![]() |
市場調査レポート
商品コード
1530870
圧電材料市場の2030年までの予測:材料別、用途別、エンドユーザー別、地域別の世界分析Piezoelectric Materials Market Forecasts to 2030 - Global Analysis By Material, Application, End User and By Geography |
||||||
カスタマイズ可能
|
圧電材料市場の2030年までの予測:材料別、用途別、エンドユーザー別、地域別の世界分析 |
出版日: 2024年08月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界の圧電材料市場は2024年に15億5,000万米ドルを占め、2030年には23億1,000万米ドルに達すると予測され、予測期間中のCAGRは6.9%です。
圧電材料は、機械的応力に反応して電荷を発生させる、またはその逆のユニークな特性を示す材料のクラスです。圧電効果として知られるこの現象は、材料の結晶構造内の内部分極によって生じる。圧電材料に機械的圧力が加わると、材料内でプラスとマイナスの電荷の変位が起こり、その結果、表面全体に電位が生じる。
インド・ブランド・エクイティ財団が2021年1月に発表した報告書によると、インドの航空宇宙分野は日々成長しており、2030年には700億米ドルに達すると予測されています。
新興国における急速な工業化と都市化
新興国における急速な工業化と都市化は、圧電材料の著しい進歩を促しています。機械的ストレスに反応して電荷を発生するこれらの材料は、そのユニークな特性により、様々な技術でますます利用されるようになっています。産業環境では、圧電材料は、構造的完全性、機械の性能、および環境条件を監視するセンサーに不可欠です。機械的エネルギーを電気信号に変換するその能力は、交通や足踏みによる振動を使用可能な電気に変換できる、都市環境におけるエネルギーハーベスティング・アプリケーションにとって貴重なものとなっています。
限られた周波数と電圧範囲
圧電材料は、機械的エネルギーを電気信号に変換したり、逆に電気信号を電気信号に変換したりする汎用性がある一方で、動作周波数と電圧範囲に限界があります。これらの材料は、変形すると双極子が整列する結晶構造を持つため、機械的応力や振動に反応して電荷を発生します。ある限界を超えると、材料は機械的振動に十分に素早く、あるいは効率的に反応できなくなるからです。電圧の制限は、過度の電界が材料を脱分極させ、圧電性能を低下させるか、あるいは永久的な損傷を与える可能性があるために生じます。
インフラ開発への投資
圧電材料に焦点を当てたインフラ開発への投資は、様々な分野でのこれらの材料の能力と応用の強化に向けた資源の戦略的配分を意味します。圧電材料のインフラ開発に投資することで、政府と民間団体はイノベーションを促進し、これらの材料の実用的なアプリケーションを拡大することを目指しています。これには、ヘルスケア、自動車、航空宇宙、再生可能エネルギーなどの産業で高まる需要を満たすための効率性、耐久性、拡張性の向上が含まれます。さらに、このような投資はしばしば研究開発イニシアチブを推進し、材料科学、製造プロセス、製品統合におけるブレークスルーをもたらします。
複雑な製造プロセス
圧電材料の進歩は、複雑な製造工程のために大きな課題に直面しています。機械エネルギーを電気エネルギーに変換したり、逆に電気エネルギーを電気エネルギーに変換したりするために重要なこれらの材料は、感度の向上や耐久性の向上といった望ましい特性を達成するために、複雑な製造技術を必要とします。複雑さは、製造中に結晶構造、組成、微細構造を精密に制御する必要性から生じる。これには、高温プロセス、精密な蒸着技術、厳格な品質管理対策が含まれ、製造に困難とコストの層が加わる。
COVID-19の大流行は、圧電材料の分野に大きな影響を与えました。製造とサプライチェーンの世界の混乱は、当初、材料と装置への安定したアクセスに依存していた研究者と製造業者に困難をもたらしました。多くの製造施設が一時的な閉鎖や操業能力の低下に直面し、注文への対応や需要への対応に遅れが生じました。現場での研究開発活動も影響を受け、研究所や大学では、施設や資源へのアクセスの低下といった課題に直面しました。パンデミックは圧電材料の技術革新に拍車をかけ、特にヘルスケアと診断に関連する用途で顕著でした。
予測期間中はポリマーセグメントが最大になる見込み
ポリマー分野は予測期間中最大になると予想されます。柔軟性、軽量性、加工のしやすさで知られるポリマーは、圧電用途に大きな利点をもたらします。ポリマーを圧電セラミックスとブレンドしたり、圧電性を助長する結晶構造を持つポリマーを設計したりすることで、研究者は機械エネルギーを電気信号に変換したり、その逆を効率的に行うことができる材料を実現します。この相乗効果により、圧電材料の範囲は従来のセラミックを超えて拡大し、フレキシブルエレクトロニクス、バイオメディカルデバイス、エネルギーハーベスティングシステムへの応用が可能になりました。
予測期間中、共振器セグメントのCAGRが最も高くなると予想されます。
共振器セグメントは、機械的振動を電気エネルギーに変換し、またその逆も可能であることから、予測期間中に最も高いCAGRが見込まれます。石英や特定のセラミックのようなこれらの材料は、固有の圧電特性を持っており、機械的ストレスや変形を受けると電荷を発生します。共振器は特定の周波数で共振するように設計されており、これらの材料内の圧電効果を効果的に増幅します。電子機器やセンサーなどの実用的な用途では、共振器は目的の信号や機能に対応する周波数で共振するように細かく調整されます。
予測期間中、アジア太平洋地域が市場の最大シェアを占めました。圧電材料は、この地域全体の電子機器内のアクチュエータ、センサ、トランスデューサなどの様々な用途で非常に重要です。中国、日本、韓国、インドなどの国々における民生用電子機器産業の拡大が、この成長に寄与している主な要因です。これらの材料は、機械エネルギーを電気エネルギーに変換したり、逆に電気エネルギーを機械エネルギーに変換したりする能力が評価され、この地域全体で小型化と効率が最重要視される現代の電子機器に不可欠なものとなっています。スマートフォン、ウェアラブルデバイス、車載エレクトロニクスの台頭が圧電部品の需要をさらに押し上げ、地域全体で技術革新と研究開発への投資を促進しています。
欧州地域は、予測される期間にわたって有利な成長を示すと推定されます。政府の規制は主に持続可能性、エネルギー効率、技術革新に重点を置いており、この地域ではより環境に優しいソリューションに向けて圧電材料の研究開発を推進しています。環境負荷が低くエネルギー効率の高い材料の使用を奨励する基準を課すことで、政府は企業や研究者が圧電材料を探求し、地域全体のさまざまな用途に採用するよう奨励します。
According to Stratistics MRC, the Global Piezoelectric Materials Market is accounted for $1.55 billion in 2024 and is expected to reach $2.31 billion by 2030 growing at a CAGR of 6.9% during the forecast period. Piezoelectric materials are a class of materials that exhibit a unique property: they generate an electric charge in response to applied mechanical stress or vice versa. This phenomenon, known as the piezoelectric effect, arises due to the internal polarization within the material's crystal structure. When mechanical pressure is applied to a piezoelectric material, it causes a displacement of positive and negative charges within the material, resulting in an electric potential across its surfaces.
According to a report published by India Brand Equity Foundation in January 2021, the aerospace sector in India is growing day by day and is projected to reach US$ 70 billion by 2030.
Rapid industrialization and urbanization in emerging economies
Rapid industrialization and urbanization in emerging economies are fostering significant advancements in piezoelectric materials. These materials, which generate an electric charge in response to mechanical stress, are increasingly utilized in various technologies due to their unique properties. In industrial settings, piezoelectric materials are integral to sensors that monitor structural integrity, machinery performance, and environmental conditions. Their ability to convert mechanical energy into electrical signals makes them invaluable for energy harvesting applications in urban environments, where vibrations from traffic or footfall can be converted into usable electricity.
Limited frequency and voltage range
Piezoelectric materials, while versatile in converting mechanical energy into electrical signals and vice versa, face limitations in their operating frequency and voltage ranges. These materials generate electric charges in response to mechanical stress or vibrations due to their crystalline structure, which aligns dipoles when deformed. However, their application is restricted by frequency constraints-beyond certain limits, the material cannot respond quickly or efficiently enough to mechanical oscillations. Voltage limitations arise because excessive electric fields can depolarize the material, reducing its piezoelectric performance or even damaging it permanently.
Investment in infrastructure development
Investment in infrastructure development focused on piezoelectric materials denotes a strategic allocation of resources towards enhancing the capabilities and applications of these materials within various sectors. By investing in infrastructure development for piezoelectric materials, governments and private entities aim to foster innovation and expand the practical applications of these materials. This includes improving their efficiency, durability, and scalability to meet growing demands across industries like healthcare, automotive, aerospace, and renewable energy. Furthermore, such investments often drive research and development initiatives, leading to breakthroughs in material science, manufacturing processes and product integration.
Complex manufacturing processes
The advancement of Piezoelectric Materials faces significant challenges due to complex manufacturing processes. These materials, crucial for converting mechanical energy into electrical energy and vice versa, require intricate fabrication techniques to achieve desired properties like enhanced sensitivity and durability. The complexity arises from the need to precisely control the crystal structure, composition, and microstructure during manufacturing. This involves high-temperature processes, precise deposition techniques, and stringent quality control measures, adding layers of difficulty and cost to production.
The COVID-19 pandemic significantly impacted the field of piezoelectric materials. The global disruptions in manufacturing and supply chains initially posed difficulties for researchers and manufacturers reliant on consistent access to materials and equipment. Many manufacturing facilities faced temporary closures or reduced operational capacities, leading to delays in fulfilling orders and meeting demand. Research and development efforts in the field were also affected, with laboratories and universities facing challenges such as reduced access to facilities and resources. The pandemic spurred innovation in piezoelectric materials, particularly in applications related to healthcare and diagnostics.
The Polymers segment is expected to be the largest during the forecast period
Polymers segment is expected to be the largest during the forecast period. Polymers, known for their flexibility, lightweight nature, and ease of processing, offer significant advantages in piezoelectric applications. By blending polymers with piezoelectric ceramics or designing polymers with crystalline structures conducive to piezoelectricity, researchers achieve materials that can convert mechanical energy into electrical signals and vice versa efficiently. This synergy has expanded the scope of piezoelectric materials beyond traditional ceramics, enabling applications in flexible electronics, biomedical devices and energy harvesting systems.
The Resonators segment is expected to have the highest CAGR during the forecast period
Resonators segment is expected to have the highest CAGR during the forecast period due to their ability to convert mechanical vibrations into electrical energy and vice versa. These materials, like quartz or certain ceramics, possess intrinsic piezoelectric properties, meaning they generate electric charges when subjected to mechanical stress or deformations. Resonators are designed to resonate at specific frequencies, effectively amplifying the piezoelectric effect within these materials. In practical applications, such as in electronic devices and sensors, resonators are finely tuned to resonate at frequencies corresponding to the desired signal or function.
Asia Pacific region dominated the largest share of the market over the projected period. Piezoelectric materials are crucial in various applications such as actuators, sensors, and transducers within electronic devices across the region. The expanding consumer electronics industry in countries like China, Japan, South Korea and India is a key factor contributing to this growth. These materials are valued for their ability to convert mechanical energy into electrical energy and vice versa, making them indispensable in modern electronics where miniaturization and efficiency are paramount throughout the region. The rise of smartphones, wearable devices, and automotive electronics further fuels demand for piezoelectric components, driving innovation and investment in research and development across the region.
Europe region is estimated to witness lucrative growth over the extrapolated period. Government regulations are primarily focused on sustainability, energy efficiency, and technological innovation, driving research and development in piezoelectric materials towards more environmentally friendly solutions in the region. By imposing standards that encourage the use of materials with lower environmental impact and higher energy efficiency, governments incentivize businesses and researchers to explore and adopt piezoelectric materials in various applications across the region.
Key players in the market
Some of the key players in Piezoelectric Materials market include Arkema Group, Audiowell Electronics Co., Ltd, CTS Corporation, L3Harris Technologies, Inc, Mad City Labs, Inc, Murata Manufacturing Co., Ltd, Peizosystem Jena GmbH, Sparkler Ceramics Pvt. Ltd, TDK Corporation and TRS Technologies, Inc.
In May 2024, Arkema has agreed to acquire Dow's flexible packaging laminating adhesives business, one of the leading producers of adhesives for the flexible packaging market, generating annual sales of around US$250 million. The proposed acquisition will significantly expand Arkema's portfolio of solutions for flexible packaging, enabling the Group to become a key player in this attractive market.
In February 2022, CTS Corporation has completed the acquisition of TEWA Temperature Sensors SP. Zo.o. and its subsidiaries for an enterprise value of $24.5 million. TEWA is a reputable designer and manufacturer of high-quality temperature sensors. The company has a reputation for highly stable and reliable ceramic technology that has accelerated its growth.