デフォルト表紙
市場調査レポート
商品コード
1694629

中国の自動車用マイクロコントローラーユニット(MCU)産業(2025年)

Automotive Microcontroller Unit (MCU) Industry Report, 2025


出版日
ページ情報
英文 470 Pages
納期
即日から翌営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
中国の自動車用マイクロコントローラーユニット(MCU)産業(2025年)
出版日: 2025年03月20日
発行: ResearchInChina
ページ情報: 英文 470 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

インテリジェント車両制御向けのミドル・ハイエンドMCUは、国外製品に代わる国産製品の重要な焦点となっています。

ソフトウェア定義自動車、インテリジェンス、電動化の動向において、インテリジェント車両制御部門では、高性能・高信頼性の自動車用MCUに対する要求が高まっています。2027年、中国の乗用車における「準セントラル+ゾーン」アーキテクチャの普及率が16.3%に達し、「セントラル+ゾーン」アーキテクチャの普及率は14.3%に達すると推定され、ミドル~ハイエンドの自動車用MCUの需要を大きく後押しします。

現在、自動車用MCUのプロセスノードは主に40nm超で、成熟しています。EEAの進化に伴い、一部の先進の自動車用MCU製品は28/22nmプロセス、あるいはさらに先進の16/18nmプロセスを採用する傾向が強まるとみられます。

インテリジェント車両制御向けのミッド~ハイエンドMCUは、主にゾーンコントロールユニット(ZCU)、セントラルドメインコントロールユニット(XCU)、自動運転・パワー/シャーシドメインコントロールユニット、セントラルコンピューティングユニット(CCU)に搭載されます。応用シナリオには、電気パワーステアリングシステム、電子安定制御システム、サスペンションシステム、アンチロックブレーキシステム、エアバッグシステム、新エネルギー車用インバーター、バッテリー管理システムなどが含まれます。InfineonやRenesasのような企業は、すでに16~28nmプロセスノードをカバーするTC4xやRH850シリーズで、自動運転やパワー/シャーシドメインのハイエンド市場を独占しています。

一方、中国の一部のチップベンダーは徐々に技術的なブレークスルーを果たし、インテリジェントな車両制御向けのミドル~ハイエンドMCUで国外の同業他社に取って代わる能力を持つようになりました。

SemiDrive:2022年4月、SemiDriveは高性能MCU製品、E3 Seriesを発表しました。チップとキーグループ化されたソフトウェアは、ISO 26262 ASIL D機能安全製品認証と中国のClass II暗号認証に合格しており、ハードウェアセキュリティモジュールは高レベルの情報セキュリティをサポートしています。E3 Seriesは現在、ゾーンコントロール、ボディコントロール、電気駆動、バッテリー管理システム(BMS)、インテリジェントシャーシ、ADASなどのコア分野で広く使用されており、重要な自動車用途における量産体験を取り入れています。出荷台数は数百万台に達し、40を超える主要な車種で量産されています。

Chipsea:2024年、AEC-Q100 Grade 2準拠の32ビット汎用自動車用MCU、CS32F036Qを発表しました。

C*Core Technology:CCFC2003PT、CCFC2006PTシリーズチップは、エンジン制御MCUの代替品となっています。

Tongxin Micro:ASIL-D認証を取得したTHA6シリーズがパワードメイン市場に参入しました。

2024年、SemiDriveは次世代ゾーンコントロールユニット(ZCU)を中心にE3シリーズの製品ラインアップをさらに改良し、ボディコントロール、ボディ+シャーシ+パワーのクロスドメイン統合、スーパーパワードメインコントロールなど、ゾーンEEAの中核的な応用シナリオをターゲットとしたZCU協調ソリューションを発表しました。CPU/NVMと利用可能なGPIOを横軸と縦軸として使用するこのポートフォリオには、E3119、E3620B、E3650、E3800が含まれます。

中でも、インテリジェント制御用のフラッグシップMCU製品であるE3650は、ゾーンコントロールユニット(ZCU)やドメインコントロールユニット(DCU)などの応用シナリオ向けに特別に設計されています。

当レポートでは、中国の自動車用マイクロコントローラーユニット(MCU)産業について調査分析し、市場規模、設計動向、応用シナリオ、国内外のベンダーなどの情報を提供しています。

目次

第1章 自動車用マイクロコントローラーユニット(MCU)の定義と概要

  • 自動車用MCUの定義
  • 市場規模
  • 競合パターン
  • 自動車用MCUの開発プロセスとコスト

第2章 自動車用マイクロコントローラーユニット(MCU)産業の動向

  • MCU設計動向1
  • MCU設計動向2
  • MCU設計動向3
  • MCU設計動向4
  • MCU設計動向5
  • MCU設計動向6
  • MCU設計動向7

第3章 OEM各社による自動車用マイクロコントローラーユニット(MCU)の応用

  • MCUに対する自動車EEAの進化の影響
  • OEMがMCUを選択する際に考慮する要素
  • Tesla
  • XPeng
  • BMW
  • Great Wall Motor
  • Volkswagen
  • その他のOEM

第4章 自動車用マイクロコントローラーユニット(MCU)の主な応用シナリオ

  • OEMのMCU応用シナリオ1:セントラルドメイン/統合型ドメイン
  • OEMのMCU応用シナリオ2:インテリジェントドライビングドメイン
  • OEMのMCU応用シナリオ3:コックピットドメイン
  • OEMのMCU応用シナリオ4:パワー・シャーシドメイン
  • OEMのMCU応用シナリオ5:ボディドメイン
  • OEMのMCU応用シナリオ6:ゾーンコントロールユニット

第5章 中国の自動車用MCUベンダー

  • SemiDrive
  • BYD Semiconductor
  • AutoChips
  • C*Core Technology
  • GigaDevice
  • ChipON
  • Sine Microelectronics
  • Hangshun Chip
  • NOVOSENSE Microelectronics
  • Geehy Microelectronics
  • Chipsea
  • Sanechips
  • Yuntu Microelectronics
  • CVA CHIP
  • Flagchip
  • Cmsemicon
  • HPMicro
  • ChipEXT
  • Linko Semiconductor
  • Chipways
  • OmniVision
  • Hisilicon
  • Fudan Microelectronics

第6章 国外の自動車用MCUベンダー

  • Renesas
  • NXP
  • STMicroelectronics
  • Infineon
  • TI
  • Microchip
目次
Product Code: CL002

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing

Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic products replacing foreign ones.

In the trends towards software-defined vehicles, intelligence, and electrification, the intelligent vehicle control sector has higher requirements for high-performance, high-reliability automotive MCUs. It is estimated that in 2027, the penetration rate of "quasi-central + zonal" architecture in China's passenger cars will hit 16.3%, and that of "central + zonal" architecture will reach 14.3%, giving a big boost to the demand for mid-to-high-end automotive MCUs.

Currently, automotive MCU process nodes are primarily at 40nm and above, and mature. With the evolution of EEA, some advanced automotive MCU products will increasingly adopt 28/22nm process or even more advanced 16/18nm.

Mid-to-high-end MCUs for intelligent vehicle control are mainly deployed in zone control units (ZCU), central domain control units (XCU), autonomous driving and power/chassis domain control units, and central computing units (CCU). Application scenarios include electric power steering systems, electronic stability control systems, suspension systems, anti-lock braking systems, airbag systems, new energy vehicle inverters, and battery management systems. Companies like Infineon and Renesas dominate the high-end markets of autonomous driving and power/chassis domains with TC4x and RH850 series, which already cover 16-28nm process nodes.

Meanwhile, some Chinese chip vendors have gradually made technological breakthroughs and had the ability to replace their foreign peers in mid-to-high-end MCUs for intelligent vehicle control:

SemiDrive: In April 2022, SemiDrive launched its high-performance MCU product, the E3 Series. The chips and key grouped software have passed ISO 26262 ASIL D functional safety product certification and China's Class II cryptographic certification, with hardware security modules supporting high-level information security. The E3 Series is now widely used in core areas such as zone control, body control, electric drive, battery management system (BMS), intelligent chassis, and ADAS, and incorporates mass-production experience in critical vehicle applications. With shipments up to millions of units, it has been mass-produced for over 40 mainstream vehicle models.

Chipsea: In 2024, it launched CS32F036Q, a 32-bit general-purpose automotive MCU compliant with AEC-Q100 Grade 2.

C*Core Technology: CCFC2003PT and CCFC2006PT series chips have been an alternative to engine control MCUs.

Tongxin Micro: The THA6 series, ASIL-D certified, has entered the power domain market.

In 2024, SemiDrive further improved its E3 series product lineup, focusing on the next-generation zone control units (ZCU), and introduced a ZCU cooperative solution targeting core application scenarios in zonal EEA, including body control, body + chassis + power cross-domain integration, and super power domain control. Using CPU/NVM and available GPIO as transverse and longitudinal axes, this portfolio includes the E3119, E3620B, E3650, and E3800.

First Tier: E3119/E3118/E3119-IOE

IO and IO-rich products capable of supporting development of entry-level ZCUs for traditional gateways, body control, and anti-pinch applications.

Compact packaging, supporting SMP and FOTA, and 10x CANFD and 1x Gbit, with up to 326 IOs, and also paired with second- or third-tier products.

Second Tier: E3620B

Primarily used for advanced integrated ZCUs, enabling further integration of power and chassis domains, and also paired with first- or third-tier products.

Hardware-level communication engine SSDPE and multi-channel Gbit transmission capacity.

Third Tier: E3650

Balance computing power, storage, high functionality, low power consumption, low communication latency, and ring network capabilities, making it the preferred choice in 48V domain controller platforms. It can also be paired with first-tier products.

Feature a multi-core high-compute cluster, the largest number of available GPIOs on the market, leading virtualized mass-production experience, hardware-level communication engine SSDPE, and multi-channel Gbit transmission capacity.

Fourth Tier: E3800

Super power domain integration, featuring more scenario-specific acceleration co-processors and more advanced high-speed interfaces.

Among them, the flagship MCU product for intelligent control, E3650, is specifically designed for application scenarios such as zone control units (ZCU) and domain control units (DCU).

Nearly a 40% surge in computing power, and a 30% expansion in storage capacity: It adopts the latest ARM Cortex R52+ high-performance lockstep multi-core cluster, with main frequency up to 600MHz, the highest in its class, and packs the largest storage capacity in the same tier.

30% more available peripherals and GPIOs: It integrates multiple peripheral BOM devices and is configured with the largest number of available GPIOs on the market, significantly reducing various peripheral IO expansion chips required for the system.

50% improvement in low-power performance: It features a built-in hardware communication acceleration engine that offloads communication task processing in domain control, reducing packet loss and latency while significantly lowering the load on the main CPU.

Ceiling-level information security protection: It integrates the SemiDrive Xuanwu Ultra-Secure HSM (Hardware Security Module), and supports OEMs' customized and complex encryption/decryption algorithms. It complies with ISO 21434, Evita Full, and higher information security standards, and meets both domestic and overseas high-level security standards.

Additionally, E3650 has been specifically optimized for virtualization (Hypervisor) support on MCU systems, offering a production-ready virtual solution to help OEMs achieve efficient business isolation and code integration. E3650 not only covers four core application scenarios of intelligent driving/intelligent cockpit, power domain control, VMC chassis domain control, and zone control unit, but also reduces BOM costs by nearly 60% (varying by system design) thanks to its higher integration level. Currently, E3650 has officially begun customer sampling and has been designated by multiple leading OEMs.

RISC-V architecture is bringing new opportunities in automotive MCU market, and Chinese players work to build an independent, controllable supply chain.

Core architectures for automotive MCUs are relatively diverse. Mainstream ARM architecture-based processors currently dominate the global market in intelligent cockpits, vehicle entertainment, and ADAS, but their percentage in body domain controller, chassis, and powertrain applications is relatively small, where Power PC and Infineon TriCore architectures prevail.

With the rise of the new open-source RISC-V architecture, Chinese and foreign IP suppliers have launched over a dozen series of automotive-grade IPs, covering general-purpose, high-performance MCUs and security chip IPs, and basically meeting current demand for automotive control chips. On this basis, chip vendors are now developing high-performance RISC-V chips for body, powertrain, and chassis applications.

In 2023, Qualcomm, NXP, Bosch, Infineon, and Nordic Semiconductor jointly invested in a company aimed at advancing the adoption of RISC-V. The company will be a single source to enable compatible RISC-V based products, provide reference architectures, and help establish solutions widely used in the industry. Initial application focus will be automotive.

In 2024, Renesas announced R9A02G021, the industry's first general-purpose 32-bit RISC-V-based microcontroller (MCU), designed to withstand harsh conditions. Consuming extremely low power in standby, it provides 128KB of fast flash memory, 16KB of SRAM memory and 4KB of flash memory for data storage.

In 2025, Infineon plans to introduce RISC-V into the automotive MCU market, launch a new family under its AURIX brand, and accelerate ecosystem establishment via a virtual prototype.

RISC-V is an open, reduced instruction set computer (RISC)-based instruction set architecture (ISA) designed to serve as a general-purpose computer architecture. Embracing an open-source design philosophy, RISC-V allows anyone to view, use, modify, and distribute its design. The goal is to provide a flexible, scalable, and high-performance computer architecture suitable for a wide range of applications. Key benefits include low development threshold, low licensing costs, high software portability, independent controllability, and flexibility and customization capabilities for proprietary chips.

To be applied in automotive electronics, the following conditions must be met:

Safety and Reliability: RISC-V implementation must comply with stringent industry safety standards, such as ISO 26262 functional safety certification, to be considered for critical applications.

Ecosystem and Support: The availability of a robust and mature ecosystem (including tools, software, and support) has a big impact on the adoption of RISC-V in the automotive sector.

Industry Acceptance: OEMs and Tier1 suppliers transitioning to RISC-V in hardware and software system design may require extensive testing, verification, and assurances of long-term support.

Cost and Licensing: With open-source nature, RISC-V remains superior in licensing costs, but its overall system cost (including development, integration, and support) should remain competitive.

China is striving to develop RISC-V architecture MCUs. Companies like HPMicro, Nanjing Cercis Semiconductor, Wuhan Binary Semiconductor, Chipext, and ESWIN Computing are facilitating the deployment of RISC-V-based MCUs in vehicles and expanding the application areas.

HPMicro: Andes Technology, Jingwei HiRain, and HPMicro have collaborated to integrate the AndesCore(TM) RISC-V processor series, HPMicro's full range of HPM6200 products, and Jingwei HiRain's Vehicle OS software platform solution to jointly build a RISC-V ecosystem in automotive chips. HPMicro has completed ISO 9001 quality management certification and ISO 26262 ASIL D functional safety management system certification. The full HPM6200 product line has passed AEC-Q100 Grade 1 certification, with an operating temperature range of -40°C to 125°C.

Cercis Semiconductor: The Cercis M100 achieves a CoreMark score of up to 2.42 (CPU performance), actual benchmark results of up to 2.42 Coremark/MHz, and quicker overall response. It meets automotive ASIL-B requirements, supports Chinese cryptographic standards (SM2/3/4) with its hardware security module (HSM), and complies with the ISO 21434 cybersecurity standard. Great Wall Motor plans to widely adopt the chip in its multiple vehicle models, expected to be no less than 2.5 million units over the next five years.

Table of Contents

1 Definition and Overview of Automotive Microcontroller Units (MCUs)

  • 1.1 Definition of Automotive MCUs
  • Definition of Automotive MCUs
  • Structure of Automotive MCUs
  • Classification of Automotive MCUs
  • Applications of Automotive MCUs
  • Demand Structure of Automotive MCUs by Application
  • Status Quo of Automotive MCUs
  • Development Trends of Automotive MCUs
  • Automotive MCU Production Primarily Relies on OEM
  • Performance Comparison between Automotive MCUs in Automotive and Industry Fields
  • Yield Rate of Automotive MCUs
  • 1.2 Market Size
  • MCU Usage Per Vehicle
  • Price of Automotive MCUs
  • Global Automotive MCU Market Size, 2024-2028E
  • China Passenger Car MCU Market Size, 2022-2028E
  • Demand Structure of Automotive MCUs by Application
  • China's Domestic Automotive MCUs Applied Are Primarily Mid-to-Low-End Products
  • 1.3 Competitive Pattern
  • Global Automotive MCU Market Competitive Pattern 1
  • Global Automotive MCU Market Competitive Pattern 2
  • Automotive MCU Market Player 1: Traditional Automotive Chip Vendors (1)
  • Automotive MCU Market Player 1: Traditional Automotive Chip Vendors (2)
  • Automotive MCU Market Player 1: Traditional Automotive Chip Vendors (3)
  • Automotive MCU Market Player 2: OEMs
  • Product Line Layout of Major Automotive MCU Vendors (1)
  • Product Line Layout of Major Automotive MCU Vendors (2)
  • Product Line Layout of Major Automotive MCU Vendors (3)
  • Benchmarking between Chinese and Foreign Automotive MCU Products (1)
  • Benchmarking between Chinese and Foreign Automotive MCU Products (2)
  • 1.4 Development Process and Costs of Automotive MCUs
  • MCU Development Process
  • Total Development Cost of Automotive MCUs
  • Development Cost Structure of Automotive MCUs
  • Breakdown of Automotive MCU Development Costs

2 Automotive Microcontroller Unit (MCU) Industry Trends

  • 2.1 MCU Design Trend 1
  • Statistics on Automotive MCU Models Integrating AI Compute
  • Key Performance Improvements in Automotive MCUs with AI Compute
  • Summary of Some Application Cases of Automotive MCUs with AI Compute
  • 2.2 MCU Design Trend 2
  • Layout of Major MCU Vendors in Graphics Processing Capabilities
  • Cross-border Layout of MCUs and MPUs
  • Cases of MCUs with Graphics Processing Capabilities (1)
  • Cases of MCUs with Graphics Processing Capabilities (2)
  • Cases of MCU and MPU Integration
  • 2.3 MCU Design Trend 3
  • Comparison of Flash Execution Efficiency between MCUs with Real-Time Control
  • Statistics on Automotive MCU Models with Real-Time Control Performance
  • New Automotive MCU Products with Real-Time Control Performance (1)
  • New Automotive MCU Products with Real-Time Control Performance (2)
  • New Automotive MCU Products with Real-Time Control Performance (3)
  • 2.4 MCU Design Trend 4
  • Layout of MCU Vendors in New Storage Technologies
  • New Storage Technology Cases of MCU Vendors (1)
  • New Storage Technology Cases of MCU Vendors (2)
  • 2.5 MCU Design Trend 5
  • Definition of Automotive MCU Cores
  • Localization of Automotive MCU Instruction Sets
  • Diversification of Automotive MCU Cores
  • Statistics on Cores Adopted by Chinese and Foreign MCU Vendors (1)
  • Statistics on Cores Adopted by Chinese and Foreign MCU Vendors (2)
  • Statistics on Main Power and Chassis Domain MCU Cores and Developers (1)
  • Statistics on Main Power and Chassis Domain MCU Cores and Developers (2)
  • Core Structure in Intelligent Cockpit and Driving Assistance Domains
  • Instruction Set Demand Pattern in Power and Chassis Domain MCUs
  • Automotive MCU Core 1 (1)
  • Automotive MCU Core 1 (2)
  • Automotive MCU Core 2
  • Automotive MCU Core 3
  • Automotive MCU Core 4 (1)
  • Automotive MCU Core 4 (2)
  • Automotive MCU Core 5
  • Comparison of CPU IP Cores between MCUs (Licensed/Open-Source Instruction Sets)
  • Comparison of CPU IP Cores between MCUs (Self-developed Instruction Sets)
  • Automotive MCU Core Development Trend 1
  • Automotive MCU Core Development Trend 2
  • Automotive MCU Core Development Trend 3
  • Automotive MCU Core Development Trend 4
  • Comparison of Multi-Core, Heterogeneous, Memory, and High-Frequency Performance between International Mainstream Automotive MCUs
  • 2.6 MCU Design Trend 6
  • Automotive RISC-V IP
  • Products and Certifications of Overseas and Chinese Automotive RISC-V IP Suppliers (1)
  • Products and Certifications of Overseas and Chinese Automotive RISC-V IP Suppliers (2)
  • Automotive Product Layout of RISC-V Chip Vendors: Global
  • Automotive Product Layout of RISC-V Chip Vendors: Chinese (1)
  • Automotive Product Layout of RISC-V Chip Vendors: Chinese (2)
  • Automotive Product Layout of RISC-V Chip Vendors: Chinese (3)
  • RISC-V Development Ecosystem Has Gradually Getten Enriched
  • Key Factors for RISC-V's Penetration into the Automotive Industry
  • Europe Heavily Invests in RISC-V to Produce Independent and Controllable HPC AI Chips
  • Global RISC-V Market Revenue, 2030E
  • 2.7 MCU Manufacturing Trend 7
  • Process Nodes and Foundry Layout of Automotive MCU Vendors (1)
  • Process Nodes and Foundry Layout of Automotive MCU Vendors (2)
  • Automotive MCU Process Technology Evolves Toward Advanced Process
  • Gap in Process Technology Between Chinese and Foreign Automotive MCUs
  • Advanced Process Layout of Mainstream Automotive MCU Vendors
  • Status Quo of MCU Process Technology of Different Wafer Fabs
  • MCU Process Layout of Different Wafer Fabs (1)
  • MCU Process Layout of Different Wafer Fabs (2)
  • MCU Production Bases of Different Wafer Fabs

3 Application of Automotive Microcontroller Units (MCUs) by OEMs

  • 3.1 Impacts of Automotive EEA Evolution on MCUs
  • How to Make a Breakthrough in Automotive MCUs in New Automotive Market Pattern
  • Demand for Zone Control Units and Domain Control Units Grows Amid EEA Evolution
  • EEA Evolution Poses Higher Requirements for Main MCUs
  • Impact 1 of EEA Evolution on MCUs
  • Impact 2 of EEA Evolution on MCUs
  • 3.2 Factors Considered by OEMs in Selecting MCUs
  • Factor 1 Considered by OEMs in Selecting MCUs
  • Factor 2 Considered by OEMs in Selecting MCUs (1)
  • Factor 2 Considered by OEMs in Selecting MCUs (2)
  • Statistics on Some MCU Models Selected by OEMs (1)
  • Statistics on Some MCU Models Selected by OEMs (2)
  • Statistics on Some MCU Models Selected by OEMs (3)
  • 3.3 Tesla
  • Application of Automotive MCUs by Tesla
  • 3.4 XPeng
  • Application of Automotive MCUs by XPeng
  • 3.5 BMW
  • Application of Automotive MCUs by BMW
  • 3.6 Great Wall Motor
  • Great Wall Motor Launches Automotive MCUs (1)
  • Great Wall Motor Launches Automotive MCUs (2)
  • 3.7 Volkswagen
  • Application of Automotive MCUs by Volkswagen
  • 3.8 Other OEMs
  • Application of Automotive MCUs by Other OEMs

4 Major Application Scenarios of Automotive Microcontroller Units (MCUs)

  • 4.1 OEMs' MCU Application Scenario 1: Central Domain/Integrated Domain
  • Development Trends of MCUs in Cross-Domain Integration
  • Leapmotor's SoC+MCU Multi-Domain Integration Solution (1)
  • Leapmotor's SoC+MCU Multi-Domain Integration Solution (2)
  • Leapmotor's SoC+MCU Multi-Domain Integration Solution (3)
  • 4.2 OEMs' MCU Application Scenario 2: Intelligent Driving Domain
  • Current Application Structure of MCUs in Intelligent Driving Domain: SoC+MCU
  • MCU Application Structure and Trends in Intelligent Driving Domain
  • MCU Application Trend 1 in Intelligent Driving Domain
  • MCU Application Trend 2 in Intelligent Driving Domain
  • MCU Application Trend 3 in Intelligent Driving Domain (1)
  • MCU Application Trend 3 in Intelligent Driving Domain (2)
  • Localization of Intelligent Driving Domain MCUs
  • Benefits of Intelligent Driving Domain MCU Localization
  • Layout of Chinese Intelligent Driving Domain MCU Vendors
  • Summary of MCU Selection for Intelligent Driving Domain (1)
  • Summary of MCU Selection for Intelligent Driving Domain (2)
  • Summary of MCU Selection for Intelligent Driving Domain (3)
  • Case 1 of MCU Application in Intelligent Driving Domain
  • Case 2 of MCU Application in Intelligent Driving Domain
  • Case 3 of MCU Application in Intelligent Driving Domain
  • Case 4 of MCU Application in Intelligent Driving Domain
  • Case 5 of MCU Application in Intelligent Driving Domain
  • 4.3 OEMs' MCU Application Scenario 3: Cockpit Domain
  • MCU Application in Intelligent Cockpit Domain: SoC+MCU
  • Localization of Cockpit Domain MCUs
  • Strength of Chinese Cockpit Domain MCU Vendors
  • Summary of MCU Selection for Cockpit Domain (1)
  • Summary of MCU Selection for Cockpit Domain (2)
  • Summary of MCU Selection for Cockpit Domain (3)
  • Case of Cockpit Domain MCU Installation in Vehicles
  • 4.4 OEMs' MCU Application Scenario 4: Power and Chassis Domain
  • Evolution of Computing Power Required for MCUs in Power and Chassis Domain
  • Localization Progress of Power and Chassis Domain MCUs
  • Summary of MCU Selection for Power and Chassis Domain (1)
  • Summary of MCU Selection for Power and Chassis Domain (2)
  • Summary of MCU Selection for Power and Chassis Domain (3)
  • Summary of MCU Selection for Power and Chassis Domain (4)
  • Summary of MCU Selection for Power and Chassis Domain (5)
  • Summary of MCU Selection for Power and Chassis Domain (6)
  • Case 1 of MCU Application in Power and Chassis Domain (1)
  • Case 1 of MCU Application in Power and Chassis Domain (2)
  • Case 3 of MCU Application in Power and Chassis Domain
  • Case 3 of MCU Application in Power and Chassis Domain
  • Case 4 of MCU Application in Power and Chassis Domain
  • Case 5 of MCU Application in Power and Chassis Domain
  • 4.5 OEMs' MCU Application Scenario 5: Body Domain
  • Impacts of Body Control Transition to Body Domain on MCUs
  • Key Players in Body Domain MCU Market
  • Localization of Body Domain MCUs
  • Localization of Body Domain MCUs: Strength of Chinese Players (1)
  • Localization of Body Domain MCUs: Strength of Chinese Players (2)
  • Summary of OEMs' Optional MCU Models for Body Domain (1)
  • Summary of OEMs' Optional MCU Models for Body Domain (2)
  • Summary of OEMs' Optional MCU Models for Body Domain (3)
  • Summary of OEMs' Optional MCU Models for Body Domain (4)
  • Summary of OEMs' Optional MCU Models for Body Domain (5)
  • Summary of OEMs' Optional MCU Models for Body Domain (6)
  • Case 1 of MCU Application by Tier1s in Body Domain
  • Case 2 of MCU Application by Tier1s in Body Domain
  • Case 3 of MCU Application by Tier1s in Body Domain
  • Case 4 of MCU Application by Tier1s in Body Domain
  • Case 5 of MCU Application by Tier1s in Body Domain
  • 4.6 OEMs' MCU Application Scenario 6: Zone Control Units
  • Key Considerations of OEMs in Selecting MCUs for Zone Control Units (1)
  • Key Considerations of OEMs in Selecting MCUs for Zone Control Units (2)
  • Summary of OEMs' Optional MCU Models for Zone Control Units (1)
  • Summary of OEMs' Optional MCU Models for Zone Control Units (2)
  • Summary of OEMs' Optional MCU Models for Zone Control Units (3)
  • Summary of OEMs' Optional MCU Models for Zone Control Units (4)
  • Case 2 of MCU Application in Zone Control Units
  • Case 2 of MCU Application in Zone Control Units
  • MCU Application 1 in Zone Control Units
  • MCU Application 2 in Zone Control Units

5 Chinese Automotive MCU Vendors

  • 5.1 SemiDrive
  • Closed Multiple Funding Rounds
  • Automotive MCU Product Line Layout (1)
  • Automotive MCU Product Line Layout (2)
  • Statistics on Shipments of E3 Series Automotive MCUs
  • New-generation ZCU Cooperative Solution (1)
  • New-generation ZCU Cooperative Solution (2)
  • Automotive MCUs
  • MCU Application 1
  • MCU Application 2
  • 5.2 BYD Semiconductor
  • Automotive MCU Product Line Layout
  • Automotive MCUs (8bit)
  • 5.3 AutoChips
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Statistics on Shipments of Automotive MCUs
  • Application of Automotive MCUs
  • 5.4 C*Core Technology
  • C*Core CPU Technology Roadmap
  • Application Scenarios of Automotive MCUs
  • Automotive MCU Product Line Layout (1)
  • Automotive MCU Product Line Layout (2)
  • Automotive MCUs
  • Technical Advantages of Automotive MCUs
  • 5.5 GigaDevice
  • Operation in 2024
  • Automotive MCU Product Line Planning
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Benchmarking STMicroelectronics' Development
  • 5.6 ChipON
  • Application Scenarios of Automotive MCUs
  • Automotive MCU Product Planning
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Automotive MCU Cost Control Advantages
  • Statistics on Shipments of Automotive MCUs
  • 5.7 Sine Microelectronics
  • Application Scenarios of Automotive MCUs
  • Automotive MCU Product Planning
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • 5.8 Hangshun Chip
  • MCU Product Line Layout
  • Automotive SOC+MCU Strategic Planning
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs
  • Major Customers of Automotive MCUs
  • 5.9 NOVOSENSE Microelectronics
  • Domestic Solutions to Replace Foreign Ones
  • MCU Products
  • 5.10 Geehy Microelectronics
  • MCU Product Line
  • Automotive MCU Product Line
  • Automotive MCUs
  • Application of Automotive MCUs
  • 5.11 Chipsea
  • Take "ADC+MCU Dual Platform Drives" as Core Strategy
  • Automotive MCU Integrated Products
  • Automotive MCU Products
  • 5.12 Sanechips
  • MCUs
  • 5.13 Yuntu Microelectronics
  • Application Scenarios of MCUs
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • 5.14 CVA CHIP
  • Differentiated Layout of Automotive MCUs
  • Automotive MCU Product Line
  • Automotive MCUs
  • 5.15 Flagchip
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs
  • 5.16 Cmsemicon
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • 5.17 HPMicro
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs
  • 5.18 ChipEXT
  • Automotive MCU Product Series
  • Automotive MCU Products
  • 5.19 Linko Semiconductor
  • Automotive MCU Product Line Layout
  • Automotive MCU Products
  • Application of Automotive MCUs
  • Automotive MCU Ecosystem
  • 5.20 Chipways
  • Automotive MCU Products
  • 5.21 OmniVision
  • Automotive MCU Product Line
  • Automotive MCU Products
  • Automotive MCUs
  • 5.22 Hisilicon
  • HiSilicon A2 MCU based on RISC-V Architecture
  • 5.23 Fudan Microelectronics
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs

6 Foreign Automotive MCU Vendors

  • 6.1Renesas
  • Application Scenarios of Automotive MCUs
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs
  • 6.2 NXP
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs
  • Automotive MCU Production Bases
  • 6.3 STMicroelectronics
  • MCU Revenue, FY2024
  • Plan to Spare No Effort in Automotive MCUs
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Automotive MCU Ecosystem Partners
  • Automotive MCU Production Advantages
  • 6.4 Infineon
  • Automotive MCU Product Line
  • Application Scenarios of Automotive MCUs (by Product Line)
  • Automotive MCUs
  • Automotive MCU Application Cooperation
  • Application of Automotive MCUs
  • Technical Advantages of Automotive MCUs
  • 6.5 TI
  • Automotive MCU Product Line Layout
  • Automotive MCUs
  • Application of Automotive MCUs
  • Application Cases of Automotive MCUs
  • Automotive MCU Production Bases
  • 6.6 Microchip
  • Automotive MCU Product Line Layout
  • Automotive MCUs (16-bit): Product Series
  • Automotive MCUs (32-bit): Product Series
  • Application of Automotive MCUs (32-bit)
  • Automotive MCU Ecosystem Tool Chain