![]() |
市場調査レポート
商品コード
1494842
水素エネルギー貯蔵市場の2030年までの予測: 貯蔵タイプ別、状態別、技術別、エンドユーザー別、地域別の世界分析Hydrogen Energy Storage Market Forecasts to 2030 - Global Analysis By Storage Type (Stationary Storage, Chemical Storage and Physical Storage and Other Storage Types), State (Gas, Liquid and Solid), Technology, End User and By Geography |
||||||
カスタマイズ可能
|
水素エネルギー貯蔵市場の2030年までの予測: 貯蔵タイプ別、状態別、技術別、エンドユーザー別、地域別の世界分析 |
出版日: 2024年06月06日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界の水素エネルギー貯蔵市場は2024年に180億7,000万米ドルを占め、予測期間中のCAGRは9.1%で成長し、2030年には304億7,000万米ドルに達する見込みです。
水素エネルギー貯蔵は、従来のエネルギー貯蔵システムよりも多くの利点があり、水素ガスの形でエネルギーを貯蔵する最先端の技術です。太陽光発電や風力発電のような再生可能エネルギー源から発電される電力を利用し、電気分解のプロセスを通じて水を水素と酸素に分解して水素を製造する技術です。その後、水素は極低温で液体状、圧縮気体状、または金属水素化物内に化学的に結合した状態で保存されます。
国際エネルギー機関(IEA)によれば、水素エネルギー貯蔵は、持続可能なエネルギーの未来を実現し、世界の脱炭素化目標を達成するために不可欠な技術です。
再生可能エネルギーの統合
太陽光発電や風力発電のような再生可能エネルギー発電は、その性質上、太陽や風が吹いたときにしかエネルギーを生み出さないです。この間欠性の結果、送電網の需給バランスをとることが難しくなります。さらに、出力が需要を上回ったときに余分な再生可能エネルギーを貯蔵し、生産量が少ないときにそれを電気に戻す水素エネルギー貯蔵は、この問題を解決するのに役立ちます。このような特性から、水素は送電網の安定性を維持し、エネルギーミックスにおける再生可能エネルギーの割合を増やす上で重要な役割を果たしています。
高い初期価格
水素エネルギー貯蔵システムの多額の初期費用が、普及の大きな障害となっています。これらの費用には、燃料電池、配電インフラ、水素貯蔵タンク、電解装置への初期投資が含まれます。特に電気分解は、精密なエンジニアリングと高度な材料が必要なため、コストがかかります。さらに、特殊なパイプラインや高圧タンクなど、水素を安全に輸送・貯蔵するために必要なインフラも全体のコストを押し上げます。
水素貯蔵の技術開発
より効果的で、安全かつ安価な貯蔵ソリューションの新たな展望は、水素貯蔵技術における継続的な研究開発によって生み出されています。従来の技術に比べ、金属水素化物や炭素系材料などの固体貯蔵の進歩は、より高いエネルギー密度と安全性を提供しています。高圧タンクや極低温貯蔵の技術的進歩も、さまざまな用途での水素貯蔵の可能性を高めています。さらに、現在の障害を克服し、大規模なエネルギー貯蔵・輸送オプションとしての水素貯蔵の魅力を高めるためには、技術の進歩が不可欠です。
代替エネルギー貯蔵技術による脅威
リチウムイオン電池、揚水発電、圧縮空気エネルギー貯蔵などの代替エネルギー貯蔵技術は、水素エネルギー貯蔵市場に大きな脅威をもたらします。確立されたサプライチェーン、製造能力、規模の経済性により、これらの技術はすでに顕著な市場浸透を達成しています。特に、素早い応答時間と高い出力密度を必要とする用途では、リチウムイオン電池は大幅なコスト削減と性能向上を遂げており、水素貯蔵の強力なライバルとなっています。
水素エネルギー貯蔵市場は、COVID-19の大流行によってサプライチェーンの混乱、プロジェクト開発の遅れ、経済的不確実性といった大きな影響を受けています。プロジェクトの遅れやコスト超過は、水素インフラ・プロジェクトの展開や研究活動が、封鎖措置、渡航制限、労働力の混乱によって遅くなったことに起因しています。さらに、特に輸送、製造、建設などの産業において、パンデミックによる産業活動やエネルギー需要の減少により、供給原料やエネルギーキャリアとしての水素の当面の必要性が低下しています。
予測期間中、化学貯蔵部門が最大となる見込み
化学貯蔵が最大の市場シェアを占めると予測されます。化学貯蔵とは、金属水素化物や液体有機水素キャリアなど、エネルギー密度が高く貯蔵寿命が長い化合物に水素を貯蔵するプロセスです。例えば、金属水素化物は水素ガスを吸収して安定した化合物を作り、必要なときに減圧や加熱によって水素を放出します。さらに、これらの化学貯蔵技術は、水素の貯蔵と放出において効果的かつ柔軟であるため、工業プロセス、グリッドバランシング、再生可能エネルギー統合における定置用途に適しています。
予測期間中にCAGRが最も高くなると予想されるのはガス・セグメントです。
予測CAGRが最も高い分野はガス貯蔵です。ガス貯蔵とは、後で使用するために水素をガス状にしておくことです。これは通常、地下の洞窟や高圧タンクで行われ、高いエネルギー密度と迅速な反応時間を提供します。バックアップ発電、ピークカット、送電網の安定化など、迅速かつ頻繁なサイクルを必要とするアプリケーションは、このアプローチに最適です。さらに、ガス貯蔵システムは、エネルギー需給の変動に対応する適応性と拡張性を備えています。
水素エネルギー貯蔵市場は、アジア太平洋地域が支配的です。特に中国、韓国、日本のような国々における多数の政府イニシアティブと投資が、水素技術の優位性を支えています。これらの国の水素政策は、再生可能エネルギーの統合、水素燃料電池車の普及、経済の脱炭素化を目指しています。さらに、アジア太平洋地域の強固な産業基盤とクリーンエネルギー・ソリューションへのニーズの高まりも、水素エネルギー貯蔵における同地域のリーダーシップに貢献しています。
水素エネルギー貯蔵の世界市場では、欧州が最も高いCAGRで成長すると予想されます。厳しい環境規制、水素インフラと技術への高額の投資、再生可能エネルギーの野心的な目標がこの成長を後押ししています。欧州連合(EU)は、水素の生産、貯蔵、流通の拡大を目指したプログラムを通じて、グリーン・ディールや水素戦略を通じて水素技術の世界的リーダーになることを目指しています。しかし、技術革新と市場拡大は、奨励法、財政的インセンティブ、業界関係者、政府機関、学術機関のパートナーシップによっても促進されています。
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.
According to Stratistics MRC, the Global Hydrogen Energy Storage Market is accounted for $18.07 billion in 2024 and is expected to reach $30.47 billion by 2030 growing at a CAGR of 9.1% during the forecast period. With many benefits over conventional energy storage systems, hydrogen energy storage is a cutting-edge technique for storing energy in the form of hydrogen gas. With the use of electricity, which is frequently generated from renewable energy sources like solar or wind power; this technology produces hydrogen by splitting water into hydrogen and oxygen through the process of electrolysis. Subsequently, the hydrogen can be kept in liquid form at cryogenic temperatures, in compressed gas form, or chemically bound within metal hydrides.
According to the International Energy Agency (IEA), hydrogen energy storage is a crucial technology for achieving a sustainable energy future and meeting global decarbonisation targets.
Integration of renewable energy
Due to the fact that they are by nature sporadic, renewable energy sources like solar and wind power only generate energy when the sun or wind blows. It becomes difficult to balance supply and demand on the grid as a result of this intermittency. Additionally, by storing extra renewable energy when output exceeds demand and converting it back to electricity during times of low production, hydrogen energy storage can help solve this problem. Because of this property, hydrogen plays a crucial role in maintaining grid stability and facilitating the increased share of renewable energy sources in the energy mix.
High starting prices
The substantial upfront costs of hydrogen energy storage systems present a major obstacle to their widespread adoption. These expenses cover the initial investment in fuel cells, distribution infrastructure, hydrogen storage tanks, and electrolysis units. In particular, electrolysis is costly because it needs precise engineering and sophisticated materials. Furthermore, the infrastructure needed to safely transport and store hydrogen, such as specialized pipelines and high-pressure tanks, raises the overall cost as well.
Technological developments in hydrogen storage
New prospects for more effective, secure, and affordable storage solutions are being created by ongoing research and development in hydrogen storage technologies. Compared to conventional techniques, advances in solid-state storage, such as metal hydrides and carbon-based materials, offer higher energy densities and enhanced safety. Technological advances in high-pressure tanks and cryogenic storage are also improving the viability of hydrogen storage for a range of uses. Moreover, in order to overcome the current obstacles and increase the appeal of hydrogen storage as a large-scale energy storage and transportation option, technological advancements are essential.
Threats from alternative energy storage technologies
Alternative energy storage technologies like lithium-ion batteries, pumped hydroelectric storage, and compressed air energy storage pose a significant threat to the hydrogen energy storage market. Because of their established supply chains, manufacturing prowess, and economies of scale, these technologies have already attained notable market penetration. Particularly in applications requiring quick response times and high power densities, lithium-ion batteries have experienced significant cost reductions and performance improvements, making them a strong rival to hydrogen storage.
The market for hydrogen energy storage has been significantly impacted by the COVID-19 pandemic, which has resulted in supply chain disruptions, project development delays, and economic uncertainty. Project delays and cost overruns have resulted from the deployment of hydrogen infrastructure projects and research activities being slowed down by lockdown measures, travel restrictions, and workforce disruptions. Furthermore, the immediate need for hydrogen as a feedstock or energy carrier has decreased due to the pandemic's decreased industrial activity and energy demand, especially in industries like transportation, manufacturing, and construction.
The Chemical Storage segment is expected to be the largest during the forecast period
It is projected that chemical storage will command the largest market share. Chemical storage is the process of storing hydrogen in chemical compounds with high energy densities and extended storage lives, such as metal hydrides or liquid organic hydrogen carriers. For instance, metal hydrides absorb hydrogen gas to create stable compounds and then release it through depressurization or heating when required. Moreover, these chemical storage techniques are effective and flexible in storing and releasing hydrogen, which makes them appropriate for stationary uses in industrial processes, grid balancing, and renewable energy integration.
The Gas segment is expected to have the highest CAGR during the forecast period
The segment with the highest predicted CAGR is gas storage. Gas storage is the practice of keeping hydrogen in a gaseous state for later use. This is usually done in subterranean caverns or high-pressure tanks, which provide high energy densities and quick reaction times. Applications that call for quick and frequent cycling, like backup power generation, peak shaving, and grid stabilization, are ideally suited for this approach. Additionally, gas storage systems offer adaptable and scalable ways to handle variations in the supply and demand for energy.
The market for hydrogen energy storage is dominated by Asia Pacific. Numerous government initiatives and investments, particularly in nations like China, South Korea, and Japan, are what fuel this dominance in hydrogen technologies. The aspirational hydrogen policies of these countries are to integrate renewable energy sources, encourage the use of hydrogen fuel cell vehicles, and decarbonize their economies. Furthermore, contributing to the region's leadership in hydrogen energy storage is Asia Pacific's robust industrial base and growing need for clean energy solutions.
In the global market for hydrogen energy storage, Europe is expected to grow at the highest CAGR. Tight environmental regulations, high investments in hydrogen infrastructure and technology, and ambitious targets for renewable energy are driving this growth. Through programs aimed at increasing hydrogen production, storage, and distribution, the European Union hopes to become a global leader in hydrogen technologies through the Green Deal and the Hydrogen Strategy. However, innovation and market expansion are also being fueled by encouraging laws, financial incentives, and partnerships between industry players, government agencies, and academic institutions.
Key players in the market
Some of the key players in Hydrogen Energy Storage market include Chart Industries, Fuelcell Energy, Hexagon Composites, Air Liquide, Iwatani Corporation, Linde PLC, Engie, Hydrogenics, Steelhead Composites Inc., Air Products Inc., Grz Technologies, Worthington Industries, Cummins Inc., Nedstack Fuel Cell Technology BV and Pragma Industries.
In April 2024, FuelCell Energy, Inc. and ExxonMobil Technology and Engineering Company announced an updated and extended joint development agreement (JDA) for the deployment of their unique carbonate fuel cell technology for carbon capture. According to the new agreement, FuelCell Energy can now incorporate elements of the jointly developed technology into its existing carbon capture products currently being marketed to customers.
In February 2024, Air Liquide and Sasol have signed new Power Purchase Agreements (PPAs) with Enel Green Power RSA[1] for the long term supply of an additional capacity of 110 MW of renewable power to Sasol's Secunda site in South Africa. This is the fourth set of PPAs signed by Air Liquide and Sasol after those announced in 2023. Together, these PPAs represent a total renewable power capacity of around 690 MW.
In May 2023, two major market leaders, Koch Engineered Solutions (KES) and Chart Industries, have signed a Memorandum of Understanding, marking the beginning of their CCUS collaboration and a combined pursuit of new knowledge and new carbon capture opportunities. Chart Industries is a global manufacturer of highly engineered equipment, servicing projects in the clean energy and industrial gas markets.