デフォルト表紙
市場調査レポート
商品コード
1401974

建築用フルード粘性ダンパーの2030年までの世界市場予測:建築タイプ別、用途別、地域別分析

Fluid Viscous Dampers for Construction Market Forecasts to 2030 - Global Analysis By Building Type (Bridges, High-Rise Buildings, Government Buildings, Cultural and Historical Buildings and Other Building Types), Application and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
建築用フルード粘性ダンパーの2030年までの世界市場予測:建築タイプ別、用途別、地域別分析
出版日: 2023年12月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、建築用フルード粘性ダンパーの世界市場は予測期間中CAGR 6.3%で成長しています。

建設業界において「フルード粘性ダンパー」とは、風や地震による振動など、建物や構造物にかかる動的な力の影響を軽減することを目的とした部品を指します。フルード粘性ダンパーは、流体の粘性を利用して運動エネルギーを吸収・散逸させることで、構造物の動揺を抑え、安定性を高める。フルード粘性ダンパーは、通常、建物の構造躯体に組み込まれ、振動に対して調整された抵抗を提供し、外力によってもたらされる可能性のある損傷を軽減します。

都市化とインフラ整備

都市の発展と近代化に伴い、より大規模で複雑な構造物を建設することが重視されるようになっています。重要なインフラや構造物の構造的完全性を向上させる独創的な技術的方法を見つけることが不可欠になります。フルード粘性ダンパーは、風や地震による振動など、高層構造物にかかる動的な力の影響を効率的に低減することができるため、このような状況において不可欠です。フルード粘性ダンパーは、ダイナミックな都市環境における建物の耐久性、安全性、性能を保証する重要なコンポーネントです。都市化が進むにつれ、弾力的で持続可能な建設手法への要求はますます重要になっています。

統合の複雑さ

フルード粘性ダンパーを建物の構造設計に効果的に組み込むには、特に設計と建設の初期段階において、綿密な計画と調整が必要です。フルード粘性ダンパーは、建築家やエンジニアによって他の構造部品と適切に統合されなければならず、荷重経路、利用可能なスペース、構造全体の美観も考慮しなければならないです。この複雑さは、構造的な完全性と建築的な目的を維持しながら、減衰技術をスムーズに組み込むという要件に由来しています。

技術の進歩

ダンパーの設計と機能性における顕著な進歩は、継続的な研究開発活動によって可能になりました。これらの開発の目的は、フルード粘性ダンパーの有効性、信頼性、手頃な価格を向上させ、開発者、エンジニア、建築家が魅力を感じるようにすることです。高度な材料科学、高度な製造工程、独創的な設計により、高効率の減衰装置が誕生しました。洗練されたセンサーと制御システムの使用により、フルード粘性ダンパーの動的な力に対する応答能力が強化され、さまざまな建築シナリオにおいて卓越した効率が保証されます。

イニシャルコスト

フルード粘性ダンパーは、動的な力を低減するための有用なツールですが、その購入、設置、構造設計の統合には、かなりの初期費用がかかります。特にコストに厳しいプロジェクトでは、限られた予算の中で制約を受けることもあります。短期的な財政的制約が、構造的弾力性の向上による長期的メリットを上回る場合、意思決定者はこのコスト要因に左右され、より従来型の、あるいは経済的な構造ソリューションを選択する可能性があります。

COVID-19の影響

先進的制振技術は、労働力不足、ロックダウン、サプライチェーンの混乱によって引き起こされる建設部門の混乱によって影響を受けています。プロジェクトの遅延や財政的制約によって建設目的が再考された結果、フルード粘性ダンパーの統合が一時的に停止する可能性があります。さらに、パンデミックによる経済不安は、デベロッパーや建設会社をより慎重にさせ、より高価な構造改良への投資意欲に影響を与えたかもしれないです。

予測期間中、官公庁の建物が最大となる見込み

インフラの回復力、公共の安全性、厳格な建築規則の遵守が極めて重要であることから、官公庁の建物が最も大きなシェアを占めています。官公庁の建物は、必要不可欠な業務やサービスを提供することが多いです。こうした建築物の例としては、行政機関、立法センター、緊急対応施設などがあります。政府機関は、公共の安全の管理者として、地震や強風のような動的な圧力に耐えるために、構造改善を優先します。さらに、政府の規則は厳しい安全基準を課しており、フルード粘性ダンパーは振動を低減し、構造物の耐震性を高める効果があることで知られています。

予測期間中、CAGRが最も高いのは教育機関セグメントです。

教育施設の安全性と耐久性への注目が高まっているため、教育機関分野は収益性の高い拡大が見込まれています。多数の職員や学生を抱える学校、カレッジ、大学は、地域社会のインフラストラクチャーとして不可欠な部分です。これらの構造物が地震やその他の動的な力に対していかに脆弱であるかを当局が認識するにつれて、潜在的な危険に対する強化がますます重要になってきています。

最もシェアが高い地域

旺盛な建設活動と構造物の耐震性に対する意識の高まりを支える要因が重なり、アジア太平洋地域が予測期間中最大の市場シェアを占めると予想されます。中国、インド、日本などの国々では、急速な都市化、人口拡大、インフラ支出の増加により、建設プロジェクトが急増しています。さらに、フルード粘性ダンパーは、建設活動の増加や地震緊急事態に対するこの地域の脆弱性から、構造物の耐性を向上させるために不可欠です。

CAGRが最も高い地域:

予測期間中、アジア太平洋地域のCAGRが最も高くなると予想されます。アジア太平洋地域の各国政府は、インフラの耐久性と安全性を保証するための対策がいかに重要であるかをますます認識しつつあります。強固な規制構造や、地震がインフラに及ぼす潜在的な影響に対する意識の高まりは、建物の耐震性を高める上でフルード粘性ダンパーの重要性を浮き彫りにしています。さらに、アジア太平洋地域は、フルード粘性ダンパーの使用を促進する上で重要な役割を果たしており、これは、現代の建築物の要求と戦略的に一致していることを示しています。

無料のカスタマイズサービス

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場プレーヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査ソース
    • 1次調査ソース
    • 2次調査ソース
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • アプリケーション分析
  • 新興市場
  • 新型コロナウイルス感染症(COVID-19)の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界の建築用フルード粘性ダンパー市場:建築タイプ別

  • 橋梁
  • 高層ビル
  • 政府の建物
  • 文化的および歴史的建造物
  • その他の建築タイプ

第6章 世界の建築用フルード粘性ダンパー市場:用途別

  • 病院およびヘルスケア施設
  • 教育機関
  • エネルギーインフラ
  • その他の用途

第7章 世界の建築用フルード粘性ダンパー市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋地域
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東とアフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第8章 主な発展

  • 契約、パートナーシップ、コラボレーション、合弁事業
  • 買収と合併
  • 新製品の発売
  • 事業拡大
  • その他の主要戦略

第9章 企業プロファイル

  • ACE Controls Inc
  • Dynamic Isolation Systems
  • Earthquake Protection Systems, Inc.
  • Enidine Inc.(ITT Corporation)
  • Kawakin Holdings Company Limited
  • KYB Corporation
  • KYOWA Engineering Consultants Co., Ltd.
  • Maurer AG
  • Sorbothane, Inc.
  • Structural Control Systems, Inc.
  • Taylor Devices, Inc.
  • Visotech AG
  • VSL International Ltd.
  • Yokohama Seito Co., Ltd.
  • Zytech Engineering
図表

List of Tables

  • Table 1 Global Fluid Viscous Dampers for Construction Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Fluid Viscous Dampers for Construction Market Outlook, By Building Type (2021-2030) ($MN)
  • Table 3 Global Fluid Viscous Dampers for Construction Market Outlook, By Bridges (2021-2030) ($MN)
  • Table 4 Global Fluid Viscous Dampers for Construction Market Outlook, By High-Rise Buildings (2021-2030) ($MN)
  • Table 5 Global Fluid Viscous Dampers for Construction Market Outlook, By Government Buildings (2021-2030) ($MN)
  • Table 6 Global Fluid Viscous Dampers for Construction Market Outlook, By Cultural and Historical Buildings (2021-2030) ($MN)
  • Table 7 Global Fluid Viscous Dampers for Construction Market Outlook, By Other Building Types (2021-2030) ($MN)
  • Table 8 Global Fluid Viscous Dampers for Construction Market Outlook, By Application (2021-2030) ($MN)
  • Table 9 Global Fluid Viscous Dampers for Construction Market Outlook, By Hospitals and Healthcare Facilities (2021-2030) ($MN)
  • Table 10 Global Fluid Viscous Dampers for Construction Market Outlook, By Educational Institutions (2021-2030) ($MN)
  • Table 11 Global Fluid Viscous Dampers for Construction Market Outlook, By Energy Infrastructure (2021-2030) ($MN)
  • Table 12 Global Fluid Viscous Dampers for Construction Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 13 North America Fluid Viscous Dampers for Construction Market Outlook, By Country (2021-2030) ($MN)
  • Table 14 North America Fluid Viscous Dampers for Construction Market Outlook, By Building Type (2021-2030) ($MN)
  • Table 15 North America Fluid Viscous Dampers for Construction Market Outlook, By Bridges (2021-2030) ($MN)
  • Table 16 North America Fluid Viscous Dampers for Construction Market Outlook, By High-Rise Buildings (2021-2030) ($MN)
  • Table 17 North America Fluid Viscous Dampers for Construction Market Outlook, By Government Buildings (2021-2030) ($MN)
  • Table 18 North America Fluid Viscous Dampers for Construction Market Outlook, By Cultural and Historical Buildings (2021-2030) ($MN)
  • Table 19 North America Fluid Viscous Dampers for Construction Market Outlook, By Other Building Types (2021-2030) ($MN)
  • Table 20 North America Fluid Viscous Dampers for Construction Market Outlook, By Application (2021-2030) ($MN)
  • Table 21 North America Fluid Viscous Dampers for Construction Market Outlook, By Hospitals and Healthcare Facilities (2021-2030) ($MN)
  • Table 22 North America Fluid Viscous Dampers for Construction Market Outlook, By Educational Institutions (2021-2030) ($MN)
  • Table 23 North America Fluid Viscous Dampers for Construction Market Outlook, By Energy Infrastructure (2021-2030) ($MN)
  • Table 24 North America Fluid Viscous Dampers for Construction Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 25 Europe Fluid Viscous Dampers for Construction Market Outlook, By Country (2021-2030) ($MN)
  • Table 26 Europe Fluid Viscous Dampers for Construction Market Outlook, By Building Type (2021-2030) ($MN)
  • Table 27 Europe Fluid Viscous Dampers for Construction Market Outlook, By Bridges (2021-2030) ($MN)
  • Table 28 Europe Fluid Viscous Dampers for Construction Market Outlook, By High-Rise Buildings (2021-2030) ($MN)
  • Table 29 Europe Fluid Viscous Dampers for Construction Market Outlook, By Government Buildings (2021-2030) ($MN)
  • Table 30 Europe Fluid Viscous Dampers for Construction Market Outlook, By Cultural and Historical Buildings (2021-2030) ($MN)
  • Table 31 Europe Fluid Viscous Dampers for Construction Market Outlook, By Other Building Types (2021-2030) ($MN)
  • Table 32 Europe Fluid Viscous Dampers for Construction Market Outlook, By Application (2021-2030) ($MN)
  • Table 33 Europe Fluid Viscous Dampers for Construction Market Outlook, By Hospitals and Healthcare Facilities (2021-2030) ($MN)
  • Table 34 Europe Fluid Viscous Dampers for Construction Market Outlook, By Educational Institutions (2021-2030) ($MN)
  • Table 35 Europe Fluid Viscous Dampers for Construction Market Outlook, By Energy Infrastructure (2021-2030) ($MN)
  • Table 36 Europe Fluid Viscous Dampers for Construction Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 37 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Country (2021-2030) ($MN)
  • Table 38 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Building Type (2021-2030) ($MN)
  • Table 39 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Bridges (2021-2030) ($MN)
  • Table 40 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By High-Rise Buildings (2021-2030) ($MN)
  • Table 41 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Government Buildings (2021-2030) ($MN)
  • Table 42 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Cultural and Historical Buildings (2021-2030) ($MN)
  • Table 43 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Other Building Types (2021-2030) ($MN)
  • Table 44 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Application (2021-2030) ($MN)
  • Table 45 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Hospitals and Healthcare Facilities (2021-2030) ($MN)
  • Table 46 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Educational Institutions (2021-2030) ($MN)
  • Table 47 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Energy Infrastructure (2021-2030) ($MN)
  • Table 48 Asia Pacific Fluid Viscous Dampers for Construction Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 49 South America Fluid Viscous Dampers for Construction Market Outlook, By Country (2021-2030) ($MN)
  • Table 50 South America Fluid Viscous Dampers for Construction Market Outlook, By Building Type (2021-2030) ($MN)
  • Table 51 South America Fluid Viscous Dampers for Construction Market Outlook, By Bridges (2021-2030) ($MN)
  • Table 52 South America Fluid Viscous Dampers for Construction Market Outlook, By High-Rise Buildings (2021-2030) ($MN)
  • Table 53 South America Fluid Viscous Dampers for Construction Market Outlook, By Government Buildings (2021-2030) ($MN)
  • Table 54 South America Fluid Viscous Dampers for Construction Market Outlook, By Cultural and Historical Buildings (2021-2030) ($MN)
  • Table 55 South America Fluid Viscous Dampers for Construction Market Outlook, By Other Building Types (2021-2030) ($MN)
  • Table 56 South America Fluid Viscous Dampers for Construction Market Outlook, By Application (2021-2030) ($MN)
  • Table 57 South America Fluid Viscous Dampers for Construction Market Outlook, By Hospitals and Healthcare Facilities (2021-2030) ($MN)
  • Table 58 South America Fluid Viscous Dampers for Construction Market Outlook, By Educational Institutions (2021-2030) ($MN)
  • Table 59 South America Fluid Viscous Dampers for Construction Market Outlook, By Energy Infrastructure (2021-2030) ($MN)
  • Table 60 South America Fluid Viscous Dampers for Construction Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 61 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Country (2021-2030) ($MN)
  • Table 62 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Building Type (2021-2030) ($MN)
  • Table 63 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Bridges (2021-2030) ($MN)
  • Table 64 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By High-Rise Buildings (2021-2030) ($MN)
  • Table 65 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Government Buildings (2021-2030) ($MN)
  • Table 66 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Cultural and Historical Buildings (2021-2030) ($MN)
  • Table 67 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Other Building Types (2021-2030) ($MN)
  • Table 68 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Application (2021-2030) ($MN)
  • Table 69 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Hospitals and Healthcare Facilities (2021-2030) ($MN)
  • Table 70 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Educational Institutions (2021-2030) ($MN)
  • Table 71 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Energy Infrastructure (2021-2030) ($MN)
  • Table 72 Middle East & Africa Fluid Viscous Dampers for Construction Market Outlook, By Other Applications (2021-2030) ($MN)
目次
Product Code: SMRC24494

According to Stratistics MRC, the Global Fluid Viscous Dampers for Construction Market is growing at a CAGR of 6.3% during the forecast period. In the construction industry, the term "fluid viscous dampers" refers to components that aim to reduce the effect of dynamic forces on buildings and structures, such as wind- or seismic-induced vibration. These dampers reduce structural motions and increase stability by absorbing and dissipating kinetic energy through the use of fluid viscosity. Fluid viscous dampers, which are usually included in a building's structural framework, offer a regulated resistance against oscillations, reducing the possible damage brought on by external forces.

Market Dynamics:

Driver:

Urbanization and infrastructure development

There is a growing emphasis on building larger and more intricate structures as cities grow and modernize. It becomes essential to find creative technical ways to improve the structural integrity of important infrastructure and structures. Fluid viscous dampers are essential in this situation because they may efficiently reduce the effects of dynamic forces on high-rise structures, such as wind- or seismic-induced vibrations. Fluid viscous dampers are crucial components to assure the durability, safety, and performance of buildings in a dynamic urban environment. As urbanisation increases, the requirement for resilient and sustainable construction practices becomes increasingly important.

Restraint:

Integration complexity

Meticulous planning and coordination are necessary for the effective integration of these dampers into a building's structural design, especially in the initial phases of design and construction. Fluid viscous dampers must be properly integrated with other structural components by architects and engineers, which must also take load paths, available space, and the overall aesthetics of the structure into consideration. The intricacy originates from the requirement to smoothly incorporate dampening technologies while maintaining structural integrity and architectural purpose.

Opportunity:

Technological advancements

Notable advancements in damper design and functionality have been made possible by ongoing research and development activities. The goal of these developments is to increase the fluid viscous dampers' efficacy, dependability, and affordability so that developers, engineers, and architects might find them attractive. Advanced materials science, advanced production processes, and creative design led to the creation of highly efficient reducing devices. The use of sophisticated sensors and control systems enhances the fluid viscous dampers' ability to respond to dynamic forces, ensuring outstanding efficiency in a range of building scenarios.

Threat:

Initial cost

Although fluid viscous dampers are a useful tool for reducing dynamic forces, their purchase, installation, and structural design integration can come with a substantial upfront cost. The initial financial commitment can be difficult for developers and construction companies, who can be constrained by restricted budgets, particularly in projects with strict cost concerns. When short-term financial restrictions exceed the long-term benefits of improved structural resilience, decision-makers may be swayed by this cost factor to choose more conventional or economical structural solutions.

COVID-19 Impact

Advanced dampening technologies have been impacted by disruptions in the construction sector caused by labour shortages, lockdowns, and supply chain disruptions. There may be a brief halt to the integration of fluid viscous dampers as a result of the reconsideration of construction objectives caused by project delays and financial limitations. Additionally, the pandemic's economic uncertainty may have made developers and construction companies more cautious, which may have impacted their desire to invest in more expensive structural upgrades.

The government buildings is expected to be the largest during the forecast period

Because of the crucial focus on infrastructure resilience, public safety, and adherence to strict building rules, the government buildings category had the largest share. Government buildings frequently hold essential operations and services. Some instances of these structures include administrative offices, legislative centres, and emergency response facilities. Governmental organisations prioritise structural upgrades in order to resist dynamic pressures like earthquakes and strong winds as administrators of public safety. Moreover, government rules impose strict safety criteria that are fulfilled by fluid viscous dampers, which are well-known for their effectiveness in reducing vibrations and enhancing a structure's seismic resistance.

The educational institutions segment is expected to have the highest CAGR during the forecast period

Because of the increased focus on the security and durability of educational facilities, the educational institutions sector is expected to experience profitable expansion. Schools, colleges, and universities that have sizable numbers of staff and students are essential parts of the infrastructure of the community. Strengthening these structures against potential hazards is becoming more and more important as authorities realise how vulnerable they are to seismic occurrences and other dynamic forces.

Region with largest share:

Due to a combination of factors supporting vigorous construction activities and rising awareness of structural resilience, Asia Pacific is anticipated to have the largest market share over the projection period. There has been a sharp increase in construction projects due to rapid urbanisation, population expansion, and rising infrastructure spending in nations like China, India, and Japan. Moreover, fluid viscous dampers are essential for improving the resilience of structures because of the increased construction activity and the region's vulnerability to seismic emergencies.

Region with highest CAGR:

Over the course of the projection period, Asia-Pacific is expected to have the highest CAGR. Governments around the Asia-Pacific region are realising more and more how important it is to take action to guarantee the durability and safety of infrastructure. Robust regulatory structures and increasing awareness about the potential effects of earthquakes on infrastructure highlight the significance of fluid viscous dampers in enhancing building resilience. Additionally, the Asia Pacific area has played a significant role in promoting the use of fluid viscous dampers, which is indicative of a strategic alignment with the demands of contemporary building.

Key players in the market:

Some of the key players profiled in the Fluid Viscous Dampers for Construction Market include ACE Controls Inc, Dynamic Isolation Systems, Earthquake Protection Systems, Inc., Enidine Inc. (ITT Corporation), Kawakin Holdings Company Limited, KYB Corporation, KYOWA Engineering Consultants Co., Ltd., Maurer AG, Sorbothane, Inc., Structural Control Systems, Inc., Taylor Devices, Inc., Visotech AG, VSL International Ltd., Yokohama Seito Co., Ltd. and Zytech Engineering.

Key Developments:

In May 2023, REE Automotive partners with Japanese KYB to develop next-gen EV platform. The new alliance is meant to assist both businesses in creating a new, scalable electric vehicle platform to accommodate a range of automobile applications, including heavy-duty EV logistics as well as sedans, SUVs, MUVs, and last-mile delivery vehicles.

Building Types Covered:

  • Bridges
  • High-Rise Buildings
  • Government Buildings
  • Cultural and Historical Buildings
  • Other Building Types

Applications Covered:

  • Hospitals and Healthcare Facilities
  • Educational Institutions
  • Energy Infrastructure
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Fluid Viscous Dampers for Construction Market, By Building Type

  • 5.1 Introduction
  • 5.2 Bridges
  • 5.3 High-Rise Buildings
  • 5.4 Government Buildings
  • 5.5 Cultural and Historical Buildings
  • 5.6 Other Building Types

6 Global Fluid Viscous Dampers for Construction Market, By Application

  • 6.1 Introduction
  • 6.2 Hospitals and Healthcare Facilities
  • 6.3 Educational Institutions
  • 6.4 Energy Infrastructure
  • 6.5 Other Applications

7 Global Fluid Viscous Dampers for Construction Market, By Geography

  • 7.1 Introduction
  • 7.2 North America
    • 7.2.1 US
    • 7.2.2 Canada
    • 7.2.3 Mexico
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 UK
    • 7.3.3 Italy
    • 7.3.4 France
    • 7.3.5 Spain
    • 7.3.6 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 Japan
    • 7.4.2 China
    • 7.4.3 India
    • 7.4.4 Australia
    • 7.4.5 New Zealand
    • 7.4.6 South Korea
    • 7.4.7 Rest of Asia Pacific
  • 7.5 South America
    • 7.5.1 Argentina
    • 7.5.2 Brazil
    • 7.5.3 Chile
    • 7.5.4 Rest of South America
  • 7.6 Middle East & Africa
    • 7.6.1 Saudi Arabia
    • 7.6.2 UAE
    • 7.6.3 Qatar
    • 7.6.4 South Africa
    • 7.6.5 Rest of Middle East & Africa

8 Key Developments

  • 8.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 8.2 Acquisitions & Mergers
  • 8.3 New Product Launch
  • 8.4 Expansions
  • 8.5 Other Key Strategies

9 Company Profiling

  • 9.1 ACE Controls Inc
  • 9.2 Dynamic Isolation Systems
  • 9.3 Earthquake Protection Systems, Inc.
  • 9.4 Enidine Inc. (ITT Corporation)
  • 9.5 Kawakin Holdings Company Limited
  • 9.6 KYB Corporation
  • 9.7 KYOWA Engineering Consultants Co., Ltd.
  • 9.8 Maurer AG
  • 9.9 Sorbothane, Inc.
  • 9.10 Structural Control Systems, Inc.
  • 9.11 Taylor Devices, Inc.
  • 9.12 Visotech AG
  • 9.13 VSL International Ltd.
  • 9.14 Yokohama Seito Co., Ltd.
  • 9.15 Zytech Engineering