|
市場調査レポート
商品コード
1551227
アンモニア分解触媒市場の2030年までの予測:タイプ別、用途別、地域別の世界分析Ammonia Cracking Catalysts Market Forecasts to 2030 - Global Analysis By Type (Platinum Metal Group -based Catalysts and Nickel -based Catalysts), Application and By Geography |
||||||
カスタマイズ可能
|
アンモニア分解触媒市場の2030年までの予測:タイプ別、用途別、地域別の世界分析 |
出版日: 2024年09月06日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、アンモニア分解触媒の世界市場は2024年に1,483万米ドルを占め、2030年には1億5,401万米ドルに達すると予測され、予測期間中のCAGRは47.7%です。
アンモニア分解触媒は、アンモニア(NH3)の窒素(N2)と水素(H2)ガスへの分解を促進するために使用される材料です。アンモニア分解として知られるこのプロセスは、水素製造への応用やアンモニアの環境への影響を低減するために極めて重要です。通常、これらの触媒は、ニッケル、鉄、コバルトなどの金属をベースとし、アルミナやゼオライトなどの高表面積材料に担持することで効率を高めています。触媒の選択は、反応の活性、選択性、安定性に影響します。効果的な触媒は反応に必要なエネルギーを低下させ、燃料電池や工業プロセス、クリーン・エネルギー・キャリアとしての水素製造を可能にします。
米国政府のエネルギー情報局(EIA)によると、米国では年間1,000万トン以上の水素が生産されています。
グリーンテクノロジーの採用拡大
グリーンテクノロジーの採用拡大により、水素経済において重要な役割を果たすアンモニア分解触媒の開発が大幅に進んでいます。水素含有量の高い化合物であるアンモニアは、貯蔵と輸送が効率的であるため、水素キャリアとしての利用が増加しています。燃料電池やその他の用途のためにアンモニアから水素を取り出すには、効果的なアンモニア分解触媒が不可欠です。より環境に優しい技術を求める動きは、効率を向上させ環境への影響を減らすために、触媒材料や設計の革新に拍車をかけています。研究開発者たちは、より低温で作動し、反応速度を高め、毒性の少ない材料やより豊富な材料を使用することでより持続可能な触媒の開発に注力しています。
触媒材料の高コスト
触媒材料のコストが高いことは、持続可能な水素製造に不可欠なアンモニア分解触媒の開発と応用に大きな影響を与えます。アンモニアを窒素と水素に分解するのに不可欠なこれらの触媒は、白金、ロジウム、ルテニウムなどの希少で高価な金属に依存しています。これらの材料の希少性とコストが触媒の総費用を押し上げ、大規模な導入を経済的に困難にしています。この問題は、これらの金属が調達コストが高いだけでなく、触媒性能を最適化するために複雑な加工技術を必要とするという事実によってさらに悪化しています。
水素インフラへの投資の増加
水素インフラへの投資の増加は、アンモニア分解触媒の開発を大きく前進させています。アンモニア分解は、アンモニア(NH3)を窒素(N2)と水素(H2)に分解し、水素をクリーンな燃料またはエネルギーキャリアとして使用します。水素インフラが拡大するにつれ、高純度水素を製造するための効率的で信頼性の高いアンモニア分解触媒への需要が高まっています。この投資は、触媒材料と設計の技術革新を促し、触媒の性能と寿命を向上させています。多くの場合、新しい材料や改良された構造を組み込んだ先進的な触媒は、低温でより効率的なアンモニア分解を促進し、エネルギー消費量と運転コストを削減します。
規制とコンプライアンスの課題
アンモニア分解触媒業界は、その成長と発展を妨げる重大な規制とコンプライアンス上の課題に直面しています。厳しい環境規制は、排出ガスを最小限に抑えながら、アンモニアを水素と窒素に分解する高い効率を達成する触媒を要求します。こうした規制には、多くの場合、広範な試験と認証プロセスが含まれるため、メーカーにとってはコストと時間がかかります。しかし、触媒はさまざまな条件下で、ユーザーや環境にリスクを与えることなく確実に作動しなければならないため、安全基準への適合はさらに複雑なものとなります。
COVID-19の大流行は、主にサプライチェーンと生産プロセスの混乱を通じて、アンモニア分解触媒業界に大きな影響を与えました。世界の封鎖や制限により、多くの施設が操業停止や操業能力の低下に直面し、原材料の入手や触媒の製造に影響を与えました。パンデミックは物流網を緊張させ、重要な部品や完成品の配送に遅れを生じさせました。この混乱はコスト増とリードタイムの延長を招いただけでなく、触媒技術の研究開発努力にも支障をきたしました。
予測期間中、ニッケル(Ni)ベース触媒部門が最大となる見込みです。
予測期間中、ニッケル(Ni)ベース触媒セグメントが最大となる見込み。ニッケル(Ni)ベース触媒は、水素製造に極めて重要なアンモニア分解技術の進歩において重要な役割を果たしています。これらの触媒は、高い活性と反応条件下での安定性により好まれています。アンモニア分解は、アンモニア(NH3)を窒素(N2)と水素(H2)に分解するもので、クリーンな水素燃料の生成に不可欠です。ニッケル触媒は、他の金属に比べて活性、コスト、耐久性のバランスが良いため、特に効果的です。ニッケル触媒の性能は、他の元素との合金化や担体材料の最適化など、さまざまな方法で向上させることができます。
予測期間中、燃料電池分野のCAGRが最も高くなると予想されます。
燃料電池分野は、予測期間中に最も高いCAGRが見込まれます。有望な水素キャリアであるアンモニアは、これらの触媒を使って効率的に水素と窒素に分解できます。アンモニアから生成される水素は、高効率で低排出量の燃料電池に電力を供給するため、このプロセスは極めて重要です。最近のアンモニア分解触媒の改良は、その効率と寿命の向上に重点が置かれています。研究開発者たちは、反応速度を高め、エネルギー消費を削減するために、新しい材料を開発し、触媒構造を最適化しています。革新技術には、より優れた性能と運転条件下での安定性を提供する高度な合金やナノ構造材料が含まれます。
農業慣行がますます環境の持続可能性を優先するようになるにつれて、効率的で低排出のソリューションに対する需要が高まっており、予測期間中、欧州地域が最大の市場シェアを占めました。アンモニア分解触媒は、アンモニアからのグリーン水素の製造を可能にすることで、この変革において重要な役割を果たします。これらの触媒は、アンモニアをベースとした水素製造の効率向上に役立ち、この地域全体で二酸化炭素排出量を削減し、よりクリーンな肥料で土壌肥沃度を高めるといった持続可能な農業の実践に不可欠です。
欧州地域は、予測期間を通じて収益性の高い成長を維持する見込みです。欧州では、政府の規制が技術革新を促進し、持続可能性を確保することで、アンモニア分解触媒産業を大きく前進させています。欧州連合(EU)の厳しい環境政策が、よりクリーンな技術への需要を促進し、有害な排出を削減しながらアンモニア分解効率を高める触媒の開発を企業に促しています。欧州グリーンディールやFit for 55パッケージなどの規制は、気候目標に沿ったプロジェクトに資金や税制上の優遇措置を提供することで、この分野の研究開発にインセンティブを与えています。
According to Stratistics MRC, the Global Ammonia Cracking Catalysts Market is accounted for $14.83 million in 2024 and is expected to reach $154.01 million by 2030 growing at a CAGR of 47.7% during the forecast period. Ammonia cracking catalysts are materials used to facilitate the decomposition of ammonia (NH3) into nitrogen (N2) and hydrogen (H2) gases. This process, known as ammonia cracking, is crucial for applications in hydrogen production and for reducing ammonia's environmental impact. Typically, these catalysts are based on metals such as nickel, iron, or cobalt, supported on high-surface-area materials like alumina or zeolites to enhance their efficiency. The choice of catalyst affects the reaction's activity, selectivity, and stability. Effective catalysts lower the energy required for the reaction, enabling the production of hydrogen for fuel cells, industrial processes, and as a clean energy carrier.
According to the U.S. government's energy information administration (EIA), the country produces more than 10 million tonnes of hydrogen annually.
Rising adoption of green technologies
The growing adoption of green technologies is substantially advancing the development of ammonia cracking catalysts, which play a crucial role in the hydrogen economy. Ammonia, a compound with high hydrogen content, is increasingly being utilized as a hydrogen carrier due to its efficient storage and transport. To release hydrogen from ammonia for fuel cells or other applications, effective ammonia cracking catalysts are essential. The push for greener technologies has spurred innovations in catalyst materials and designs to improve efficiency and reduce environmental impact. Researchers are focusing on developing catalysts that operate at lower temperatures, enhance reaction rates, and are more sustainable by using less toxic or more abundant materials.
High cost of catalyst materials
The high cost of catalyst materials significantly impacts the development and application of ammonia cracking catalysts, crucial for sustainable hydrogen production. These catalysts, essential for breaking down ammonia into nitrogen and hydrogen, rely on rare and expensive metals such as platinum, rhodium, and ruthenium. The scarcity and cost of these materials drive up the overall expense of the catalysts, making large-scale adoption economically challenging. This issue is exacerbated by the fact that these metals are not only costly to procure but also require intricate processing techniques to optimize their catalytic performance.
Increased investment in hydrogen infrastructure
Increased investment in hydrogen infrastructure is substantially advancing the development of ammonia cracking catalysts. Ammonia cracking involves breaking down ammonia (NH3) into nitrogen (N2) and hydrogen (H2), with the hydrogen being used as a clean fuel or energy carrier. As hydrogen infrastructure expands, there is a growing demand for efficient and reliable ammonia cracking catalysts to produce high-purity hydrogen. This investment is driving innovation in catalyst materials and designs, enhancing their performance and longevity. Advanced catalysts, often incorporating novel materials or improved structures, facilitate more efficient ammonia decomposition at lower temperatures, reducing energy consumption and operational costs.
Regulatory and compliance challenges
The ammonia cracking catalyst industry faces significant regulatory and compliance challenges that hinder its growth and development. Stringent environmental regulations require catalysts to achieve high efficiency in breaking down ammonia into hydrogen and nitrogen while minimizing emissions. These regulations often involve extensive testing and certification processes, which can be costly and time-consuming for manufacturers. However, compliance with safety standards adds another layer of complexity, as catalysts must operate reliably under various conditions without posing risks to users or the environment.
The COVID-19 pandemic significantly impacted the ammonia cracking catalysts industry, primarily through disruptions in supply chains and production processes. With global lockdowns and restrictions, many facilities faced shutdowns or reduced operational capacity, affecting the availability of raw materials and manufacturing of catalysts. The pandemic strained logistics networks, causing delays in the delivery of critical components and finished products. This disruption not only led to increased costs and extended lead times but also hampered ongoing research and development efforts in catalyst technology.
The Nickel (Ni)-based Catalysts segment is expected to be the largest during the forecast period
Nickel (Ni)-based Catalysts segment is expected to be the largest during the forecast period. Nickel (Ni)-based catalysts are playing a crucial role in advancing ammonia cracking technology, which is pivotal for hydrogen production. These catalysts are favored due to their high activity and stability under reaction conditions. Ammonia cracking involves breaking down ammonia (NH3) into nitrogen (N2) and hydrogen (H2), which is essential for generating clean hydrogen fuel. Nickel catalysts are particularly effective because they offer a favorable balance of activity, cost, and durability compared to other metals. Their performance can be enhanced through various methods, including alloying with other elements or optimizing support materials.
The Fuel Cells segment is expected to have the highest CAGR during the forecast period
Fuel Cells segment is expected to have the highest CAGR during the forecast period. Ammonia, a promising hydrogen carrier, can be efficiently decomposed into hydrogen and nitrogen using these catalysts. This process is vital because hydrogen, generated from ammonia, powers fuel cells with high efficiency and low emissions. Recent improvements in ammonia cracking catalysts focus on increasing their efficiency and longevity. Researchers are developing new materials and optimizing catalyst structures to boost the reaction rates and reduce energy consumption. Innovations include advanced alloys and nanostructured materials that offer better performance and stability under operating conditions.
As agricultural practices increasingly prioritize environmental sustainability, there is a heightened demand for efficient, low-emission solutions, Europe region commanded the largest market share during the projected period. Ammonia cracking catalysts play a crucial role in this transformation by enabling the production of green hydrogen from ammonia, a process vital for reducing reliance on fossil fuels and minimizing greenhouse gas emissions across the region. These catalysts help improve the efficiency of ammonia-based hydrogen production, which is integral to sustainable farming practices such as reducing carbon footprints and enhancing soil fertility with cleaner fertilizers throughout the region.
Europe region is poised to hold profitable growth over the extrapolated period. In Europe, government regulations are substantially advancing the ammonia cracking catalysts industry by fostering innovation and ensuring sustainability. The European Union's stringent environmental policies are driving the demand for cleaner technologies, pushing companies to develop catalysts that enhance ammonia cracking efficiency while reducing harmful emissions. Regulations such as the European Green Deal and the Fit for 55 package incentivize research and development in this sector by offering funding and tax benefits for projects that align with climate goals.
Key players in the market
Some of the key players in Ammonia Cracking Catalysts market include Albemarle Corporation, BASF SE, Clariant International Ltd, DOW Chemical Company, Ecolab Inc, Kraton Corporation, Orica Limited, Shell Global Solutions, Sumitomo Chemical Co., Ltd and Tosoh Corporation.
In May 2024, Lummus and Sumitomo Chemical Announce Collaboration Agreements for Circular and Polyolefins Technologies Agreements strengthen position in circular economy and expand offering in polyolefins.
In October 2023, DNV, an internationally recognized energy classification and registration society announced that demand for ammonia cracking solutions will increase over the next 5-10 years as hydrogen energy economy undergoes maturation.
In March 2023, Saudi Aramco, Saudi Arabia's large energy conglomerate signed an agreement with Linde engineering, a major European manufacturer of industrial gases, to develop new ammonia cracking technologies.