表紙:ラピッドプロトタイピング市場の2030年までの予測- タイプ別、形状別、素材別、機能別、技術別、エンドユーザー別、地域別の世界分析
市場調査レポート
商品コード
1359041

ラピッドプロトタイピング市場の2030年までの予測- タイプ別、形状別、素材別、機能別、技術別、エンドユーザー別、地域別の世界分析

Rapid Prototyping Market Forecasts to 2030 - Global Analysis By Type (Proof-of-Concept Prototype, Visual Prototype, Functional Prototype, User Experience Prototype and Other Types), Form, Material, Function, Technology, End-User and By Geography

出版日: | 発行: Stratistics Market Research Consulting | ページ情報: 英文 200+ Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.76円
ラピッドプロトタイピング市場の2030年までの予測- タイプ別、形状別、素材別、機能別、技術別、エンドユーザー別、地域別の世界分析
出版日: 2023年10月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、ラピッドプロトタイピングの世界市場は2023年に142億5,000万米ドルを占め、予測期間中のCAGRは14.9%で成長し、2030年には376億9,000万米ドルに達すると予測されています。

ラピッドプロトタイピングは、3次元コンピュータ支援設計データを使用して、物理的なアイテムまたは接続のスケールモデルを迅速に作成するためのさまざまな技術を採用しています。ユーザーからのフィードバックや分析に基づき、短期間で数回の反復を行い、製品開発プロセスにおけるテストや検証のための製品シミュレーションを構築します。ラピッドプロトタイピングではさまざまな製造技術が使用されるが、積層造形が最も普及しています。ラピッドプロトタイピングの利点には、製品開発コスト全体の削減、設計・開発時間の短縮などがあります。

国際自動車工業会(OICA)によると、世界の自動車生産台数は、2019年と比較して2020年には16%減少します。これは短中期的に市場成長に大きな影響を与えると予想されます。

製造業の需要増加

ラピッドプロトタイピングと呼ばれる新しい製造方法は、3Dコンピュータ支援ソフトウェアで作成されたコンピュータモデルの迅速な作成を可能にします。ラピッドプロトタイピングの主なエンドユーザーには、自動車、航空宇宙、防衛などの製造業が含まれます。ラピッドプロトタイピングは、その利点から北米や欧州で高い人気を誇っています。ラピッドプロトタイピングは、設計コンセプトのプロトタイピング、数回の設計変更、設計の物理的検証のための迅速かつ手頃な技術として使用することができ、製品開発に必要な期間を大幅に短縮することができます。

材料とプロセスの高コスト

ラピッドプロトタイピングツールは、初期設定に大きなコストがかかります。ラピッドプロトタイピングの価格は、プロトタイプの種類、素材、最終的な特性、プロトタイプデザインの目的や性質など、さまざまな要素によって決まります。熱可塑性プラスチックに比べ、クイックプロトタイピングのセラミック素材やスマート素材は高価です。資格のある労働力と最新技術が必要なため、作業全体のコストが上昇します。

製品開発とカスタマイズの拡大

ラピッドプロトタイピングにより、企業は新製品やコンポーネントの実用的なプロトタイプを迅速かつ手頃な価格で作成することができます。これによって迅速なテストと反復が可能になるため、製品開発サイクルが短縮され、イノベーションが高まります。本格的な生産に費用をかける前に、企業はラピッド・プロトタイピングを利用して新しいデザイン・コンセプトをテストし、アイデアを検証し、利害関係者からフィードバックを得ることができます。企業はラピッド・プロトタイピングを採用することで、特定の市場グループや独自の顧客嗜好のニーズを満たすカスタマイズ・バージョンの製品を作ることができます。これにより、企業は個性的でカスタマイズされた製品を提供し、顧客の喜びとロイヤルティを高めることができます。

規格と品質保証

ラピッドプロトタイピングビジネスが発展し成長し続ける中で、様々な技術、材料、生産者において均一な品質を確保することは困難です。プロトタイプの信頼性と性能は、標準化の欠如やさまざまなラピッドプロトタイピング技術の出力品質のばらつきによって影響を受ける可能性があります。品質管理を維持するために、企業は信頼できるサービス・サプライヤーを慎重に評価・選択するか、内部投資を行う必要があります。

COVID-19の影響:

COVID-19パンデミックの発生は、サプライチェーンの中断、労働力不足、厳しい輸送要件による製造活動の生産遅延により、ラピッドプロトタイピング業界にさまざまな影響を与えました。ラピッドプロトタイピング業界の主要参加企業は、原材料不足による製造活動の一時的な遅れの結果、2020~2021年度の売上高が減少しました。しかし、大手市場参入企業は、世界経済が好転し始めた時期にCOVID-19の悪影響が出た反動から、研究開発予算を緩やかに削減し、次世代技術に重点を移しています。

予測期間中、熱可塑性プラスチック・セグメントが最大になる見込み

熱可塑性プラスチックセグメントは、有利な成長を遂げると推定されます。熱可塑性プラスチックは、様々な特性を持つ幅広い材料の見通しを提供し、異なる機械的、熱的、化学的能力を持つプロトタイプの作成を可能にするからです。ポリ乳酸(PLA)、PETG(ポリエチレンテレフタレートグリコール)、ナイロン、ポリカーボネート、ポリプロピレンなどは、プロトタイピングに使用される一般的な熱可塑性プラスチックの一例です。その他の材料としては、ABS(アクリロニトリル・ブタジエン・スチレン)、PLA(ポリ乳酸)、PETGなどがあります。金属やセラミックなど、プロトタイピングに使用される他の材料と比較すると、熱可塑性プラスチックは一般的に価格が手頃です。熱可塑性プラスチック・フィラメントは、その入手しやすさとコストから、迅速なプロトタイピング・プロジェクトにとって実用的な選択肢となっています。これらの要素が、このセグメントの成長を後押ししています。

航空宇宙・防衛分野は予測期間中に最も高いCAGRが見込まれる

ラピッドプロトタイピングにより、航空宇宙・防衛企業はデジタル設計やCADモデルを物理的なプロトタイプに素早く変換してコンセプトを検証できるため、航空宇宙・防衛分野は予測期間中に最も速いCAGR成長が見込まれます。これにより、エンジニアや設計者は、大規模生産に着手する前に、新しい航空機や防衛システムのアイデアの実行可能性や機能性を評価することができます。こうした要因が、このセグメントの成長を加速させています。

最大のシェアを占める地域

世界最大の航空宇宙市場は米国であるため、予測期間中、北米が最大の市場シェアを占めると予測されます。カナダの航空宇宙産業は転換期を迎えており、今後20年間で世界的に飛躍的な成長が見込まれています。これは、航空宇宙産業で使用される市場調査の消費に大きな影響を与えると予想されます。カナダは民間フライトシミュレーションの世界的リーダーであり、民間エンジンの生産では第3位、民間航空機の生産では第4位です。さらに、ラピッドプロトタイピング技術の最大のエンドユーザーの1つは医療産業であり、手術器具、インプラント、組織工学用足場、ステント、インプラントなど、さまざまな製品の製造に利用されています。アメリカのヘルスケア産業は、紛れもなく世界で最も発展している国のひとつです。北米は、各重要分野のカテゴリーでトップ5に入る唯一の国です。

CAGRが最も高い地域:

アジア太平洋地域は、ラピッドプロトタイピング技術、材料、プロセスが大きく進歩したため、予測期間中、CAGRが最も高くなると予測されます。ラピッドプロトタイピングは、精度、スピード、費用対効果が向上しているため、現在ではより多くの分野で利用されています。ラピッドプロトタイピングは現在、アジア太平洋地域のエレクトロニクス、自動車、航空宇宙、ヘルスケア、消費者製品、消費者パッケージ商品など、さまざまな産業で製品開発プロセスに利用されています。ラピッドプロトタイピング技術の採用は、アジア太平洋地域の強固な製造基盤と技術力の拡大によって容易になっています。

無料カスタマイズサービス:

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場プレーヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査ソース
    • 1次調査ソース
    • 2次調査ソース
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • 技術分析
  • エンドユーザー分析
  • 新興市場
  • 新型コロナウイルス感染症(COVID-19)の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界のラピッドプロトタイピング市場:タイプ別

  • 概念実証(PoC)プロトタイプ
  • ビジュアルプロトタイプ
  • 機能プロトタイプ
  • ユーザーエクスペリエンスのプロトタイプ
  • その他のタイプ

第6章 世界のラピッドプロトタイピング市場:形状別

  • フィラメント
  • インク

第7章 世界のラピッドプロトタイピング市場:素材別

  • 金属および合金
  • セラミック
  • 石膏
  • 液状シリコーンゴム(LSR)
  • スターチ
  • ポリマー
  • 熱可塑性プラスチック
  • その他の素材

第8章 世界のラピッドプロトタイピング市場:機能別

  • 機能プロトタイプ
  • 概念モデル

第9章 世界のラピッドプロトタイピング市場:技術別

  • 技術
  • 光造形(SLA)
  • 溶融堆積モデリング(FDM)
  • デジタルライトプロセッシング[DLP]
  • 選択的レーザー焼結(SLS)
  • 電子ビーム溶解[EBM]
  • マルチジェットフュージョン(MJF)

第10章 世界のラピッドプロトタイピング市場:エンドユーザー別

  • 航空宇宙と防衛
  • 自動車
  • 映画とアニメーション
  • 消費財および電子機器
  • 建築
  • 交通機関
  • 医学
  • その他のエンドユーザー

第11章 世界のラピッドプロトタイピング市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋地域
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東とアフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第12章 主な発展

  • 契約、パートナーシップ、コラボレーション、合弁事業
  • 買収と合併
  • 新製品の発売
  • 事業拡大
  • その他の主要戦略

第13章 企業プロファイル

  • 3D Systems Corporation
  • Stratasys, Ltd.
  • EOS GmbH Electro Optical Systems
  • Materialise NV
  • Golden Plastics
  • Arcam AB
  • LPW Technology Ltd.
  • Sandvik AB
  • Tethon 3D
  • Lithoz GmbH
  • Arkema S.A.
  • Royal DSM N.V.
  • CRP Group
  • Oxford Performance Materials
  • Renishaw PLC
  • Hoganas AB
  • GKN PLC
  • Carpenter Technology Corporation
  • 3D Ceram
  • Fathom Digital Manufacturing Corporation
図表

List of Tables

  • Table 1 Global Rapid Prototyping Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Rapid Prototyping Market Outlook, By Type (2021-2030) ($MN)
  • Table 3 Global Rapid Prototyping Market Outlook, By Proof-of-Concept (PoC) Prototype (2021-2030) ($MN)
  • Table 4 Global Rapid Prototyping Market Outlook, By Visual Prototype (2021-2030) ($MN)
  • Table 5 Global Rapid Prototyping Market Outlook, By Functional Prototype (2021-2030) ($MN)
  • Table 6 Global Rapid Prototyping Market Outlook, By User Experience Prototype (2021-2030) ($MN)
  • Table 7 Global Rapid Prototyping Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 8 Global Rapid Prototyping Market Outlook, By Form (2021-2030) ($MN)
  • Table 9 Global Rapid Prototyping Market Outlook, By Filament (2021-2030) ($MN)
  • Table 10 Global Rapid Prototyping Market Outlook, By Powder (2021-2030) ($MN)
  • Table 11 Global Rapid Prototyping Market Outlook, By Ink (2021-2030) ($MN)
  • Table 12 Global Rapid Prototyping Market Outlook, By Material (2021-2030) ($MN)
  • Table 13 Global Rapid Prototyping Market Outlook, By Metals and Alloys (2021-2030) ($MN)
  • Table 14 Global Rapid Prototyping Market Outlook, By Ceramic (2021-2030) ($MN)
  • Table 15 Global Rapid Prototyping Market Outlook, By Plaster (2021-2030) ($MN)
  • Table 16 Global Rapid Prototyping Market Outlook, By Liquid Silicone Rubber (LSR) (2021-2030) ($MN)
  • Table 17 Global Rapid Prototyping Market Outlook, By Starch (2021-2030) ($MN)
  • Table 18 Global Rapid Prototyping Market Outlook, By Polymer (2021-2030) ($MN)
  • Table 19 Global Rapid Prototyping Market Outlook, By Thermoplastics (2021-2030) ($MN)
  • Table 20 Global Rapid Prototyping Market Outlook, By Other Materials (2021-2030) ($MN)
  • Table 21 Global Rapid Prototyping Market Outlook, By Function (2021-2030) ($MN)
  • Table 22 Global Rapid Prototyping Market Outlook, By Functional Prototype (2021-2030) ($MN)
  • Table 23 Global Rapid Prototyping Market Outlook, By Conceptual Model (2021-2030) ($MN)
  • Table 24 Global Rapid Prototyping Market Outlook, By Technology (2021-2030) ($MN)
  • Table 25 Global Rapid Prototyping Market Outlook, By Technology (2021-2030) ($MN)
  • Table 26 Global Rapid Prototyping Market Outlook, By Introduction (2021-2030) ($MN)
  • Table 27 Global Rapid Prototyping Market Outlook, By Stereolithography (SLA) (2021-2030) ($MN)
  • Table 28 Global Rapid Prototyping Market Outlook, By Fused Deposition Modeling (FDM) (2021-2030) ($MN)
  • Table 29 Global Rapid Prototyping Market Outlook, By Digital Light Processing [DLP] (2021-2030) ($MN)
  • Table 30 Global Rapid Prototyping Market Outlook, By Selective Laser Sintering (SLS) (2021-2030) ($MN)
  • Table 31 Global Rapid Prototyping Market Outlook, By Electron Beam Melting [EBM] (2021-2030) ($MN)
  • Table 32 Global Rapid Prototyping Market Outlook, By Multi Jet Fusion (MJF) (2021-2030) ($MN)
  • Table 33 Global Rapid Prototyping Market Outlook, By End User (2021-2030) ($MN)
  • Table 34 Global Rapid Prototyping Market Outlook, By Aerospace & Defense (2021-2030) ($MN)
  • Table 35 Global Rapid Prototyping Market Outlook, By Automotive (2021-2030) ($MN)
  • Table 36 Global Rapid Prototyping Market Outlook, By Film & Animation (2021-2030) ($MN)
  • Table 37 Global Rapid Prototyping Market Outlook, By Consumer Goods and Electronics (2021-2030) ($MN)
  • Table 38 Global Rapid Prototyping Market Outlook, By Architecture (2021-2030) ($MN)
  • Table 39 Global Rapid Prototyping Market Outlook, By Transportation (2021-2030) ($MN)
  • Table 40 Global Rapid Prototyping Market Outlook, By Medical (2021-2030) ($MN)
  • Table 41 Global Rapid Prototyping Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

List of Figures

Figure 1 Rapid Prototyping - Market Segmentation

Figure 2 Research Methodology

Figure 3 Data Mining

Figure 4 Data Analysis

Figure 5 Data Validation

Figure 6 Research Pipeline

Figure 7 Research Approach

Figure 8 Research Sources

Figure 9 Rapid Prototyping Market Scenario, Technology (2023) (% Market Share)

Figure 10 Rapid Prototyping Market Scenario, End User (2023) (% Market Share)

Figure 11 Rapid Prototyping Market Scenario, Emerging Markets (2023) (% Market Share)

Figure 12 Porter's Five Forces Analysis - Rapid Prototyping

Figure 13 Global Rapid Prototyping Market Analysis & Projection, By Type (2023 VS 2030) (US$MN)

Figure 14 Global Rapid Prototyping Market Analysis & Projection, By Proof-of-Concept (PoC) Prototype (2023 VS 2030) (US$MN)

Figure 15 Global Rapid Prototyping Market Analysis & Projection, By Visual Prototype (2023 VS 2030) (US$MN)

Figure 16 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)

Figure 17 Global Rapid Prototyping Market Analysis & Projection, By User Experience Prototype (2023 VS 2030) (US$MN)

Figure 18 Global Rapid Prototyping Market Analysis & Projection, By Other Types (2023 VS 2030) (US$MN)

Figure 19 Global Rapid Prototyping Market Analysis & Projection, By Form (2023 VS 2030) (US$MN)

Figure 20 Global Rapid Prototyping Market Analysis & Projection, By Filament (2023 VS 2030) (US$MN)

Figure 21 Global Rapid Prototyping Market Analysis & Projection, By Powder (2023 VS 2030) (US$MN)

Figure 22 Global Rapid Prototyping Market Analysis & Projection, By Ink (2023 VS 2030) (US$MN)

Figure 23 Global Rapid Prototyping Market Analysis & Projection, By Material (2023 VS 2030) (US$MN)

Figure 24 Global Rapid Prototyping Market Analysis & Projection, By Metals and Alloys (2023 VS 2030) (US$MN)

Figure 25 Global Rapid Prototyping Market Analysis & Projection, By Ceramic (2023 VS 2030) (US$MN)

Figure 26 Global Rapid Prototyping Market Analysis & Projection, By Plaster (2023 VS 2030) (US$MN)

Figure 27 Global Rapid Prototyping Market Analysis & Projection, By Liquid Silicone Rubber (LSR) (2023 VS 2030) (US$MN)

Figure 28 Global Rapid Prototyping Market Analysis & Projection, By Starch (2023 VS 2030) (US$MN)

Figure 29 Global Rapid Prototyping Market Analysis & Projection, By Polymer (2023 VS 2030) (US$MN)

Figure 30 Global Rapid Prototyping Market Analysis & Projection, By Thermoplastics (2023 VS 2030) (US$MN)

Figure 31 Global Rapid Prototyping Market Analysis & Projection, By Other Materials (2023 VS 2030) (US$MN)

Figure 32 Global Rapid Prototyping Market Analysis & Projection, By Function (2023 VS 2030) (US$MN)

Figure 33 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)

Figure 34 Global Rapid Prototyping Market Analysis & Projection, By Conceptual Model (2023 VS 2030) (US$MN)

Figure 35 Global Rapid Prototyping Market Analysis & Projection, By Technology (2023 VS 2030) (US$MN)

Figure 36 Global Rapid Prototyping Market Analysis & Projection, By Stereolithography (SLA) (2023 VS 2030) (US$MN)

Figure 37 Global Rapid Prototyping Market Analysis & Projection, By Fused Deposition Modeling (FDM) (2023 VS 2030) (US$MN)

Figure 38 Global Rapid Prototyping Market Analysis & Projection, By Digital Light Processing [DLP] (2023 VS 2030) (US$MN)

Figure 39 Global Rapid Prototyping Market Analysis & Projection, By Selective Laser Sintering (SLS) (2023 VS 2030) (US$MN)

Figure 40 Global Rapid Prototyping Market Analysis & Projection, By Electron Beam Melting [EBM] (2023 VS 2030) (US$MN)

Figure 41 Global Rapid Prototyping Market Analysis & Projection, By Multi Jet Fusion (MJF) (2023 VS 2030) (US$MN)

Figure 42 Global Rapid Prototyping Market Analysis & Projection, By End-Use Industry (2023 VS 2030) (US$MN)

Figure 43 Global Rapid Prototyping Market Analysis & Projection, By Aerospace & Defense (2023 VS 2030) (US$MN)

Figure 44 Global Rapid Prototyping Market Analysis & Projection, By Automotive (2023 VS 2030) (US$MN)

Figure 45 Global Rapid Prototyping Market Analysis & Projection, By Film & Animation (2023 VS 2030) (US$MN)

Figure 46 Global Rapid Prototyping Market Analysis & Projection, By Consumer Goods and Electronics (2023 VS 2030) (US$MN)

Figure 47 Global Rapid Prototyping Market Analysis & Projection, By Architecture (2023 VS 2030) (US$MN)

Figure 48 Global Rapid Prototyping Market Analysis & Projection, By Transportation (2023 VS 2030) (US$MN)

Figure 49 Global Rapid Prototyping Market Analysis & Projection, By Medical (2023 VS 2030) (US$MN)

Figure 50 Global Rapid Prototyping Market Analysis & Projection, By Other End User Industries (2023 VS 2030) (US$MN)

Figure 51 Global Rapid Prototyping Market Analysis & Projection, By Geography (2023 VS 2030) (US$MN)

Figure 52 Global Rapid Prototyping Market Analysis & Projection, By Country (2023 VS 2030) (US$MN)

Figure 53 Global Rapid Prototyping Market Analysis & Projection, By North America (2023 VS 2030) (US$MN)

Figure 54 Global Rapid Prototyping Market Analysis & Projection, By Europe (2023 VS 2030) (US$MN)

Figure 55 Global Rapid Prototyping Market Analysis & Projection, By Asia Pacific (2023 VS 2030) (US$MN)

Figure 56 Global Rapid Prototyping Market Analysis & Projection, By South America (2023 VS 2030) (US$MN)

Figure 57 Global Rapid Prototyping Market Analysis & Projection, By Middle East & Africa (2023 VS 2030) (US$MN)

Figure 58 3D Systems Corporation - Swot Analysis

Figure 59 Stratasys, Ltd. - Swot Analysis

Figure 60 EOS GmbH Electro Optical Systems - Swot Analysis

Figure 61 Materialise NV - Swot Analysis

Figure 62 Golden Plastics - Swot Analysis

Figure 63 Arcam AB - Swot Analysis

Figure 64 LPW Technology Ltd. - Swot Analysis

Figure 65 Sandvik AB - Swot Analysis

Figure 66 Tethon 3D - Swot Analysis

Figure 67 Lithoz GmbH - Swot Analysis

Figure 68 Arkema S.A. - Swot Analysis

Figure 69 Royal DSM N.V. - Swot Analysis

Figure 70 CRP Group - Swot Analysis

Figure 71 Oxford Performance Materials - Swot Analysis

Figure 72 Renishaw PLC - Swot Analysis

Figure 73 Hoganas AB - Swot Analysis

Figure 74 GKN PLC - Swot Analysis

Figure 75 Carpenter Technology Corporation - Swot Analysis

Figure 76 3D Ceram - Swot Analysis

Figure 77 Fathom Digital Manufacturing Corporation - Swot Analysis

目次
Product Code: SMRC23913

According to Stratistics MRC, the Global Rapid Prototyping Market is accounted for $14.25 billion in 2023 and is expected to reach $37.69 billion by 2030 growing at a CAGR of 14.9% during the forecast period. Rapid prototyping is the employing of a variety of techniques to rapidly produce a scale model of a physical item or connection using three-dimensional computer-aided design data. It generates several iterations over a short period of time based on user feedback and analysis to build product simulations for testing and validation during the product development process. While many different manufacturing techniques are used in rapid prototyping, layered additive manufacturing is the most prevalent. The advantages of rapid prototyping include reduced overall product development costs and reduced design and development time.

According to International Organization of Motor Vehicle Manufacturers (OICA), global production of vehicles, declined by 16% in 2020 when compared to 2019. This is expected to significantly impact the market growth in the short to medium-term.

Market Dynamics:

Driver:

Increasing demand for the manufacturing sector

A new manufacturing method called rapid prototyping enables the quick creation of computer models created with 3D computer-aided software. The primary end-users of fast prototyping include manufacturing sectors like automotive, aerospace, defence, and other industries. Because of its benefits, rapid prototyping is highly sought-after in North America and Europe. It can be used as a quick and affordable technique for prototyping design concepts, several design modifications, and physical validation of designs, greatly lowering the time period required for product development.

Restraint:

High cost of materials and the processes

Rapid prototyping tools have a significant initial setup cost. The price of rapid prototyping is determined by a variety of elements, such as the type of prototype, the material, the final properties, and the purpose and nature of the prototype design. In comparison to thermoplastics, quick-prototyping ceramic materials and smart materials are more expensive. The overall cost of the operation rises due to the need for qualified labour and modern technology.

Opportunity:

Product development and increased customization

Rapid prototyping enables businesses to quickly and affordably create working prototypes of new products or components. Because of the quicker testing and iterations made possible by this, product development cycles are shortened, and innovation is raised. Before spending money on full-scale production, businesses can use rapid prototyping to test new design concepts, validate ideas, and get feedback from stakeholders. Companies can employ rapid prototyping to make customised versions of their products to meet the needs of particular market groups or unique client preferences. This gives businesses the chance to provide distinctive and customised products, increasing client pleasure and loyalty.

Threat:

Standards and quality assurance

It can be difficult to ensure uniform quality across various technologies, materials, and producers as the rapid prototyping business continues to develop and grow. The dependability and performance of prototypes can be impacted by a lack of standardisation and variations in the output quality of various rapid prototyping technologies. To maintain quality control, businesses must carefully assess and choose dependable service suppliers or make internal investments.

COVID-19 Impact:

The outbreak of the COVID-19 pandemic had a mixed impact on the rapid prototyping industry, due to production delays in manufacturing activities caused by supply chain interruptions, a labour shortage, and stringent transportation requirements. Major participants in the fast prototyping industry experienced a reduction in sales for the fiscal years 2020 to 2021 as a result of a temporary delay in manufacturing activities caused by a lack of raw materials. The leading market participants, however, have moderately reduced their R&D budgets and redirected their focus to next-generation technologies in reaction to COVID-19's negative consequences when the world economy started to improve.

The thermoplastics segment is expected to be the largest during the forecast period

The thermoplastics segment is estimated to have a lucrative growth, because thermoplastics provide a broad range of material prospects with a variety of properties, enabling the creation of prototypes with different mechanical, thermal, and chemical capabilities. Polylactic acid (PLA), PETG (polyethylene terephthalate glycol), nylon, polycarbonate, and polypropylene are a few examples of common thermoplastics used in prototyping. Other materials include ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), and PETG. In comparison to other materials used for prototyping, such as metals or ceramics, thermoplastics are typically more affordable. Thermoplastic filaments are a practical option for quick prototyping projects due to their accessibility and cost. These elements are propelling the segment growth.

The Aerospace & Defence segment is expected to have the highest CAGR during the forecast period

The Aerospace & Defence segment is anticipated to witness the fastest CAGR growth during the forecast period, because the rapid prototyping allows aerospace and defence companies to quickly transform digital designs and CAD models into physical prototypes to validate concepts. By doing this, engineers and designers can assess the viability and functionality of new aircraft or defence system ideas before committing to large-scale production. These factors are accelerating the segment growth.

Region with largest share:

North America is projected to hold the largest market share during the forecast period owing to the world's largest aerospace market is in the United States. The aerospace industry in Canada is at a turning point, and over the next 20 years, exponential growth is envisaged for the industry globally. This is anticipated to have a substantial impact on the consumption of market research for use in the aerospace industry. Canada is the world leader in civil flight simulation, third in the production of civil engines, and fourth in the production of civil aircraft. Additionally, one of the largest end users of rapid prototyping technology is the medical industry, which uses it to create a variety of products, including surgical instruments, implants, scaffolds for tissue engineering, stents, and implants. The American healthcare industry is unquestionably one of the most developed in the world. North America is the only country to place in the top five in each important sector category.

Region with highest CAGR:

Asia-Pacific region is projected to have the highest CAGR over the forecast period, owing to its rapid prototyping technologies, materials, and processes have made significant advancements. A wider number of sectors may now use rapid prototyping because of improvements in accuracy, speed, and cost-effectiveness. Rapid prototyping is now being used for product development processes in a variety of industries, including electronics, automotive, aerospace, healthcare, consumer products, and consumer packaged goods in Asia pacific region. Rapid prototyping technology adoption has been made easier by the region's robust manufacturing base and expanding technological capabilities.

Key players in the market:

Some of the key players profiled in the Rapid Prototyping Market include: 3D Systems Corporation, Stratasys, Ltd., EOS GmbH Electro Optical Systems, Materialise NV, Golden Plastics, Arcam AB, LPW Technology Ltd., Sandvik AB, Tethon 3D, Lithoz GmbH, Arkema S.A., Royal DSM N.V., CRP Group, Oxford Performance Materials, Renishaw PLC, Hoganas AB, GKN PLC, Carpenter Technology Corporation, 3D Ceram and Fathom Digital Manufacturing Corporation

Key Developments:

In September 2021, 3D System Corporation expended its material portfolio with the launch of Certified Scalmalloy (A) and Certified M789 (A). This material will be used to develop high strength part for energy, mold making, automotive, electronics, aerospace and defense application. Also, the consumer can use direct metal printing platform to develop part with the help of Scalmalloy (A) and M789 (A).

In November 2021, Desktop Metal, Inc. completed its acquisition of the ExOne Company. This acquisition reinforces Desktop Metal's leadership in additive manufacturing (AM) for mass production. ExOne extends Desktop Metal's product platforms with complementary solutions to create an unparalleled AM portfolio that offers industry-leading throughput, flexibility, and materials breadth, providing customers with a variety of options to address their specific application.

Types Covered:

  • Proof-of-Concept (PoC) Prototype
  • Visual Prototype
  • Functional Prototype
  • User Experience Prototype
  • Other Types

Forms Covered:

  • Filament
  • Powder
  • Ink

Materials Covered:

  • Metals and Alloys
  • Ceramic
  • Plaster
  • Liquid Silicone Rubber (LSR)
  • Starch
  • Polymer
  • Thermoplastics
  • Other Materials

Functions Covered:

  • Functional Prototype
  • Conceptual Model

Technologies Covered:

  • Stereolithography (SLA)
  • Fused Deposition Modeling (FDM)
  • Digital Light Processing [DLP]
  • Selective Laser Sintering (SLS)
  • Electron Beam Melting [EBM]
  • Multi Jet Fusion (MJF)

End Users Covered:

  • Aerospace & Defense
  • Automotive
  • Film & Animation
  • Consumer Goods and Electronics
  • Architecture
  • Transportation
  • Medical
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Rapid Prototyping Market, By Type

  • 5.1 Introduction
  • 5.2 Proof-of-Concept (PoC) Prototype
  • 5.3 Visual Prototype
  • 5.4 Functional Prototype
  • 5.5 User Experience Prototype
  • 5.6 Other Types

6 Global Rapid Prototyping Market, By Form

  • 6.1 Introduction
  • 6.2 Filament
  • 6.3 Powder
  • 6.4 Ink

7 Global Rapid Prototyping Market, By Material

  • 7.1 Introduction
  • 7.2 Metals and Alloys
  • 7.3 Ceramic
  • 7.4 Plaster
  • 7.5 Liquid Silicone Rubber (LSR)
  • 7.6 Starch
  • 7.7 Polymer
  • 7.8 Thermoplastics
  • 7.9 Other Materials

8 Global Rapid Prototyping Market, By Function

  • 8.1 Introduction
  • 8.2 Functional Prototype
  • 8.3 Conceptual Model

9 Global Rapid Prototyping Market, By Technology

  • 9.1 Introduction
  • 9.2 Technology
  • 9.3 Introduction
  • 9.4 Stereolithography (SLA)
  • 9.5 Fused Deposition Modeling (FDM)
  • 9.6 Digital Light Processing [DLP]
  • 9.7 Selective Laser Sintering (SLS)
  • 9.8 Electron Beam Melting [EBM]
  • 9.9 Multi Jet Fusion (MJF)

10 Global Rapid Prototyping Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace & Defense
  • 10.3 Automotive
  • 10.4 Film & Animation
  • 10.5 Consumer Goods and Electronics
  • 10.6 Architecture
  • 10.7 Transportation
  • 10.8 Medical
  • 10.9 Other End Users

11 Global Rapid Prototyping Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 3D Systems Corporation
  • 13.2 Stratasys, Ltd.
  • 13.3 EOS GmbH Electro Optical Systems
  • 13.4 Materialise NV
  • 13.5 Golden Plastics
  • 13.6 Arcam AB
  • 13.7 LPW Technology Ltd.
  • 13.8 Sandvik AB
  • 13.9 Tethon 3D
  • 13.10 Lithoz GmbH
  • 13.11 Arkema S.A.
  • 13.12 Royal DSM N.V.
  • 13.13 CRP Group
  • 13.14 Oxford Performance Materials
  • 13.15 Renishaw PLC
  • 13.16 Hoganas AB
  • 13.17 GKN PLC
  • 13.18 Carpenter Technology Corporation
  • 13.19 3D Ceram
  • 13.20 Fathom Digital Manufacturing Corporation