表紙:代替ナフサ - 製油所とナフサクラッカーにおける化石ベース原料の代替:技術と市場、現状と展望
市場調査レポート
商品コード
1491794

代替ナフサ - 製油所とナフサクラッカーにおける化石ベース原料の代替:技術と市場、現状と展望

Alternative Naphtha - Replacing Fossil-Based Feedstocks in Refineries and Naphtha Crackers: Technologies and Market, Status and Outlook


出版日
ページ情報
英文 188 Pages
納期
即納可能 即納可能とは
価格
価格表記: EURを日本円(税抜)に換算
本日の銀行送金レート: 1EUR=163.42円
代替ナフサ - 製油所とナフサクラッカーにおける化石ベース原料の代替:技術と市場、現状と展望
出版日: 2024年07月15日
発行: Nova-Institut GmbH
ページ情報: 英文 188 Pages
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

化学産業の脱化石化のためには、化石ナフサの代替原料を見つけることが極めて重要です。「代替ナフサ」の概念は、既存の製油所・水蒸気分解・化学工業のインフラを活用して、化石ベース原料である原油や化石ナフサの割合を、3つの再生可能炭素源 - 二酸化炭素 (CO2)、バイオマス、リサイクル - から得られる再生可能炭素の代替品に置き換える、というものです。

当レポートでは、代替ナフサの生産方法の開発・活用状況や将来展望について分析し、再生可能炭素を化石系原料の代替として製油所や水蒸気分解工程に導入する手法や関連技術、市場関係者、導入規模などを分析しております。

当レポートは188ページの本文と、22点の表および48点の図版で構成され、化学産業原料としてのナフサ代替ソースの生産能力の伸び、生産ルートと「更新」の必要性、主要企業とパートナーシップ、規制環境について包括的な見解を示しています。

目次

第1章 エグゼクティブサマリー

第2章 イントロダクション

  • 石油化学精製・ナフサ・蒸気分解の概要
    • ナフサ
    • 製油所と蒸気分解 - 将来性
  • 「代替ナフサ」の概要
    • 代替ナフサへの道
    • 原料
    • 政策の概要
    • マスバランスとアトリビューションアプローチ - 概要

第3章 代替バイオベースナフサ

  • 概要とサマリー
  • HVO/HEFA向けおよび共処理向け原材料
  • 共処理による再生可能バイオナフサ
    • 技術:既存の製油所資産を活用した油脂等の共処理
    • 共処理能力
  • HVO/HEFAを活用した再生可能バイオベースナフサ
    • イントロダクション
    • 化学・技術の概要
    • 技術:企業別、技術ライセンサー別
    • 蒸気分解用の再生可能 (バイオベース) ナフサ
    • HVO/HEFAの処理能力
    • 蒸気分解用再生可能 (バイオベース) ナフサの生産
    • 化学産業に原料を供給する、主要なHVO/HEFAおよび共処理企業の概略
    • ナフサの蒸気分解によるバイオベースのバリューチェーン

第4章 熱分解/触媒熱分解/ガス化による代替ナフサ

  • イントロダクション
  • プラスチックおよびタイヤ廃棄物の (熱/触媒) 熱分解による代替ナフサ
    • 概要
    • 技術
    • プラスチック・タイヤからの熱分解油から代替ナフサを製造する能力
    • プラスチックの熱分解と代替ナフサの概要
    • 特定の取引先を持つメーカー別のプラスチック熱分解能力
    • 廃タイヤの熱分解:背景事情
    • メーカー別・主要取引先別のタイヤ熱分解能力
    • タイヤの熱分解能力と代替ナフサの概要
    • 熱分解装置企業と精製・化学品企業の間における主要なパートナーシップ
  • バイオマスの熱分解 (熱または触媒) による代替ナフサ
    • 概要
    • 生産能力
  • バイオマスおよびプラスチック含有廃棄物のガス化による代替ナフサ
    • 概要
    • 技術
    • 容量

第5章 炭素回収・利用 (CCU) による代替再生可能ナフサ

  • イントロダクション
  • 技術の概要
    • 合成ガスの生産と、合成ガス技術プロバイダー
    • フィッシャー・トロプシュ炭化水素
  • 生産能力
    • メーカーのプロファイル

第6章 「アルコールからジェット燃料」方式による代替ナフサ

頭字語一覧

用語集

図表

List of Figures

  • Figure 1: Routes to alternative naphtha
  • Figure 2: World production of renewable (bio-based) steam cracker feedstock from HVO/HEFA, 2022-2026, kt
  • Figure 3: Summary of number of operating plastics pyrolysis plants and largest project size by region, 2022-2026, kt/year
  • Figure 4: World capacity to produce PyOil from waste plastics for partnership projects, 2022-2026, kt/year
  • Figure 5: Capacity build-up for CO2 based hydrocarbon via FT synthesis, 2022-2030, kt/year
  • Figure 6: Three sources of renewable carbon as feedstock for alternative naphtha
  • Figure 7: Classical integration of refinery and petrochemical operations
  • Figure 8: Routes to alternative naphtha
  • Figure 9: Principle of mass balance & attribution approach
  • Figure 10: Mass balance & attribution with fuel-use excluded
  • Figure 11: Routes to alternative naphtha - routes 1 & 2
  • Figure 12: Capacity for HVO/HEFA processing and co-processing worldwide, 2020-2026, kt/year
  • Figure 13: Triglycerides - showing ester functional link
  • Figure 14: Simplified refinery, steam cracker & aromatics complex configuration, to show integration of co-processing
  • Figure 15: Co-processing capacity by region, 2020-2026, kt/year
  • Figure 16: Triglycerides example
  • Figure 17: FFA (Free Fatty Acid), Oleic Acid
  • Figure 18: Schematic block diagram for HVO/HEFA process
  • Figure 19: Hydrotreating reaction pathways (Figure 18 Step 1): Adapted from Sulzer
  • Figure 20: Hydrocracking & isomerisation: adapted from source Topsoe
  • Figure 21: Simplified flow diagram for the HVO/HEFA process
  • Figure 22: Routes to alternative naphtha - route 2
  • Figure 23: Simplified refinery, steam cracker & aromatics complex configuration, to show integration of co-processing and of renewable naphtha
  • Figure 24: Capacity build-up for HVO/HEFA by region, 2020-2026, kt/year
  • Figure 25: Capacity for HVO/HEFA processing and co-processing worldwide, 2020-2026, kt/year
  • Figure 26: Production of renewable (bio-based) steam cracker feedstock from HVO/HEFA by region, 2020-2026, kt
  • Figure 27: Bio-attributed value chains via steam cracking of naphtha
  • Figure 28: Routes to alternative naphtha - routes 3A & 3B
  • Figure 29: Schematic diagram of conventional refinery including steam cracking and aromatics processing
  • Figure 30: Process diagram showing the inputs and outputs of different secondary valuable materials (SVM) from the pyrolysis process.
  • Figure 31: Pyrolysis process condition and typical yields from Pawelczyk et al. (2022)
  • Figure 32: Typical fossil fuel hydroprocessing
  • Figure 33: Hydrotreating process for pyrolysis oils from plastics
  • Figure 34: Hydrocracking and isomerisation
  • Figure 35: Summary of number of operating plastics pyrolysis plants and largest project size by region, 2022-2026, kt/year
  • Figure 36: Plastics pyrolysis waste processing capacity by region for partnership projects, 2022-2026, kt/year
  • Figure 37: Capacity to produce pyrolysis oil from waste plastics by region for partnership projects, 2022-2026, kt/year
  • Figure 38: EOL options for discarded tyres for several countries (in million tonnes)
  • Figure 39: Capacity to process tyre crumb, 2022-2026, kt/year
  • Figure 40: Capacity to produce pyrolysis oil for chemicals use, 2022-2026, kt/year
  • Figure 41: Routes to alternative naphtha - routes 3A & 3B - pyrolysis of biomass
  • Figure 42: Routes to alternative naphtha - route 4
  • Figure 43: Block flow diagram for fuels & naphtha via biomass gasification
  • Figure 44: Routes to alternative naphtha - route 5
  • Figure 45: Global carbon demand for chemicals and materials
  • Figure 46: Block flow diagram for fuels & naphtha via carbon capture and utilisation
  • Figure 47: Capacity build-up by region for CO2 based hydrocarbon via FT synthesis, 2022-2030, kt/year
  • Figure 48: Ethanol to jet upgrading steps

List of Tables

  • Table 1: Quality parameters for different HVO feedstocks
  • Table 2: Inlet product specifications for different HVO technology providers
  • Table 3: EMEA capacity to co-process bio-based feedstocks (excluding pyrolysis oil from biomass or waste plastics), 2022-2026, kt/year
  • Table 4: Rest-of-World capacity to co-process bio-based feedstocks (excluding pyrolysis oil from biomass or waste plastics), 2022-2026, kt/year
  • Table 5: HVO/HEFA technology by company & licensor
  • Table 6: Americas capacity to produce HVO/HEFA products, 2022-2026, kt/year
  • Table 7: EMEA capacity to produce HVO/HEFA products, 2022-2026, kt/year
  • Table 8: Rest of world capacity to produce HVO/HEFA products, 2022-2026, kt/year
  • Table 9: Estimated production of alternative (bio-based) naphtha and renewable diesel from HVO/HEFA processed as feedstock to steam crackers (excluding co-processing) worldwide, 2020-2026, kt
  • Table 10: Properties of pyrolysis oils of differing origins
  • Table 11: Americas plastic pyrolysis capacities by producer with identified offtake partners by feedstock volume, 2022-2026, kt/year
  • Table 12: EMEA (Europe, Middle East & Africa) plastic pyrolysis capacities by producer with identified offtake partners by feedstock volume, 2022-2026, kt/year
  • Table 13: Asia plastic pyrolysis capacities by producer with identified offtake partners by feedstock volume 2022-2026, kt
  • Table 14: Average composition of fuel-efficient passenger car and truck tyres.
  • Table 15: Selected properties for tyre pyrolysis oil. Source: Topsoe
  • Table 16: Tyre pyrolysis oil properties in comparison with requirements for steam cracker and refinery feeds. Source: Topsoe
  • Table 17: Tyre pyrolysis capacities by producer, 2022-2026, kt/year
  • Table 18: Capacity to produce output products from thermal or catalytic pyrolysis of biomass, 2022-2026, kt/year
  • Table 19: Americas capacity to produce fuels & naphtha via biomass gasification, 2022-2026, kt/year
  • Table 20: Europe capacity to produce fuels & naphtha via biomass gasification, 2022-2026, kt/year
  • Table 21: Companies developing and commercialising CO2-based CO or syngas via chemical conversion (rWGS)
  • Table 22: Companies developing and commercialising CO2-based hydrocarbon (synthetic crude oil) based on Fischer-Tropsch synthesis - capacities 2022-2026, tonnes/year
目次

For the defossilisation of the chemical industry, it is crucial to find alternatives to fossil-based naphtha. The "alternative naphtha" concept makes use of existing refinery, steam cracking and chemical industry infrastructure where a proportion of fossil-based feedstocks - crude oil or fossil-based naphthas can be replaced by renewable carbon alternatives derived from the three sources of renewable carbon: CO2, biomass and recycling.

This new report by nova-Institute presents an analysis of the routes, associated technologies, market players and volumes by which renewable carbon can be introduced to refinery and steam cracking operations as replacement for fossil based feedstocks.

With 188 pages, 22 tables and illustrated by 48 graphics the report provides a comprehensive view on the growth in capacity for these alternative sources of naphtha as chemical industry feedstock, production routes and the need for "upgrading", key companies and partnerships and the regulatory environment.

Table of Contents

1. Executive Summary

2. Introduction

  • 2.1. Introduction to the petrochemical refinery, naphtha and steam cracking
    • 2.1.1. Naphtha
    • 2.1.2. Refineries & steam cracking - the future
  • 2.2. Introduction to "Alternative Naphtha"
    • 2.2.1. Routes to alternative naphtha
    • 2.2.2. Feedstocks
    • 2.2.3. Policy overview
    • 2.2.4. Mass balance & attribution approach - overview

3. Alternative bio-based naphtha

  • 3.1. Introduction & Summary
  • 3.2. Feedstocks for HVO/HEFA & for co-processing
  • 3.3. Renewable bio-based naphtha via co-processing
    • 3.3.1. Technology - co-processing of fats/oils etc. via existing refinery assets
    • 3.3.2. Co-processing capacity
  • 3.4. Renewable bio-based naphtha via HVO/HEFA
    • 3.4.1. Introduction
    • 3.4.2. Description of the chemistry and technology
    • 3.4.3. Technologies by company and technology licensor
    • 3.4.4. Renewable (bio-based) naphtha for steam cracking
    • 3.4.5. Capacity for HVO/HEFA processing
    • 3.4.6. Production of renewable (bio-based) naphtha for steam cracking
    • 3.4.7. Brief profiles of key HVO/HEFA & co-processing companies providing feedstock to the chemical industry
    • 3.4.8. Bio-attributed value chains via steam cracking of naphtha

4. Alternative Naphtha via Thermal or Catalytic Pyrolysis or Gasification

  • 4.1. Introduction
  • 4.2. Alternative naphtha via (thermal or catalytic) pyrolysis of plastics & tyre wastes
    • 4.2.1. General description
    • 4.2.2. Technology
    • 4.2.3. Capacity for alternative naphtha from pyrolysis oil from plastics and tyres
    • 4.2.4. Plastics pyrolysis & alternative naphtha summary
    • 4.2.5. Plastic pyrolysis capacities by producer with identified offtake partners
    • 4.2.6. Pyrolysis of waste tyres - background
    • 4.2.7. Tyre Pyrolysis capacities by producer and identified offtake partners
    • 4.2.8. Tyre Pyrolysis Capacities & Alternative Naphtha Summary
    • 4.2.9. Key Partnerships in the Industry between Pyrolysers and Refining & Chemicals Companies
  • 4.3. Alternative naphtha via (thermal or catalytic) pyrolysis of biomass
    • 4.3.1. Introduction
    • 4.3.2. Capacity
  • 4.4. Alternative naphtha via gasification of biomass and/or of plastic containing wastes
    • 4.4.1. Introduction
    • 4.4.2. Technology
    • 4.4.3. Capacity

5. Alternative renewable naphtha via carbon capture & utilisation (CCU)

  • 5.1. Introduction
  • 5.2. Technology Overview
    • 5.2.1. Syngas production & syngas technology providers
    • 5.2.2. Fischer-Tropsch Hydrocarbons
  • 5.3. Capacity
    • 5.3.1. Producer profiles

6. Alternative naphtha via "alcohol to jet"

List of Acronyms

Glossary of Terms