringent emissions targets and sustainability goals, European authorities are incentivizing the aviation industry to innovate and adopt cleaner technologies. Initiatives such as the European Union's Green Deal and funding programs for research and development promote investment in hybrid electric systems, which promise to reduce fuel consumption and lower carbon footprints.

Key players in the market

Some of the key players in Hybrid Electric Aircraft market include Honeywell International Inc, Airbus SE, Ampaire Inc, Archer Aviation Inc, Electric Aircraft Corporation, General Electric (GE) Aviation, Lockheed Martin Corporation, Mitsubishi Aircraft Corporation, Northrop Grumman Corporation and The Boeing Company.

Key Developments:

In January 2024, VoltAero, a France-based aerospace company, partnered with Safran Electrical & Power to supply the electrical wiring on VoltAero's Cassio 330 electric-hybrid certification aircraft, confirming Safran's role as a leading partner in VoltAero's clean-sheet e-airplane.

In December 2023, Electra, Aura Aero and Heart Aerospace manufactured aircraft with a 30-passenger carrying capacity based on gas-electric hybrid aircraft. A company based in Dallas has initiated a contract to order 300 hybrid electric aircraft.

In December 2023, Airbus SE unveiled a new hybrid electric aircraft and completed their first flight for 100 minutes above the sky in France. The aircraft was first launched at the Paris Air Show in 2019. Airbus, Safran, and Daher developed the EcoPulse to reduce carbon emissions and lower noise levels.

In November 2023, Wright Electric collaborated with Axter Aerospace to unveil the maiden flight of an 800kW hybrid-electric crop duster aircraft. The aircraft featured 800 kW of combined shaft horsepower.

In June 2023, Safran Helicopter Engines signed a memorandum of understanding with Aura Aero to motorize the project of the electric regional aircraft. The partners are expected to cooperate to evaluate turbo-generators developed by Safran.

Components Covered:

  • Batteries & Fuel Cells
  • Electric Motor
  • Generator
  • Aerostructures
  • Other Components

Platforms Covered:

  • Unmanned Aerial Vehicle
  • Commercial Aircraft
  • Business Jets

Engine Configurations Covered:

  • Piston Engine with Electric Motor
  • Turbine Engine with Electric Motor

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Emerging Markets
  • 3.7 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hybrid Electric Aircraft Market, By Component

  • 5.1 Introduction
  • 5.2 Batteries & Fuel Cells
  • 5.3 Electric Motor
  • 5.4 Generator
  • 5.5 Aerostructures
  • 5.6 Other Components

6 Global Hybrid Electric Aircraft Market, By Platform

  • 6.1 Introduction
  • 6.2 Unmanned Aerial Vehicle
  • 6.3 Commercial Aircraft
  • 6.4 Business Jets

7 Global Hybrid Electric Aircraft Market, By Engine Configuration

  • 7.1 Introduction
  • 7.2 Piston Engine with Electric Motor
  • 7.3 Turbine Engine with Electric Motor

8 Global Hybrid Electric Aircraft Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Honeywell International Inc
  • 10.2 Airbus SE
  • 10.3 Ampaire Inc
  • 10.4 Archer Aviation Inc
  • 10.5 Electric Aircraft Corporation
  • 10.6 General Electric (GE) Aviation
  • 10.7 Lockheed Martin Corporation
  • 10.8 Mitsubishi Aircraft Corporation
  • 10.9 Northrop Grumman Corporation
  • 10.10 The Boeing Company