![]() |
市場調査レポート
商品コード
1569794
電池アノード材料市場の2030年までの予測: 材料別、用途別、地域別の世界分析Battery Anode Materials Market Forecasts to 2030 - Global Analysis By Material, Application and By Geography |
||||||
カスタマイズ可能
|
電池アノード材料市場の2030年までの予測: 材料別、用途別、地域別の世界分析 |
出版日: 2024年10月10日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界の電池アノード材料市場は2024年に22億8,900万米ドルを占め、予測期間中のCAGRは11.1%で2030年には43億400万米ドルに達する見込みです。
電池アノード材料は、充電式電池に不可欠な部品であり、充電と放電のサイクル中に電気エネルギーを貯蔵・放出する場所を提供します。アノード材料は通常、リチウムイオンやその他の電荷キャリアを可逆的にインターカレート(挿入)できる材料で構成されています。アノード材料の改良は、太陽光発電や風力発電のような再生可能エネルギー源のより効率的なエネルギー貯蔵システムにつながり、電力の確実な供給を保証します。シリコン系負極などの新材料の調査は、電池の性能をさらに向上させ、エネルギー技術と貯蔵ソリューションの進歩に貢献することを目指しています。
NITI AayogとRocky Mountain Institute(RMI)によると、インドのEV金融産業は2030年までに500億米ドルに達する可能性が高いです。インド・ブランド・エクイティ財団によると、2021年にインドで販売されたEVは32万9,190台で、昨年の販売台数12万2,607台を168%上回った。
再生可能エネルギー貯蔵の増加
このような再生可能技術が普及するにつれ、効率的なエネルギー貯蔵ソリューションの需要が高まっています。エネルギー貯蔵システムにおいて重要な部品である電池アノードは、この需要に応えるべく進化しています。シリコン、リチウム、新規複合材料などの材料の革新は、より高いエネルギー密度、より速い充放電速度、より長いサイクル寿命の必要性によって推進されています。例えば、シリコンベースの負極は、従来の黒鉛負極に代わるものとして開発されており、著しく高い容量と優れた性能を提供しています。この進歩は、エネルギー貯蔵システムの有効性を向上させるだけでなく、より信頼性が高く効率的な貯蔵ソリューションを可能にすることで、再生可能エネルギーのグリッドへの幅広い統合をサポートします。
市場の変動
市場力学の不安定性は、需給双方の力学に不確実性と変動をもたらすことで、電池アノード材料セクターに大きな影響を与えています。この不安定さは予測不可能な価格変動につながり、メーカーが効果的な予算を立て、長期的な投資を計画することを困難にします。原材料コストの変動は、電気自動車(EV)や家電セクターからの不規則な需要と相まって、この変動を悪化させています。その結果、バッテリー負極材市場の企業は、安定したサプライチェーンを確保し、安定した生産レベルを維持することの難しさに直面しています。
電気自動車(EV)の普及拡大
電気自動車(EV)の急速な普及は、電池アノード材料の大幅な進歩を促しており、電池の性能と寿命の向上に不可欠です。EVの普及に伴い、エネルギー密度が高く、充電時間が短く、寿命が長いバッテリーへの需要が高まっています。この需要は、従来の黒鉛を超えるアノード材料の研究開発を後押ししています。革新的なものとしては、より高いエネルギー貯蔵容量を約束するシリコンベースの負極や、安全性の向上と充電サイクルの高速化を実現するチタン酸リチウムなどがあります。
環境と規制への懸念
電池アノード材料の開発は、環境と規制上の懸念から大きな課題に直面しています。多くの場合、リチウム、コバルト、ニッケルなどの重要金属が関与するこれらの材料の生産と廃棄は、適切に管理されなければ環境悪化につながる可能性があります。採掘活動は、生息地の破壊、水質汚染、土壌汚染を引き起こす可能性があり、持続可能性の問題を提起しています。環境への影響を最小限に抑え、倫理的な調達を確保することを目的とした厳しい規制は、サプライチェーンを複雑にしています。規制はしばしば、よりクリーンな技術や厳格な廃棄物管理慣行への投資を企業に要求するが、これは生産コストを上昇させ、技術革新を遅らせる可能性があります。
COVID-19の大流行は電池アノード材料セクターを大きく混乱させ、世界の危機に対する脆弱性を浮き彫りにしました。工場の閉鎖や操業停止によるサプライチェーンの中断は、リチウム、黒鉛、コバルトといった重要な原材料の不足につながった。物流の課題はこれらの原材料の輸送を妨げ、サプライチェーンをさらに緊張させました。しかし、パンデミックは需要パターンの転換も引き起こし、遠隔地での仕事の急増やデジタル機器への依存度の高まりが電池需要の一時的な急増に拍車をかけた。
予測期間中、負極バインダー部門が最大になる見込み
負極バインダー分野は、その性能と耐久性を向上させることで、予測期間中に最大となる見込みです。リチウムイオン電池では、負極バインダーはアノード材料をつなぎ合わせ、充放電サイクル中の構造的完全性を維持するために使用されます。最近の負極バインダーの動向は、より優れた接着性、柔軟性、熱安定性を提供する新しいポリマー材料と配合の開発に重点を置いています。これらの改良は負極の導電性と容量の最適化に役立ち、ひいては電池の全体的な効率と寿命を向上させる。
予測期間中にCAGRが最も高くなると予想されるのは自動車分野です。
自動車分野は、電気自動車(EV)の急速な拡大により、予測期間中のCAGRが最も高くなると予想されます。EVの世界の需要拡大に伴い、高度なアノード材料に大きく依存する高性能バッテリーのニーズが急増しています。シリコンベースやリチウムイオン複合材料などのアノード材料の革新は、従来の材料に比べて大幅な性能向上をもたらしています。この技術的進歩は、政府のインセンティブやEVインフラへの投資と相まって、バッテリー負極材市場における自動車セクターの力強い成長を牽引しています。
北米地域が、予測期間を通じて最大の市場シェアを占める見通しです。スマートフォン、タブレット、ノートパソコンなどの民生用電子機器は進化を続けており、より高度で効率的な電源が求められています。電池メーカー、材料サプライヤー、研究機関の戦略的提携を促進することで、この協力的アプローチは技術革新を加速し、最先端のアノード材料の開発を促進します。さらに、環境団体とのパートナーシップにより、新材料が厳しい持続可能性基準を満たすことが保証されています。
欧州地域は、予測期間中に有益な成長を遂げると推定されます。欧州連合(EU)の厳格な環境政策と、欧州グリーンディールや電池指令などの戦略的イニシアティブが、より高い持続可能性基準を義務付け、環境に優しい材料の使用を促進することで、この進展を後押ししています。これらの規制は、電気自動車用バッテリーや再生可能エネルギー貯蔵に不可欠な、高性能で持続可能なアノード材料の生産において、企業の技術革新を促しています。さらに、政府が支援する研究資金や共同プロジェクトが次世代負極材の開発を支援し、世界の電池アノード材料業界のリーダーとしての欧州の地位をさらに高めています。
According to Stratistics MRC, the Global Battery Anode Materials Market is accounted for $2.289 billion in 2024 and is expected to reach $4.304 billion by 2030 growing at a CAGR of 11.1% during the forecast period. Battery anode materials are essential components in rechargeable batteries, providing a site for the storage and release of electrical energy during charge and discharge cycles. They typically consist of materials that can intercalate, or insert, lithium ions or other charge carriers reversibly. Improvements in anode materials can lead to more efficient energy storage systems for renewable energy sources, like solar and wind power, ensuring a reliable supply of electricity. Research into new materials, such as silicon-based anodes, aims to further enhance battery performance, contributing to advancements in energy technology and storage solutions.
According to NITI Aayog and Rocky Mountain Institute (RMI), India's EV finance industry is likely to reach USD 50 billion by 2030. According to the India Brand Equity Foundation, overall, in 2021, 329,190 EVs were sold in India, indicating a 168% YoY growth over last year's sales of 122,607 units.
Rising renewable energy storage
As these renewable technologies become more prevalent, the demand for efficient energy storage solutions grows. Battery anodes, crucial components in energy storage systems, are evolving to meet this demand. Innovations in materials like silicon, lithium, and novel composites are being driven by the need for higher energy densities, faster charge and discharge rates, and longer cycle lives. For instance, silicon-based anodes are being developed to replace traditional graphite ones, offering significantly higher capacity and better performance. This progress not only improves the effectiveness of energy storage systems but also supports the broader integration of renewable energy into the grid by enabling more reliable and efficient storage solutions.
Market volatility
Market volatility is significantly impacting the battery anode materials sector by creating uncertainty and fluctuations in both supply and demand dynamics. This instability can lead to unpredictable price swings, making it challenging for manufacturers to budget effectively and plan long-term investments. Fluctuating raw material costs, coupled with erratic demand from the electric vehicle (EV) and consumer electronics sectors, exacerbate this volatility. As a result, companies in the battery anode materials market face difficulties in securing stable supply chains and maintaining consistent production levels.
Growing electric vehicle (EV) adoption
The rapid adoption of electric vehicles (EVs) is driving significant advancements in battery anode materials, crucial for enhancing battery performance and longevity. As EVs become more prevalent, there is a heightened demand for batteries that offer greater energy density, faster charging times, and longer lifespans. This demand is pushing research and development in anode materials beyond traditional graphite. Innovations include silicon-based anodes, which promise much higher energy storage capacity, and lithium titanate, which provides improved safety and faster charge cycles.
Environmental and regulatory concerns
The development of battery anode materials faces significant challenges due to environmental and regulatory concerns. The production and disposal of these materials, often involving critical metals like lithium, cobalt, and nickel, can lead to environmental degradation if not managed properly. Mining activities can cause habitat destruction, water pollution, and soil contamination, raising sustainability issues. The stringent regulations aimed at minimizing environmental impact and ensuring ethical sourcing complicate the supply chain. Regulations often require companies to invest in cleaner technologies and rigorous waste management practices, which can increase production costs and slow innovation.
The COVID-19 pandemic significantly disrupted the battery anode materials sector, highlighting its vulnerability to global crises. Supply chain interruptions, caused by lockdowns and factory shutdowns, led to shortages of critical raw materials like lithium, graphite, and cobalt. Logistical challenges hampered the transportation of these materials, further straining the supply chain. However, the pandemic also triggered shifts in demand patterns, as the surge in remote work and increased reliance on digital devices spurred a temporary spike in battery demand.
The anode binders segment is expected to be the largest during the forecast period
Anode binders segment is expected to be the largest during the forecast period by improving their performance and durability. In lithium-ion batteries, anode binders are used to hold the anode materials together and maintain structural integrity during charge and discharge cycles. Recent advancements in anode binders focus on developing new polymeric materials and formulations that offer better adhesion, flexibility, and thermal stability. These improvements help in optimizing the anode's conductivity and capacity, which in turn enhances the overall efficiency and lifespan of the battery.
The automotive segment is expected to have the highest CAGR during the forecast period
Automotive segment is expected to have the highest CAGR during the forecast period due to the rapid expansion of electric vehicles (EVs). As global demand for EVs grows, the need for high-performance batteries, which rely heavily on advanced anode materials, has surged. Innovations in anode materials, such as silicon-based or lithium-ion composites, offer significant performance improvements over traditional materials. This technological advancement, coupled with government incentives and investments in EV infrastructure, is driving the automotive sector's robust growth in the battery anode materials market.
North America region is poised to hold the largest market share over the extrapolated period. As consumer electronics, such as smartphones, tablets, and laptops, continue to evolve, they demand more advanced and efficient power sources. By fostering strategic alliances between battery manufacturers, material suppliers, and research institutions, this cooperative approach accelerates innovation and enhances the development of cutting-edge anode materials. Additionally, partnerships with environmental organizations are ensuring that new materials meet stringent sustainability standards.
Europe region is estimated to witness profitable growth during the projected period. The European Union's stringent environmental policies and strategic initiatives, such as the European Green Deal and the Battery Directive, are driving this progress by mandating higher sustainability standards and promoting the use of eco-friendly materials. These regulations encourage companies to innovate in producing high-performance, sustainable anode materials, essential for electric vehicle batteries and renewable energy storage. Additionally, government-backed research funding and collaborative projects support the development of next-generation anode materials, further enhancing Europe's position as a leader in the global battery anode materials industry.
Key players in the market
Some of the key players in Battery Anode Materials market include Albemarle Corporation, BASF SE, JFE Chemical Corporation, LG Energy Solution, NEI Corporation, Nippon Carbon Co., Ltd, POSCO Future M Co., Ltd, Samsung SDI Co., Ltd, SGL Carbon and Toray Industries, Inc.
In September 2023, Albemarle Corporation, a global leader in providing essential elements for mobility, energy, connectivity and health, signed agreements today with Caterpillar Inc. to collaborate on solutions to support the full circular battery value chain and sustainable mining operations. The collaboration aims to support Albemarle's efforts to establish Kings Mountain, N.C. as the first-ever zero-emissions lithium mine site in North America. These efforts include utilization of next-generation, battery-powered mining equipment.
In May 2022, Nano One Materials Corp., a clean technology innovator in battery materials, announced that it had entered into a binding agreement to acquire all the outstanding shares of Johnson Matthey (JM) Battery Materials Ltd.