デフォルト表紙
市場調査レポート
商品コード
1558362

高温複合材の2030年までの市場予測:マトリックスシステム、用途、エンドユーザー、地域別の世界分析

High-Temperature Composite Materials Market Forecasts to 2030 - Global Analysis By Matrix Systems, Application, End User and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=147.89円
高温複合材の2030年までの市場予測:マトリックスシステム、用途、エンドユーザー、地域別の世界分析
出版日: 2024年09月06日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、世界の高温複合材市場は2024年に81億2,000万米ドルを占め、予測期間中にCAGR 10.3%で成長し、2030年には146億2,000万米ドルに達する見込みです。

高温複合材は、構造的完全性を維持しながら極端な熱環境に耐えるように設計されています。これらの材料は通常、繊維強化マトリックスで構成され、繊維が強度を提供し、マトリックスが熱劣化に対する耐性を提供します。繊維はカーボン、セラミックス、ガラスなどの材料から作られ、マトリックスは高温に耐えるように特別に配合されたセラミックスやポリマーであることが多いです。自動車分野では、ブレーキシステムやターボチャージャーの部品にこれらの複合材が使用され、高熱に耐える一方で、燃費向上のために軽量化が図られています。

米国エネルギー情報局によると、米国には操業可能な石油精製所が130カ所あります。IBEFによると、2022年1月、インドの乗用車、三輪車、二輪車、四輪車の総生産台数は186万809台に達しました。

公共交通機関への安全基準の導入

公共輸送における安全基準の導入は、高温複合材の進歩を促しています。輸送システムの進化に伴い、より安全で効率的な車両への需要が高まっています。これらの新しい安全規制は、構造的完全性を維持しながら、高温を含む極端な条件に耐えることができる材料を必要とします。耐久性、軽量性、耐熱劣化性で知られる高温複合材は、こうした用途に理想的です。これらの材料は、輸送の全体的な安全性と信頼性を向上させるだけでなく、車両の重量を減らすことでエネルギー効率にも貢献し、ひいては燃料消費量を削減します。

高い加工・製造コスト

加工・製造コストが高いことが、高温複合材の開発と普及の大きな妨げとなっています。卓越した強度と極限環境に対する耐性で知られるこれらの材料は、航空宇宙、自動車、エネルギーなどの産業で不可欠です。しかし、その製造には、セラミックや炭素繊維のような高価な原材料の使用や、オートクレーブ硬化や真空アシスト樹脂トランスファー成形のような高度な製造技術など、複雑でエネルギー集約的な工程が必要です。一貫した品質と性能を確保するために製造に求められる精度は、さらにコストを押し上げます。

低コスト生産技術のイントロダクション

低コスト生産技術のイントロダクションは、高温複合材の開発と応用を大幅に強化しています。従来、これらの材料は、高温での熱安定性と機械的強度を確保するために複雑な工程と特殊な装置が必要なため、製造コストが高かったです。しかし、繊維の自動配置、3Dプリンティング、より効率的な硬化プロセスなどの製造技術の進歩により、製造コストが削減されています。これらの技術は、材料特性の精密な制御を可能にし、構造的完全性を維持しながら極端な温度にも耐えられる複合材料の製造を可能にします。

熟練労働力の不足

熟練した労働力の不足が、高温複合材の開発と普及を大きく妨げています。これらの材料は、材料科学、工学、製造工程における専門知識を必要とするが、それを持つ専門家はほとんどいないです。セラミック基複合材料(CMC)のような高温複合材を扱う複雑さには、積層や硬化の精度を含め、設計、シミュレーション、製造技術における専門知識が要求されます。業界が有能なエンジニアや技術者の不足に直面するにつれ、技術革新のペースは遅くなり、より広範な採用の可能性は低下します。この人材不足は、新素材の開発にかかるコストと時間を増大させるだけでなく、これらの複合材料が変革的な役割を果たす可能性のある重要な技術進歩の進展を遅らせる危険性もあります。

COVID-19の影響:

COVID-19の流行は、主にサプライチェーンの混乱と、航空宇宙や自動車などの主要部門からの需要の減少により、高温複合材業界に大きな影響を与えました。操業停止や制限によって製造活動が停止し、生産やプロジェクトのスケジュールに遅れが生じました。高温複合材の主要な消費者である航空宇宙セクターは、航空旅行が激減し、新しい航空機やメンテナンスの必要性が減少したため、景気後退に直面しました。しかし、パンデミックは弾力性があり軽量な材料の重要性も浮き彫りにし、産業が回復し新たな課題に適応していく中で、将来の技術革新と応用を促進する可能性があります。

予測期間中、金属マトリックス複合材料セグメントが最大になる見込み

金属マトリックス複合材料セグメントは、過酷な条件に対して強化された性能特性を提供することで、予測期間中に最大となる見込みです。MMCは、アルミニウムやチタンのような金属マトリックスと、炭化ケイ素やアルミナのようなセラミック強化材を組み合わせて、優れた強度、熱安定性、耐摩耗性を示す材料を作り出します。これらの複合材料は、従来の金属や合金に比べて高温に耐えるように設計されているため、高い熱応力がかかる航空宇宙、自動車、工業分野の用途に最適です。

排気部品セグメントは予測期間中最も高いCAGRが見込まれる

排気部品分野は、予測期間中に最も高いCAGRが見込まれます。これらの複合材料は、排気システム内の極端な温度や過酷な条件に耐えるように設計されており、従来の材料と比較して熱応力や腐食に対する優れた耐性を提供します。先進複合材料を組み込むことで、メーカーは排気部品の全体的な効率と寿命を向上させ、自動車の排出ガス削減と燃費向上に貢献することができます。高温複合材の統合はまた、より軽量でコンパクトな排気システムの開発をサポートし、車両性能をさらに最適化し、環境の持続可能性に貢献します。

最大のシェアを占める地域

予測期間中、北米地域が市場で最大のシェアを占めました。産業が成長し都市部が拡大するにつれて、極端な温度や過酷な条件に耐える材料への需要が高まっています。耐熱性、軽量性、耐久性に優れた高温複合材は、航空宇宙、自動車、エネルギーなどの分野で重要となっています。産業活動の急増と急速な都市化が相まって、こうした先端材料への革新と投資が促進されています。北米の強固な産業インフラと技術的専門知識は研究開発を促進し、複合材料技術のブレークスルーをもたらしています。

CAGRが最も高い地域:

欧州地域は、予測期間中に有利な成長を遂げると推定されます。欧州では、政府の規制が、厳しい基準を設定し研究開発を促進することで、高温複合材分野の発展に重要な役割を果たしています。こうした基準を施行することで、欧州政府は、極限条件下での複合材料の耐久性と効率を高める先端技術の革新と採用を企業に促しています。さらに、規制の枠組みには、資金提供の機会、税制上の優遇措置、学界と産業界の共同プロジェクトに対する支援が含まれていることが多いです。このような支援環境は、技術的進歩を促進するだけでなく、高性能材料のリーダーとしての欧州の地位を強化します。

無料カスタマイズサービス:

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場プレーヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査情報源
    • 1次調査情報源
    • 2次調査情報源
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • 用途分析
  • エンドユーザー分析
  • 新興市場
  • COVID-19の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界の高温複合材市場:マトリックスシステム別

  • セラミックマトリックス複合材料
  • 炭素マトリックス複合材料
  • 金属マトリックス複合材料

第6章 世界の高温複合材市場:用途別

  • ブレーキディスク
  • 断熱材
  • 排気部品
  • その他の用途

第7章 世界の高温複合材市場:エンドユーザー別

  • エネルギーと電力
  • 石油・ガス
  • 航空宇宙および防衛
  • その他のエンドユーザー

第8章 世界の高温複合材市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第9章 主な発展

  • 契約、パートナーシップ、コラボレーション、合弁事業
  • 買収と合併
  • 新製品発売
  • 事業拡大
  • その他の主要戦略

第10章 企業プロファイリング

  • 3M Company
  • Hexcel Corporation
  • Hitco Carbon Composites, Inc
  • Honeywell International Inc
  • Huntsman Corporation
  • Kaneka Corporation
  • Lockheed Martin Corporation
  • Materion Corporation
  • Mitsubishi Chemical Corporation
  • Toray Industries, Inc
図表

List of Tables

  • Table 1 Global High-Temperature Composite Materials Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global High-Temperature Composite Materials Market Outlook, By Matrix Systems (2022-2030) ($MN)
  • Table 3 Global High-Temperature Composite Materials Market Outlook, By Ceramic Matrix Composite Materials (2022-2030) ($MN)
  • Table 4 Global High-Temperature Composite Materials Market Outlook, By Carbon Matrix Composite Materials (2022-2030) ($MN)
  • Table 5 Global High-Temperature Composite Materials Market Outlook, By Metal Matrix Composite Materials (2022-2030) ($MN)
  • Table 6 Global High-Temperature Composite Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 7 Global High-Temperature Composite Materials Market Outlook, By Brake Discs (2022-2030) ($MN)
  • Table 8 Global High-Temperature Composite Materials Market Outlook, By Heat Insulations (2022-2030) ($MN)
  • Table 9 Global High-Temperature Composite Materials Market Outlook, By Exhaust Parts (2022-2030) ($MN)
  • Table 10 Global High-Temperature Composite Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 11 Global High-Temperature Composite Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 12 Global High-Temperature Composite Materials Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 13 Global High-Temperature Composite Materials Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 14 Global High-Temperature Composite Materials Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 15 Global High-Temperature Composite Materials Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 16 North America High-Temperature Composite Materials Market Outlook, By Country (2022-2030) ($MN)
  • Table 17 North America High-Temperature Composite Materials Market Outlook, By Matrix Systems (2022-2030) ($MN)
  • Table 18 North America High-Temperature Composite Materials Market Outlook, By Ceramic Matrix Composite Materials (2022-2030) ($MN)
  • Table 19 North America High-Temperature Composite Materials Market Outlook, By Carbon Matrix Composite Materials (2022-2030) ($MN)
  • Table 20 North America High-Temperature Composite Materials Market Outlook, By Metal Matrix Composite Materials (2022-2030) ($MN)
  • Table 21 North America High-Temperature Composite Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 22 North America High-Temperature Composite Materials Market Outlook, By Brake Discs (2022-2030) ($MN)
  • Table 23 North America High-Temperature Composite Materials Market Outlook, By Heat Insulations (2022-2030) ($MN)
  • Table 24 North America High-Temperature Composite Materials Market Outlook, By Exhaust Parts (2022-2030) ($MN)
  • Table 25 North America High-Temperature Composite Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 26 North America High-Temperature Composite Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 27 North America High-Temperature Composite Materials Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 28 North America High-Temperature Composite Materials Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 29 North America High-Temperature Composite Materials Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 30 North America High-Temperature Composite Materials Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 31 Europe High-Temperature Composite Materials Market Outlook, By Country (2022-2030) ($MN)
  • Table 32 Europe High-Temperature Composite Materials Market Outlook, By Matrix Systems (2022-2030) ($MN)
  • Table 33 Europe High-Temperature Composite Materials Market Outlook, By Ceramic Matrix Composite Materials (2022-2030) ($MN)
  • Table 34 Europe High-Temperature Composite Materials Market Outlook, By Carbon Matrix Composite Materials (2022-2030) ($MN)
  • Table 35 Europe High-Temperature Composite Materials Market Outlook, By Metal Matrix Composite Materials (2022-2030) ($MN)
  • Table 36 Europe High-Temperature Composite Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 37 Europe High-Temperature Composite Materials Market Outlook, By Brake Discs (2022-2030) ($MN)
  • Table 38 Europe High-Temperature Composite Materials Market Outlook, By Heat Insulations (2022-2030) ($MN)
  • Table 39 Europe High-Temperature Composite Materials Market Outlook, By Exhaust Parts (2022-2030) ($MN)
  • Table 40 Europe High-Temperature Composite Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 41 Europe High-Temperature Composite Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 42 Europe High-Temperature Composite Materials Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 43 Europe High-Temperature Composite Materials Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 44 Europe High-Temperature Composite Materials Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 45 Europe High-Temperature Composite Materials Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 46 Asia Pacific High-Temperature Composite Materials Market Outlook, By Country (2022-2030) ($MN)
  • Table 47 Asia Pacific High-Temperature Composite Materials Market Outlook, By Matrix Systems (2022-2030) ($MN)
  • Table 48 Asia Pacific High-Temperature Composite Materials Market Outlook, By Ceramic Matrix Composite Materials (2022-2030) ($MN)
  • Table 49 Asia Pacific High-Temperature Composite Materials Market Outlook, By Carbon Matrix Composite Materials (2022-2030) ($MN)
  • Table 50 Asia Pacific High-Temperature Composite Materials Market Outlook, By Metal Matrix Composite Materials (2022-2030) ($MN)
  • Table 51 Asia Pacific High-Temperature Composite Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 52 Asia Pacific High-Temperature Composite Materials Market Outlook, By Brake Discs (2022-2030) ($MN)
  • Table 53 Asia Pacific High-Temperature Composite Materials Market Outlook, By Heat Insulations (2022-2030) ($MN)
  • Table 54 Asia Pacific High-Temperature Composite Materials Market Outlook, By Exhaust Parts (2022-2030) ($MN)
  • Table 55 Asia Pacific High-Temperature Composite Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 56 Asia Pacific High-Temperature Composite Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 57 Asia Pacific High-Temperature Composite Materials Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 58 Asia Pacific High-Temperature Composite Materials Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 59 Asia Pacific High-Temperature Composite Materials Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 60 Asia Pacific High-Temperature Composite Materials Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 61 South America High-Temperature Composite Materials Market Outlook, By Country (2022-2030) ($MN)
  • Table 62 South America High-Temperature Composite Materials Market Outlook, By Matrix Systems (2022-2030) ($MN)
  • Table 63 South America High-Temperature Composite Materials Market Outlook, By Ceramic Matrix Composite Materials (2022-2030) ($MN)
  • Table 64 South America High-Temperature Composite Materials Market Outlook, By Carbon Matrix Composite Materials (2022-2030) ($MN)
  • Table 65 South America High-Temperature Composite Materials Market Outlook, By Metal Matrix Composite Materials (2022-2030) ($MN)
  • Table 66 South America High-Temperature Composite Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 67 South America High-Temperature Composite Materials Market Outlook, By Brake Discs (2022-2030) ($MN)
  • Table 68 South America High-Temperature Composite Materials Market Outlook, By Heat Insulations (2022-2030) ($MN)
  • Table 69 South America High-Temperature Composite Materials Market Outlook, By Exhaust Parts (2022-2030) ($MN)
  • Table 70 South America High-Temperature Composite Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 71 South America High-Temperature Composite Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 72 South America High-Temperature Composite Materials Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 73 South America High-Temperature Composite Materials Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 74 South America High-Temperature Composite Materials Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 75 South America High-Temperature Composite Materials Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 76 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Country (2022-2030) ($MN)
  • Table 77 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Matrix Systems (2022-2030) ($MN)
  • Table 78 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Ceramic Matrix Composite Materials (2022-2030) ($MN)
  • Table 79 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Carbon Matrix Composite Materials (2022-2030) ($MN)
  • Table 80 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Metal Matrix Composite Materials (2022-2030) ($MN)
  • Table 81 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 82 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Brake Discs (2022-2030) ($MN)
  • Table 83 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Heat Insulations (2022-2030) ($MN)
  • Table 84 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Exhaust Parts (2022-2030) ($MN)
  • Table 85 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 86 Middle East & Africa High-Temperature Composite Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 87 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 88 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 89 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 90 Middle East & Africa High-Temperature Composite Materials Market Outlook, By Other End Users (2022-2030) ($MN)
目次
Product Code: SMRC27237

According to Stratistics MRC, the Global High-Temperature Composite Materials Market is accounted for $8.12 billion in 2024 and is expected to reach $14.62 billion by 2030 growing at a CAGR of 10.3% during the forecast period. High-temperature composite materials are engineered to withstand extreme thermal environments while maintaining their structural integrity. These materials are typically composed of a fiber-reinforced matrix, where the fibers provide strength and the matrix offers resistance to thermal degradation. The fibers can be made from materials like carbon, ceramics, or glass, while the matrix is often a ceramic or polymer that is specially formulated to resist high temperatures. The automotive sector leverages these composites in brake systems and turbocharger components to withstand intense heat while reducing weight for improved fuel efficiency.

According to U.S. Energy Information Administration, there are 130 operable petroleum refineries in the United States. According to IBEF facts, In January 2022, the total production of passenger vehicles, three-wheelers, two-wheelers and quadricycles reached 1,860,809 units in India.

Market Dynamics:

Driver:

Introduction of safety norms in public transport

The introduction of safety norms in public transport is driving advancements in high-temperature composite materials. As transportation systems evolve, the demand for safer, more efficient vehicles increases. These new safety regulations require materials that can withstand extreme conditions, including high temperatures, while maintaining structural integrity. High-temperature composite materials, known for their durability, lightweight properties, and resistance to thermal degradation, are ideal for these applications. These materials not only improve the overall safety and reliability of transportation but also contribute to energy efficiency by reducing the weight of vehicles, which in turn lowers fuel consumption.

Restraint:

High processing and manufacturing costs

High processing and manufacturing costs significantly hinder the development and widespread adoption of high-temperature composite materials. These materials, known for their exceptional strength and resistance to extreme environments, are critical in industries such as aerospace, automotive, and energy. However, their production involves complex and energy-intensive processes, including the use of expensive raw materials like ceramics and carbon fibers, as well as advanced fabrication techniques like autoclave curing and vacuum-assisted resin transfer molding. The precision required in manufacturing to ensure consistent quality and performance further drives up costs.

Opportunity:

Introduction of low cost production technologies

The introduction of low-cost production technologies is significantly enhancing the development and application of high-temperature composite materials. Traditionally, these materials have been expensive to produce due to the complex processes and specialized equipment required to ensure their thermal stability and mechanical strength at elevated temperatures. However, advancements in manufacturing techniques, such as automated fiber placement, 3D printing, and more efficient curing processes, have reduced production costs. These technologies allow for precise control over material properties, enabling the creation of composites that can withstand extreme temperatures while maintaining their structural integrity.

Threat:

Lack of skilled workforce

The lack of a skilled workforce is significantly hindering the development and deployment of high-temperature composite materials. These materials require specialized knowledge in materials science, engineering, and manufacturing processes that few professionals possess. The complexity of working with high-temperature composites, such as ceramic matrix composites (CMCs), demands expertise in design, simulation, and production techniques, including precision in layering and curing. As the industry faces a shortage of qualified engineers and technicians, the pace of innovation slows, and the potential for broader adoption diminishes. This talent gap not only increases the costs and time associated with developing new materials but also risks stalling progress in critical technological advancements where these composites could play a transformative role.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the high-temperature composite materials industry, primarily due to disruptions in supply chains and a decline in demand from key sectors like aerospace and automotive. Lockdowns and restrictions halted manufacturing activities, leading to delays in production and project timelines. The aerospace sector, a major consumer of high-temperature composites, faced a downturn as air travel plummeted, reducing the need for new aircraft and maintenance. However, the pandemic also highlighted the importance of resilient and lightweight materials, potentially driving future innovations and applications as industries recover and adapt to new challenges.

The Metal Matrix Composite Materials segment is expected to be the largest during the forecast period

Metal Matrix Composite Materials segment is expected to be the largest during the forecast period by offering enhanced performance characteristics for extreme conditions. MMCs combine metal matrices, like aluminum or titanium, with ceramic reinforcements, such as silicon carbide or alumina, to create materials that exhibit superior strength, thermal stability, and resistance to wear. These composites are engineered to withstand higher temperatures compared to traditional metals and alloys, making them ideal for applications in aerospace, automotive, and industrial sectors where high thermal stress is prevalent.

The Exhaust Parts segment is expected to have the highest CAGR during the forecast period

Exhaust Parts segment is expected to have the highest CAGR during the forecast period. These composites are engineered to withstand extreme temperatures and harsh conditions within the exhaust system, offering superior resistance to thermal stress and corrosion compared to traditional materials. By incorporating advanced composites, manufacturers can enhance the overall efficiency and lifespan of exhaust components, contributing to reduced vehicle emissions and improved fuel efficiency. The integration of high-temperature composites also supports the development of lighter and more compact exhaust systems, which further optimizes vehicle performance and contributes to environmental sustainability.

Region with largest share:

North America region commanded the largest share of the market over the forecast period. As industries grow and urban areas expand, there is a heightened demand for materials capable of withstanding extreme temperatures and harsh conditions. High-temperature composite materials, which offer superior heat resistance, lightweight properties, and durability, are becoming crucial in sectors such as aerospace, automotive, and energy. The surge in industrial activities, coupled with rapid urbanization, drives innovation and investment in these advanced materials. North America's robust industrial infrastructure and technological expertise foster research and development, leading to breakthroughs in composite material technologies.

Region with highest CAGR:

Europe region is estimated to witness lucrative growth during the extrapolated period. In Europe, government regulations are playing a crucial role in advancing the high-temperature composite materials sector by setting stringent standards and promoting research and development. By enforcing these standards, European governments are encouraging companies to innovate and adopt advanced technologies that enhance the durability and efficiency of composite materials under extreme conditions. Additionally, regulatory frameworks often include funding opportunities, tax incentives, and support for collaborative projects between academia and industry. This supportive environment not only drives technological advancements but also strengthens Europe's position as a leader in high-performance materials.

Key players in the market

Some of the key players in High-Temperature Composite Materials market include 3M Company, Hexcel Corporation, Hitco Carbon Composites, Inc, Honeywell International Inc, Huntsman Corporation, Kaneka Corporation, Lockheed Martin Corporation, Materion Corporation, Mitsubishi Chemical Corporation and Toray Industries, Inc.

Key Developments:

In August 2024, Huntsman has developed a new range of innovative, high-performing thermoplastic polyurethane (TPU) materials for the footwear industry that offer game-changing possibilities for soling applications. The new AVALON(R) GECKO TPU portfolio offers a series of products that have exceptional grip and durability and have been developed with circularity in mind.

In March 2024, Hexcel Corporation has launched a new HexTow continuous carbon fiber, IM9 24K, providing the market with a lightweight, strong and durable composite material option. The HexTow carbon fiber is a 24K-filament intermediate modulus (IM) fiber with an average tow tensile strength of more than 6,300 megapascals (MPa), a modulus of 298 gigapascals (GPa) and strain of 1.9%.

Matrix Systems Covered:

  • Ceramic Matrix Composite Materials
  • Carbon Matrix Composite Materials
  • Metal Matrix Composite Materials

Applications Covered:

  • Brake Discs
  • Heat Insulations
  • Exhaust Parts
  • Other Applications

End Users Covered:

  • Energy & Power
  • Oil & Gas
  • Aerospace & Defense
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global High-Temperature Composite Materials Market, By Matrix Systems

  • 5.1 Introduction
  • 5.2 Ceramic Matrix Composite Materials
  • 5.3 Carbon Matrix Composite Materials
  • 5.4 Metal Matrix Composite Materials

6 Global High-Temperature Composite Materials Market, By Application

  • 6.1 Introduction
  • 6.2 Brake Discs
  • 6.3 Heat Insulations
  • 6.4 Exhaust Parts
  • 6.5 Other Applications

7 Global High-Temperature Composite Materials Market, By End User

  • 7.1 Introduction
  • 7.2 Energy & Power
  • 7.3 Oil & Gas
  • 7.4 Aerospace & Defense
  • 7.5 Other End Users

8 Global High-Temperature Composite Materials Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 3M Company
  • 10.2 Hexcel Corporation
  • 10.3 Hitco Carbon Composites, Inc
  • 10.4 Honeywell International Inc
  • 10.5 Huntsman Corporation
  • 10.6 Kaneka Corporation
  • 10.7 Lockheed Martin Corporation
  • 10.8 Materion Corporation
  • 10.9 Mitsubishi Chemical Corporation
  • 10.10 Toray Industries, Inc