![]() |
市場調査レポート
商品コード
1359041
ラピッドプロトタイピング市場の2030年までの予測- タイプ別、形状別、素材別、機能別、技術別、エンドユーザー別、地域別の世界分析Rapid Prototyping Market Forecasts to 2030 - Global Analysis By Type (Proof-of-Concept Prototype, Visual Prototype, Functional Prototype, User Experience Prototype and Other Types), Form, Material, Function, Technology, End-User and By Geography |
||||||
カスタマイズ可能
|
ラピッドプロトタイピング市場の2030年までの予測- タイプ別、形状別、素材別、機能別、技術別、エンドユーザー別、地域別の世界分析 |
出版日: 2023年10月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、ラピッドプロトタイピングの世界市場は2023年に142億5,000万米ドルを占め、予測期間中のCAGRは14.9%で成長し、2030年には376億9,000万米ドルに達すると予測されています。
ラピッドプロトタイピングは、3次元コンピュータ支援設計データを使用して、物理的なアイテムまたは接続のスケールモデルを迅速に作成するためのさまざまな技術を採用しています。ユーザーからのフィードバックや分析に基づき、短期間で数回の反復を行い、製品開発プロセスにおけるテストや検証のための製品シミュレーションを構築します。ラピッドプロトタイピングではさまざまな製造技術が使用されるが、積層造形が最も普及しています。ラピッドプロトタイピングの利点には、製品開発コスト全体の削減、設計・開発時間の短縮などがあります。
国際自動車工業会(OICA)によると、世界の自動車生産台数は、2019年と比較して2020年には16%減少します。これは短中期的に市場成長に大きな影響を与えると予想されます。
ラピッドプロトタイピングと呼ばれる新しい製造方法は、3Dコンピュータ支援ソフトウェアで作成されたコンピュータモデルの迅速な作成を可能にします。ラピッドプロトタイピングの主なエンドユーザーには、自動車、航空宇宙、防衛などの製造業が含まれます。ラピッドプロトタイピングは、その利点から北米や欧州で高い人気を誇っています。ラピッドプロトタイピングは、設計コンセプトのプロトタイピング、数回の設計変更、設計の物理的検証のための迅速かつ手頃な技術として使用することができ、製品開発に必要な期間を大幅に短縮することができます。
ラピッドプロトタイピングツールは、初期設定に大きなコストがかかります。ラピッドプロトタイピングの価格は、プロトタイプの種類、素材、最終的な特性、プロトタイプデザインの目的や性質など、さまざまな要素によって決まります。熱可塑性プラスチックに比べ、クイックプロトタイピングのセラミック素材やスマート素材は高価です。資格のある労働力と最新技術が必要なため、作業全体のコストが上昇します。
ラピッドプロトタイピングにより、企業は新製品やコンポーネントの実用的なプロトタイプを迅速かつ手頃な価格で作成することができます。これによって迅速なテストと反復が可能になるため、製品開発サイクルが短縮され、イノベーションが高まります。本格的な生産に費用をかける前に、企業はラピッド・プロトタイピングを利用して新しいデザイン・コンセプトをテストし、アイデアを検証し、利害関係者からフィードバックを得ることができます。企業はラピッド・プロトタイピングを採用することで、特定の市場グループや独自の顧客嗜好のニーズを満たすカスタマイズ・バージョンの製品を作ることができます。これにより、企業は個性的でカスタマイズされた製品を提供し、顧客の喜びとロイヤルティを高めることができます。
ラピッドプロトタイピングビジネスが発展し成長し続ける中で、様々な技術、材料、生産者において均一な品質を確保することは困難です。プロトタイプの信頼性と性能は、標準化の欠如やさまざまなラピッドプロトタイピング技術の出力品質のばらつきによって影響を受ける可能性があります。品質管理を維持するために、企業は信頼できるサービス・サプライヤーを慎重に評価・選択するか、内部投資を行う必要があります。
COVID-19パンデミックの発生は、サプライチェーンの中断、労働力不足、厳しい輸送要件による製造活動の生産遅延により、ラピッドプロトタイピング業界にさまざまな影響を与えました。ラピッドプロトタイピング業界の主要参加企業は、原材料不足による製造活動の一時的な遅れの結果、2020~2021年度の売上高が減少しました。しかし、大手市場参入企業は、世界経済が好転し始めた時期にCOVID-19の悪影響が出た反動から、研究開発予算を緩やかに削減し、次世代技術に重点を移しています。
熱可塑性プラスチックセグメントは、有利な成長を遂げると推定されます。熱可塑性プラスチックは、様々な特性を持つ幅広い材料の見通しを提供し、異なる機械的、熱的、化学的能力を持つプロトタイプの作成を可能にするからです。ポリ乳酸(PLA)、PETG(ポリエチレンテレフタレートグリコール)、ナイロン、ポリカーボネート、ポリプロピレンなどは、プロトタイピングに使用される一般的な熱可塑性プラスチックの一例です。その他の材料としては、ABS(アクリロニトリル・ブタジエン・スチレン)、PLA(ポリ乳酸)、PETGなどがあります。金属やセラミックなど、プロトタイピングに使用される他の材料と比較すると、熱可塑性プラスチックは一般的に価格が手頃です。熱可塑性プラスチック・フィラメントは、その入手しやすさとコストから、迅速なプロトタイピング・プロジェクトにとって実用的な選択肢となっています。これらの要素が、このセグメントの成長を後押ししています。
ラピッドプロトタイピングにより、航空宇宙・防衛企業はデジタル設計やCADモデルを物理的なプロトタイプに素早く変換してコンセプトを検証できるため、航空宇宙・防衛分野は予測期間中に最も速いCAGR成長が見込まれます。これにより、エンジニアや設計者は、大規模生産に着手する前に、新しい航空機や防衛システムのアイデアの実行可能性や機能性を評価することができます。こうした要因が、このセグメントの成長を加速させています。
世界最大の航空宇宙市場は米国であるため、予測期間中、北米が最大の市場シェアを占めると予測されます。カナダの航空宇宙産業は転換期を迎えており、今後20年間で世界的に飛躍的な成長が見込まれています。これは、航空宇宙産業で使用される市場調査の消費に大きな影響を与えると予想されます。カナダは民間フライトシミュレーションの世界的リーダーであり、民間エンジンの生産では第3位、民間航空機の生産では第4位です。さらに、ラピッドプロトタイピング技術の最大のエンドユーザーの1つは医療産業であり、手術器具、インプラント、組織工学用足場、ステント、インプラントなど、さまざまな製品の製造に利用されています。アメリカのヘルスケア産業は、紛れもなく世界で最も発展している国のひとつです。北米は、各重要分野のカテゴリーでトップ5に入る唯一の国です。
アジア太平洋地域は、ラピッドプロトタイピング技術、材料、プロセスが大きく進歩したため、予測期間中、CAGRが最も高くなると予測されます。ラピッドプロトタイピングは、精度、スピード、費用対効果が向上しているため、現在ではより多くの分野で利用されています。ラピッドプロトタイピングは現在、アジア太平洋地域のエレクトロニクス、自動車、航空宇宙、ヘルスケア、消費者製品、消費者パッケージ商品など、さまざまな産業で製品開発プロセスに利用されています。ラピッドプロトタイピング技術の採用は、アジア太平洋地域の強固な製造基盤と技術力の拡大によって容易になっています。
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.
List of Figures
Figure 1 Rapid Prototyping - Market Segmentation
Figure 2 Research Methodology
Figure 3 Data Mining
Figure 4 Data Analysis
Figure 5 Data Validation
Figure 6 Research Pipeline
Figure 7 Research Approach
Figure 8 Research Sources
Figure 9 Rapid Prototyping Market Scenario, Technology (2023) (% Market Share)
Figure 10 Rapid Prototyping Market Scenario, End User (2023) (% Market Share)
Figure 11 Rapid Prototyping Market Scenario, Emerging Markets (2023) (% Market Share)
Figure 12 Porter's Five Forces Analysis - Rapid Prototyping
Figure 13 Global Rapid Prototyping Market Analysis & Projection, By Type (2023 VS 2030) (US$MN)
Figure 14 Global Rapid Prototyping Market Analysis & Projection, By Proof-of-Concept (PoC) Prototype (2023 VS 2030) (US$MN)
Figure 15 Global Rapid Prototyping Market Analysis & Projection, By Visual Prototype (2023 VS 2030) (US$MN)
Figure 16 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)
Figure 17 Global Rapid Prototyping Market Analysis & Projection, By User Experience Prototype (2023 VS 2030) (US$MN)
Figure 18 Global Rapid Prototyping Market Analysis & Projection, By Other Types (2023 VS 2030) (US$MN)
Figure 19 Global Rapid Prototyping Market Analysis & Projection, By Form (2023 VS 2030) (US$MN)
Figure 20 Global Rapid Prototyping Market Analysis & Projection, By Filament (2023 VS 2030) (US$MN)
Figure 21 Global Rapid Prototyping Market Analysis & Projection, By Powder (2023 VS 2030) (US$MN)
Figure 22 Global Rapid Prototyping Market Analysis & Projection, By Ink (2023 VS 2030) (US$MN)
Figure 23 Global Rapid Prototyping Market Analysis & Projection, By Material (2023 VS 2030) (US$MN)
Figure 24 Global Rapid Prototyping Market Analysis & Projection, By Metals and Alloys (2023 VS 2030) (US$MN)
Figure 25 Global Rapid Prototyping Market Analysis & Projection, By Ceramic (2023 VS 2030) (US$MN)
Figure 26 Global Rapid Prototyping Market Analysis & Projection, By Plaster (2023 VS 2030) (US$MN)
Figure 27 Global Rapid Prototyping Market Analysis & Projection, By Liquid Silicone Rubber (LSR) (2023 VS 2030) (US$MN)
Figure 28 Global Rapid Prototyping Market Analysis & Projection, By Starch (2023 VS 2030) (US$MN)
Figure 29 Global Rapid Prototyping Market Analysis & Projection, By Polymer (2023 VS 2030) (US$MN)
Figure 30 Global Rapid Prototyping Market Analysis & Projection, By Thermoplastics (2023 VS 2030) (US$MN)
Figure 31 Global Rapid Prototyping Market Analysis & Projection, By Other Materials (2023 VS 2030) (US$MN)
Figure 32 Global Rapid Prototyping Market Analysis & Projection, By Function (2023 VS 2030) (US$MN)
Figure 33 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)
Figure 34 Global Rapid Prototyping Market Analysis & Projection, By Conceptual Model (2023 VS 2030) (US$MN)
Figure 35 Global Rapid Prototyping Market Analysis & Projection, By Technology (2023 VS 2030) (US$MN)
Figure 36 Global Rapid Prototyping Market Analysis & Projection, By Stereolithography (SLA) (2023 VS 2030) (US$MN)
Figure 37 Global Rapid Prototyping Market Analysis & Projection, By Fused Deposition Modeling (FDM) (2023 VS 2030) (US$MN)
Figure 38 Global Rapid Prototyping Market Analysis & Projection, By Digital Light Processing [DLP] (2023 VS 2030) (US$MN)
Figure 39 Global Rapid Prototyping Market Analysis & Projection, By Selective Laser Sintering (SLS) (2023 VS 2030) (US$MN)
Figure 40 Global Rapid Prototyping Market Analysis & Projection, By Electron Beam Melting [EBM] (2023 VS 2030) (US$MN)
Figure 41 Global Rapid Prototyping Market Analysis & Projection, By Multi Jet Fusion (MJF) (2023 VS 2030) (US$MN)
Figure 42 Global Rapid Prototyping Market Analysis & Projection, By End-Use Industry (2023 VS 2030) (US$MN)
Figure 43 Global Rapid Prototyping Market Analysis & Projection, By Aerospace & Defense (2023 VS 2030) (US$MN)
Figure 44 Global Rapid Prototyping Market Analysis & Projection, By Automotive (2023 VS 2030) (US$MN)
Figure 45 Global Rapid Prototyping Market Analysis & Projection, By Film & Animation (2023 VS 2030) (US$MN)
Figure 46 Global Rapid Prototyping Market Analysis & Projection, By Consumer Goods and Electronics (2023 VS 2030) (US$MN)
Figure 47 Global Rapid Prototyping Market Analysis & Projection, By Architecture (2023 VS 2030) (US$MN)
Figure 48 Global Rapid Prototyping Market Analysis & Projection, By Transportation (2023 VS 2030) (US$MN)
Figure 49 Global Rapid Prototyping Market Analysis & Projection, By Medical (2023 VS 2030) (US$MN)
Figure 50 Global Rapid Prototyping Market Analysis & Projection, By Other End User Industries (2023 VS 2030) (US$MN)
Figure 51 Global Rapid Prototyping Market Analysis & Projection, By Geography (2023 VS 2030) (US$MN)
Figure 52 Global Rapid Prototyping Market Analysis & Projection, By Country (2023 VS 2030) (US$MN)
Figure 53 Global Rapid Prototyping Market Analysis & Projection, By North America (2023 VS 2030) (US$MN)
Figure 54 Global Rapid Prototyping Market Analysis & Projection, By Europe (2023 VS 2030) (US$MN)
Figure 55 Global Rapid Prototyping Market Analysis & Projection, By Asia Pacific (2023 VS 2030) (US$MN)
Figure 56 Global Rapid Prototyping Market Analysis & Projection, By South America (2023 VS 2030) (US$MN)
Figure 57 Global Rapid Prototyping Market Analysis & Projection, By Middle East & Africa (2023 VS 2030) (US$MN)
Figure 58 3D Systems Corporation - Swot Analysis
Figure 59 Stratasys, Ltd. - Swot Analysis
Figure 60 EOS GmbH Electro Optical Systems - Swot Analysis
Figure 61 Materialise NV - Swot Analysis
Figure 62 Golden Plastics - Swot Analysis
Figure 63 Arcam AB - Swot Analysis
Figure 64 LPW Technology Ltd. - Swot Analysis
Figure 65 Sandvik AB - Swot Analysis
Figure 66 Tethon 3D - Swot Analysis
Figure 67 Lithoz GmbH - Swot Analysis
Figure 68 Arkema S.A. - Swot Analysis
Figure 69 Royal DSM N.V. - Swot Analysis
Figure 70 CRP Group - Swot Analysis
Figure 71 Oxford Performance Materials - Swot Analysis
Figure 72 Renishaw PLC - Swot Analysis
Figure 73 Hoganas AB - Swot Analysis
Figure 74 GKN PLC - Swot Analysis
Figure 75 Carpenter Technology Corporation - Swot Analysis
Figure 76 3D Ceram - Swot Analysis
Figure 77 Fathom Digital Manufacturing Corporation - Swot Analysis
According to Stratistics MRC, the Global Rapid Prototyping Market is accounted for $14.25 billion in 2023 and is expected to reach $37.69 billion by 2030 growing at a CAGR of 14.9% during the forecast period. Rapid prototyping is the employing of a variety of techniques to rapidly produce a scale model of a physical item or connection using three-dimensional computer-aided design data. It generates several iterations over a short period of time based on user feedback and analysis to build product simulations for testing and validation during the product development process. While many different manufacturing techniques are used in rapid prototyping, layered additive manufacturing is the most prevalent. The advantages of rapid prototyping include reduced overall product development costs and reduced design and development time.
According to International Organization of Motor Vehicle Manufacturers (OICA), global production of vehicles, declined by 16% in 2020 when compared to 2019. This is expected to significantly impact the market growth in the short to medium-term.
A new manufacturing method called rapid prototyping enables the quick creation of computer models created with 3D computer-aided software. The primary end-users of fast prototyping include manufacturing sectors like automotive, aerospace, defence, and other industries. Because of its benefits, rapid prototyping is highly sought-after in North America and Europe. It can be used as a quick and affordable technique for prototyping design concepts, several design modifications, and physical validation of designs, greatly lowering the time period required for product development.
Rapid prototyping tools have a significant initial setup cost. The price of rapid prototyping is determined by a variety of elements, such as the type of prototype, the material, the final properties, and the purpose and nature of the prototype design. In comparison to thermoplastics, quick-prototyping ceramic materials and smart materials are more expensive. The overall cost of the operation rises due to the need for qualified labour and modern technology.
Rapid prototyping enables businesses to quickly and affordably create working prototypes of new products or components. Because of the quicker testing and iterations made possible by this, product development cycles are shortened, and innovation is raised. Before spending money on full-scale production, businesses can use rapid prototyping to test new design concepts, validate ideas, and get feedback from stakeholders. Companies can employ rapid prototyping to make customised versions of their products to meet the needs of particular market groups or unique client preferences. This gives businesses the chance to provide distinctive and customised products, increasing client pleasure and loyalty.
It can be difficult to ensure uniform quality across various technologies, materials, and producers as the rapid prototyping business continues to develop and grow. The dependability and performance of prototypes can be impacted by a lack of standardisation and variations in the output quality of various rapid prototyping technologies. To maintain quality control, businesses must carefully assess and choose dependable service suppliers or make internal investments.
The outbreak of the COVID-19 pandemic had a mixed impact on the rapid prototyping industry, due to production delays in manufacturing activities caused by supply chain interruptions, a labour shortage, and stringent transportation requirements. Major participants in the fast prototyping industry experienced a reduction in sales for the fiscal years 2020 to 2021 as a result of a temporary delay in manufacturing activities caused by a lack of raw materials. The leading market participants, however, have moderately reduced their R&D budgets and redirected their focus to next-generation technologies in reaction to COVID-19's negative consequences when the world economy started to improve.
The thermoplastics segment is estimated to have a lucrative growth, because thermoplastics provide a broad range of material prospects with a variety of properties, enabling the creation of prototypes with different mechanical, thermal, and chemical capabilities. Polylactic acid (PLA), PETG (polyethylene terephthalate glycol), nylon, polycarbonate, and polypropylene are a few examples of common thermoplastics used in prototyping. Other materials include ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), and PETG. In comparison to other materials used for prototyping, such as metals or ceramics, thermoplastics are typically more affordable. Thermoplastic filaments are a practical option for quick prototyping projects due to their accessibility and cost. These elements are propelling the segment growth.
The Aerospace & Defence segment is anticipated to witness the fastest CAGR growth during the forecast period, because the rapid prototyping allows aerospace and defence companies to quickly transform digital designs and CAD models into physical prototypes to validate concepts. By doing this, engineers and designers can assess the viability and functionality of new aircraft or defence system ideas before committing to large-scale production. These factors are accelerating the segment growth.
North America is projected to hold the largest market share during the forecast period owing to the world's largest aerospace market is in the United States. The aerospace industry in Canada is at a turning point, and over the next 20 years, exponential growth is envisaged for the industry globally. This is anticipated to have a substantial impact on the consumption of market research for use in the aerospace industry. Canada is the world leader in civil flight simulation, third in the production of civil engines, and fourth in the production of civil aircraft. Additionally, one of the largest end users of rapid prototyping technology is the medical industry, which uses it to create a variety of products, including surgical instruments, implants, scaffolds for tissue engineering, stents, and implants. The American healthcare industry is unquestionably one of the most developed in the world. North America is the only country to place in the top five in each important sector category.
Asia-Pacific region is projected to have the highest CAGR over the forecast period, owing to its rapid prototyping technologies, materials, and processes have made significant advancements. A wider number of sectors may now use rapid prototyping because of improvements in accuracy, speed, and cost-effectiveness. Rapid prototyping is now being used for product development processes in a variety of industries, including electronics, automotive, aerospace, healthcare, consumer products, and consumer packaged goods in Asia pacific region. Rapid prototyping technology adoption has been made easier by the region's robust manufacturing base and expanding technological capabilities.
Some of the key players profiled in the Rapid Prototyping Market include: 3D Systems Corporation, Stratasys, Ltd., EOS GmbH Electro Optical Systems, Materialise NV, Golden Plastics, Arcam AB, LPW Technology Ltd., Sandvik AB, Tethon 3D, Lithoz GmbH, Arkema S.A., Royal DSM N.V., CRP Group, Oxford Performance Materials, Renishaw PLC, Hoganas AB, GKN PLC, Carpenter Technology Corporation, 3D Ceram and Fathom Digital Manufacturing Corporation
In September 2021, 3D System Corporation expended its material portfolio with the launch of Certified Scalmalloy (A) and Certified M789 (A). This material will be used to develop high strength part for energy, mold making, automotive, electronics, aerospace and defense application. Also, the consumer can use direct metal printing platform to develop part with the help of Scalmalloy (A) and M789 (A).
In November 2021, Desktop Metal, Inc. completed its acquisition of the ExOne Company. This acquisition reinforces Desktop Metal's leadership in additive manufacturing (AM) for mass production. ExOne extends Desktop Metal's product platforms with complementary solutions to create an unparalleled AM portfolio that offers industry-leading throughput, flexibility, and materials breadth, providing customers with a variety of options to address their specific application.