デフォルト表紙
市場調査レポート
商品コード
1744425

航空宇宙ロボットの世界市場:用途別、ロボットタイプ別、コンポーネント別、地域別、機会、予測、2018年~2032年

Global Aerospace Robotics Market Assessment, By Application, By Robot Type, By Component, By Region, Opportunities and Forecast, 2018-2032F


出版日
ページ情報
英文 235 Pages
納期
3~5営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.08円
航空宇宙ロボットの世界市場:用途別、ロボットタイプ別、コンポーネント別、地域別、機会、予測、2018年~2032年
出版日: 2025年06月10日
発行: Market Xcel - Markets and Data
ページ情報: 英文 235 Pages
納期: 3~5営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の航空宇宙ロボットの市場規模は、2025年~2032年の予測期間中に9.83%のCAGRで拡大し、2024年の32億8,000万米ドルから2032年には69億4,000万米ドルに成長すると予測されています。航空宇宙ロボットは、航空機の製造プロセス、メンテナンス活動、宇宙ミッションの自動化に対する市場ニーズの高まりにより、急成長を遂げています。ロボット技術により、企業は正確性と生産性を向上させ、人的エラーと人件費を削減することができます。製造工程では、溶接、塗装、組み立て、マテリアルハンドリングなどのロボット操作の恩恵を受けて、優れた出力品質を達成しています。

航空宇宙分野では、人工衛星のメンテナンス、宇宙開発、惑星探査業務にロボットアームを配備し、宇宙関連業務を遂行するロボット技術に依存しています。人工知能と機械学習の使用により、ロボットは独立した意思決定能力を達成し、複雑な環境条件に対応することができます。協働作用ロボット(コボット)の数が増加しているのは、これらのシステムが人間と協働して作業効率と作業の安全性を同時に向上させるからです。

市場の拡大は、航空宇宙分野での技術向上、コスト削減努力、業務効率向上が原因です。企業は生産ラインの効率を高めるためにロボット技術に多額の投資を行い、同時に規制遵守を達成し、資源配分を最適化しています。航空宇宙市場は地域によって異なる成長パターンを示しており、宇宙旅行や航空宇宙事業への投資が拡大している北米が欧州やアジア太平洋をリードしています。航空宇宙ロボット工学は、業務効率の改善と安全性の向上を通じて業界の変革をリードし、宇宙開発だけでなく航空機整備の進歩にも機会を提供しています。航空宇宙事業の将来は、技術がさらに進歩するにつれて、ロボティクスがますます不可欠な地位を占めるようになると思われます。

例えば、2025年11月、GITAI USA Inc.は、コストを下げ、月のインフラを促進する軌道上ロボットサービスを開発するため、1,550万米ドルの追加資金を得た。この投資は、自動化と宇宙サービスにおける革新が業界の成長と機会をますます促進している航空宇宙ロボット市場の成長を示しています。

当レポートでは、世界の航空宇宙ロボット市場について調査し、市場の概要とともに、用途別、ロボットタイプ別、コンポーネント別、地域別動向、および市場に参入する企業のプロファイルなどを提供しています。

目次

第1章 プロジェクトの範囲と定義

第2章 調査手法

第3章 米国の関税の影響

第4章 エグゼクティブサマリー

第5章 お客様の声

第6章 世界の航空宇宙ロボット市場の見通し、2018年~2032年

  • 市場規模分析と予測
  • 市場シェア分析と予測
    • 用途別
      • 穴あけ・固定
      • 溶接・はんだ付け
      • 非破壊検査
      • シーリング・ディスペンシング
      • マテリアルハンドリング
    • ロボットタイプ別
      • 従来のロボット
      • 協働ロボット
    • コンポーネント別
      • エンドエフェクタ
      • コントローラー
      • センサーとビジョンシステム
      • 駆動システム
    • 地域別
      • 北米
      • 欧州
      • アジア太平洋
      • 南米
      • 中東・アフリカ
    • 企業別市場シェア分析(上位5社およびその他- 金額別、2024年)
  • 2024年の市場マップ分析

第7章 北米の航空宇宙ロボット市場の見通し、2018年~2032年

  • 市場規模分析と予測
  • 市場シェア分析と予測
  • 国別市場評価
    • 米国
    • カナダ
    • メキシコ

第8章 欧州の航空宇宙ロボット市場の見通し、2018年~2032年

  • ドイツ
  • フランス
  • イタリア
  • 英国
  • ロシア
  • オランダ
  • スペイン
  • トルコ
  • ポーランド

第9章 アジア太平洋の航空宇宙ロボット市場の見通し、2018年~2032年

  • インド
  • 中国
  • 日本
  • オーストラリア
  • ベトナム
  • 韓国
  • インドネシア
  • フィリピン

第10章 南米の航空宇宙ロボット市場の見通し、2018年~2032年

  • ブラジル
  • アルゼンチン

第11章 中東・アフリカの航空宇宙ロボット市場の見通し、2018年~2032年

  • サウジアラビア
  • アラブ首長国連邦
  • 南アフリカ

第12章 ポーターのファイブフォース分析

第13章 PESTLE分析

第14章 市場力学

  • 市場の促進要因
  • 市場の課題

第15章 市場動向と発展

第16章 ケーススタディ

第17章 競合情勢

  • 市場リーダートップ5の競合マトリックス
  • 参入企業トップ5のSWOT分析
  • 市場の主要企業トップ10の情勢
    • Hexagon AB
    • KUKA AG
    • ABB Ltd
    • FANUC AMERICA CORPORATION
    • YASKAWA Electric Corporation
    • Universal Robots A/S
    • Electroimpact, Inc.
    • Staubli International AG
    • Kawasaki Heavy Industries Ltd.
    • Comau S.p.A.

第18章 戦略的提言

第19章 調査会社について・免責事項

図表

List of Tables

  • Table 1. Competition Matrix of Top 5 Market Leaders
  • Table 2. Mergers & Acquisitions/ Joint Ventures (If Applicable)
  • Table 3. About Us - Regions and Countries Where We Have Executed Client Projects

List of Figures

  • Figure 1. Global Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 2. Global Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 3. Global Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 4. Global Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 5. Global Aerospace Robotics Market Share (%), By Region, 2018-2032F
  • Figure 6. North America Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 7. North America Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 8. North America Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 9. North America Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 10. North America Aerospace Robotics Market Share (%), By Country, 2018-2032F
  • Figure 11. United States Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 12. United States Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 13. United States Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 14. United States Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 15. Canada Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 16. Canada Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 17. Canada Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 18. Canada Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 19. Mexico Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 20. Mexico Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 21. Mexico Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 22. Mexico Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 23. Europe Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 24. Europe Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 25. Europe Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 26. Europe Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 27. Europe Aerospace Robotics Market Share (%), By Country, 2018-2032F
  • Figure 28. Germany Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 29. Germany Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 30. Germany Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 31. Germany Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 32. France Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 33. France Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 34. France Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 35. France Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 36. Italy Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 37. Italy Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 38. Italy Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 39. Italy Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 40. United Kingdom Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 41. United Kingdom Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 42. United Kingdom Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 43. United Kingdom Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 44. Russia Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 45. Russia Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 46. Russia Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 47. Russia Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 48. Netherlands Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 49. Netherlands Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 50. Netherlands Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 51. Netherlands Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 52. Spain Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 53. Spain Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 54. Spain Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 55. Spain Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 56. Turkey Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 57. Turkey Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 58. Turkey Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 59. Turkey Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 60. Poland Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 61. Poland Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 62. Poland Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 63. Poland Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 64. South America Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 65. South America Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 66. South America Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 67. South America Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 68. South America Aerospace Robotics Market Share (%), By Country, 2018-2032F
  • Figure 69. Brazil Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 70. Brazil Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 71. Brazil Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 72. Brazil Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 73. Argentina Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 74. Argentina Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 75. Argentina Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 76. Argentina Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 77. Asia-Pacific Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 78. Asia-Pacific Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 79. Asia-Pacific Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 80. Asia-Pacific Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 81. Asia-Pacific Aerospace Robotics Market Share (%), By Country, 2018-2032F
  • Figure 82. India Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 83. India Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 84. India Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 85. India Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 86. China Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 87. China Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 88. China Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 89. China Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 90. Japan Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 91. Japan Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 92. Japan Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 93. Japan Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 94. Australia Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 95. Australia Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 96. Australia Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 97. Australia Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 98. Vietnam Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 99. Vietnam Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 100. Vietnam Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 101. Vietnam Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 102. South Korea Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 103. South Korea Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 104. South Korea Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 105. South Korea Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 106. Indonesia Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 107. Indonesia Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 108. Indonesia Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 109. Indonesia Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 110. Philippines Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 111. Philippines Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 112. Philippines Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 113. Philippines Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 114. Middle East & Africa Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 115. Middle East & Africa Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 116. Middle East & Africa Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 117. Middle East & Africa Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 118. Middle East & Africa Aerospace Robotics Market Share (%), By Country, 2018-2032F
  • Figure 119. Saudi Arabia Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 120. Saudi Arabia Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 121. Saudi Arabia Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 122. Saudi Arabia Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 123. UAE Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 124. UAE Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 125. UAE Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 126. UAE Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 127. South Africa Aerospace Robotics Market, By Value, In USD Billion, 2018-2032F
  • Figure 128. South Africa Aerospace Robotics Market Share (%), By Application, 2018-2032F
  • Figure 129. South Africa Aerospace Robotics Market Share (%), By Robot Type, 2018-2032F
  • Figure 130. South Africa Aerospace Robotics Market Share (%), By Component, 2018-2032F
  • Figure 131. By Application Map-Market Size (USD Billion) & Growth Rate (%), 2024
  • Figure 132. By Robot Type Map-Market Size (USD Billion) & Growth Rate (%), 2024
  • Figure 133. By Component Map-Market Size (USD Billion) & Growth Rate (%), 2024
  • Figure 134. By Region Map-Market Size (USD Billion) & Growth Rate (%), 2024
目次
Product Code: MX13282

Global aerospace robotics market is projected to witness a CAGR of 9.83% during the forecast period 2025-2032, growing from USD 3.28 billion in 2024 to USD 6.94 billion in 2032. Aerospace robotics experiences fast-paced growth due to rising market needs for automation throughout aircraft manufacturing processes, maintenance activities and space missions. Through robotics technology, organizations improve their accuracy and productivity rates and reduce both human errors and labor expenses. The manufacturing process benefits from robot operations that include welding, painting, assembly, and material handling to achieve excellent output quality.

The aerospace field depends on robotics technology to execute space-related tasks by deploying robotic arms for satellite maintenance, space development, and planetary exploration operations. The use of artificial intelligence and machine learning enables robots to achieve independent decision-making abilities and handle complex environmental conditions. The number of collaborative robots (cobots) has been increasing because these systems work with humans to improve work efficiency and operational safety simultaneously.

Market expansion occurs because of technological improvements in the aerospace sector, efforts to cut costs, and boost operational efficiency. Organizations make substantial investments in robotics technology to enhance their production line efficiency while achieving regulatory compliance and optimizing resource allocation. The aerospace market shows different growth patterns across different regions, with North America leading before Europe and Asia-Pacific because of growing investments in space travel and aerospace operations. Aerospace robotics leads the industry transformation through operational efficiency improvement and safety enhancement, and it provides opportunities for space exploration development as well as aircraft maintenance advancements. The future of aerospace operations will see robotics take on an increasingly essential position as technology advances further.

For instance, in November 2025, GITAI USA Inc. received an additional USD 15.5 million in funding to develop in-orbit robotic services to lower costs and facilitate lunar infrastructure. The investment demonstrates the growth of the aerospace robotics market, where innovations in automation and space servicing are increasingly driving industry growth and opportunity.

Cost Reduction Propels the Aerospace Robotic Market Growth

The aerospace robotics market demonstrates increasing expansion because industry leaders work to reduce costs and enhance operational efficiency. Aerospace robot manufacturers use automation as a fundamental method to boost productivity and reduce operational costs. When manufacturers integrate robotics into their operations, they achieve streamlined manufacturing, which lowers labor expenses and decreases human mistakes while improving quality control. The aerospace sector now benefits from technological advancements in robotics, which enable the automation of sophisticated manufacturing operations. Businesses implement robotic systems to maximize their operational resources through cost-efficient, large-scale production, which results in improved financial performance. The need for automation exists because of market competition which drives companies to maintain their leadership positions within the fast-changing industry. Collaborative robots combined with AI systems lead to improved operational efficiency and safety in the aerospace sector. The market will expand as these innovations drive aerospace robotics to maintain its essential role in future industry development.

For instance, in April 2025, H2 Clipper Inc. introduced autonomous and semi-autonomous robotic swarms, using AI-powered autonomous robots to assemble aerospace structures, aiming to cut costs and boost precision. This innovation accelerates the aerospace robotics market, reshaping manufacturing with flexible, efficient, and safer production methods for the aviation and space industries.

Artificial Intelligence Integration Drives the Aerospace Robotics Market Growth

The aerospace robotics market experiences revolutionary changes through artificial intelligence (AI) which promotes both automation and improved efficiency alongside enhanced innovation. The introduction of AI-powered robots in the aerospace industry revolutionizes aircraft production, together with maintenance and operations, by delivering better precision and increased efficiency. The main use of AI systems involves operating independently through robots, which conduct essential activities, including surveillance and reconnaissance, as well as inspections without extensive human intervention. The main advantage of predictive maintenance systems lies in their ability to identify mechanical problems early through AI analytics, which leads to reduced operational expenses and shorter downtime periods. The process of analyzing vast amounts of real-time data through AI systems enhances decision-making capabilities to achieve the best flight operations and maintenance schedules. Aerospace robotics will experience significant advancements in automation and predictive analytics, together with AI-enhanced operational strategies as AI capabilities continue to progress. The new technology will lead to substantial improvements in industry performance while simultaneously reducing human errors and enhancing overall safety and reliability. The increasing need for AI-powered aerospace robotics indicates an upcoming era of transformation in aviation which will lead to smarter operations at reduced costs.

For instance, in March 2023, The Emirates Group and Dubai Future Foundation launched a Centre of Excellence for Aviation Robotics that includes AI to develop human-robot interaction, cargo and logistics automation, fostering innovative research and technology partnerships while driving operational efficiencies for the aviation sector.

Collaborative Robots Dominate the Aerospace Robotics Market

Aerospace robotics has experienced substantial growth through the mainstream application of collaborative robots in the market. These robots perform collaborative functions with human workers to deliver improved efficiency and accuracy while enhancing safety standards throughout aerospace manufacturing and maintenance. Traditional industrial robots, cobots offer flexibility and adaptability, making them ideal for complex aerospace applications. Cobots have transformed aircraft manufacturing through their precise execution of drilling operations, welding processes, painting work, and inspection duties. Their partnership with human operators minimizes operational errors while boosting operational efficiency which results in reduced expenses for aerospace manufacturers. Furthermore, AI-driven systems and advanced sensors continue to improve cobot capabilities by enabling autonomous decision-making systems together with refined object detection abilities. Aerospace manufacturers seek automation solutions because they need to cut expenses while enhancing operational effectiveness and maintaining strict regulatory requirements. Modern businesses use cobots to implement production process improvements that drive resource efficiency. The aerospace industry's growth will make collaborative robots essential for developing future aerospace robotics, which will boost innovation and sustainability throughout the sector.

For instance, in October 2024, Techman Robot Inc. debuted AI welding cobots at FABTECH, offering intuitive operation and multi-axis synchronized control for complex tasks. Their lightweight, flexible design is ideal for aerospace, enabling precise, safe automation in high-mix, high-tolerance manufacturing environments.

North America Dominates the Aerospace Robotics Market

North America leads the aerospace robotics market because it combines advanced technological progress with its well-established aerospace sector. Major automation investments within the aerospace sector enable manufacturers to enhance aircraft production accuracy and operational efficiency while boosting safety standards. Through AI and IoT system integration, aerospace manufacturing has implemented robots at an increasing pace. The automotive industry needs automation solutions to improve their aircraft assembly and maintenance operations alongside inspection processes thus driving market growth. Automation technology enables robotics systems to simplify difficult manufacturing processes which lead to lower operational costs and decreased error rates. Businesses adopt collaborative robots because these systems improve human-robot cooperation and optimize their production processes. Aerospace organizations in North America invest substantial capital into robot automation to maintain their competitive edge in the industry. The region's commitment to innovation has led to the development of sophisticated robotic systems that execute complicated operations precisely.

For instance, in June 2023, seven US companies partnered with the National Aeronautics and Space Administration (NASA) to enhance space capabilities, focusing on robotics and autonomous systems. These collaborations drive innovation in aerospace robotics, supporting advanced automation for space station maintenance, lunar exploration, and future commercial space economy initiatives.

Impact of U.S. Tariffs on Global Aerospace Robotics Market

A rise in manufacturing costs emerges from tariffs imposed on steel and aluminum imports, which results in higher production expenses for aerospace robotics. Businesses must decide between increasing their product prices or reducing their research and development spending due to the additional costs.

Supply Chain Disruptions: The global supply chain of aerospace robotics faces restrictions because of tariffs, which block the essential component supply. The requirement for manufacturers to locate substitute suppliers results in production setbacks and operational drawbacks.

Competitive Disadvantage: U.S. aerospace robotics companies face increased competition because of their elevated expenses combined with restricted supply chain capabilities. The domestic market share of U.S. companies faces competition from foreign competitors who use untaxed materials to develop cheaper aerospace solutions.

Reduced Investment & Innovation: Companies choose to direct financial resources toward price adjustments instead of research and development because of tariffs. The aerospace robotics industry will face slower progress in its development which will reduce its ability to implement automation for improved efficiency.

Key Players Landscape and Outlook

The aerospace robotics market is driven by advancements in automation, enhancing precision, efficiency, and safety in aircraft manufacturing, maintenance, and space exploration. Robotics plays a crucial role in streamlining production processes, reducing human error, and lowering labor costs. Key players focus on developing AI-driven automation, collaborative robots (cobots), and autonomous drones to improve operational productivity. The integration of robotics in aerospace ensures higher quality control, minimizes downtime and enhances safety standards. Continuous investments in research and development are shaping the future of aerospace robotics, making production more cost-effective and technologically advanced. Companies are investing in specialized campuses dedicated to aerospace robotics research and development. These campuses serve as innovation hubs where engineers and researchers collaborate to develop next-generation robotic technologies.

For instance, in July 2024, FANUC America Corporation unveiled a USD 110 million, 650,000 sq. ft. robotics and automation campus in Auburn Hills, Michigan, enhancing advanced manufacturing and quick-delivery robot warehousing. This supports the aerospace sector's demands for precision, efficiency, and rapid deployment of automation solutions.

Table of Contents

1. Project Scope and Definitions

2. Research Methodology

3. Impact of U.S. Tariffs

4. Executive Summary

5. Voice of Customers

  • 5.1. Respondent Demographics
  • 5.2. Factors Considered in Purchase Decisions
  • 5.3. Precision Efficiency
  • 5.4. Adaptability to Complex Tasks

6. Global Aerospace Robotics Market Outlook, 2018-2032F

  • 6.1. Market Size Analysis & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share Analysis & Forecast
    • 6.2.1. By Application
      • 6.2.1.1. Drilling and Fastening
        • 6.2.1.1.1. Fuselage Assembly
        • 6.2.1.1.2. Wing Assembly
        • 6.2.1.1.3. Composite Material Drilling
      • 6.2.1.2. Welding and Soldering
        • 6.2.1.2.1. Laser Welding
        • 6.2.1.2.2. TIG Welding
        • 6.2.1.2.3. Resistance Spot Welding
      • 6.2.1.3. Non-Destructive Testing and Inspection
      • 6.2.1.4. Sealing and Dispensing
      • 6.2.1.5. Material Handling
        • 6.2.1.5.1. Composite Layup Automation
        • 6.2.1.5.2. Component Transfer
        • 6.2.1.5.3. Tooling Automation
    • 6.2.2. By Robot Type
      • 6.2.2.1. Traditional Robots
        • 6.2.2.1.1. Articulated Robots
        • 6.2.2.1.2. SCARA Robots
        • 6.2.2.1.3. Cartesian/Linear Robots
        • 6.2.2.1.4. Parallel Robots
      • 6.2.2.2. Collaborative Robots
        • 6.2.2.2.1. Human-Robot Assembly
        • 6.2.2.2.2. Precision Handling
        • 6.2.2.2.3. Inspection Tasks
    • 6.2.3. By Component
      • 6.2.3.1. End Effectors
        • 6.2.3.1.1. Grippers
        • 6.2.3.1.2. Welding Guns
        • 6.2.3.1.3. Sanding Tools
        • 6.2.3.1.4. Specialty Tools
      • 6.2.3.2. Controllers
      • 6.2.3.3. Sensors and Vision Systems
      • 6.2.3.4. Drive Systems
    • 6.2.4. By Region
      • 6.2.4.1. North America
      • 6.2.4.2. Europe
      • 6.2.4.3. Asia-Pacific
      • 6.2.4.4. South America
      • 6.2.4.5. Middle East and Africa
    • 6.2.5. By Company Market Share Analysis (Top 5 Companies and Others - By Value, 2024)
  • 6.3. Market Map Analysis, 2024
    • 6.3.1. By Application
    • 6.3.2. By Robot Type
    • 6.3.3. By Component
    • 6.3.4. By Region

7. North America Aerospace Robotics Market Outlook, 2018-2032F

  • 7.1. Market Size Analysis & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share Analysis & Forecast
    • 7.2.1. By Application
      • 7.2.1.1. Drilling and Fastening
        • 7.2.1.1.1. Fuselage Assembly
        • 7.2.1.1.2. Wing Assembly
        • 7.2.1.1.3. Composite Material Drilling
      • 7.2.1.2. Welding and Soldering
        • 7.2.1.2.1. Laser Welding
        • 7.2.1.2.2. TIG Welding
        • 7.2.1.2.3. Resistance Spot Welding
      • 7.2.1.3. Non-Destructive Testing and Inspection
      • 7.2.1.4. Sealing and Dispensing
      • 7.2.1.5. Material Handling
        • 7.2.1.5.1. Composite Layup Automation
        • 7.2.1.5.2. Component Transfer
        • 7.2.1.5.3. Tooling Automation
    • 7.2.2. By Robot Type
      • 7.2.2.1. Traditional Robots
        • 7.2.2.1.1. Articulated Robots
        • 7.2.2.1.2. SCARA Robots
        • 7.2.2.1.3. Cartesian/Linear Robots
        • 7.2.2.1.4. Parallel Robots
      • 7.2.2.2. Collaborative Robots
        • 7.2.2.2.1. Human-Robot Assembly
        • 7.2.2.2.2. Precision Handling
        • 7.2.2.2.3. Inspection Tasks
    • 7.2.3. By Component
      • 7.2.3.1. End Effectors
        • 7.2.3.1.1. Grippers
        • 7.2.3.1.2. Welding Guns
        • 7.2.3.1.3. Sanding Tools
        • 7.2.3.1.4. Specialty Tools
      • 7.2.3.2. Controllers
      • 7.2.3.3. Sensors and Vision Systems
      • 7.2.3.4. Drive Systems
    • 7.2.4. By Country Share
      • 7.2.4.1. United States
      • 7.2.4.2. Canada
      • 7.2.4.3. Mexico
  • 7.3. Country Market Assessment
    • 7.3.1. United States Aerospace Robotics Market Outlook, 2018-2032F*
      • 7.3.1.1. Market Size Analysis & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share Analysis & Forecast
        • 7.3.1.2.1. By Application
          • 7.3.1.2.1.1. Drilling and Fastening
          • 7.3.1.2.1.1.1. Fuselage Assembly
          • 7.3.1.2.1.1.2. Wing Assembly
          • 7.3.1.2.1.1.3. Composite Material Drilling
          • 7.3.1.2.1.2. Welding and Soldering
          • 7.3.1.2.1.2.1. Laser Welding
          • 7.3.1.2.1.2.2. TIG Welding
          • 7.3.1.2.1.2.3. Resistance Spot Welding
          • 7.3.1.2.1.3. Non-Destructive Testing and Inspection
          • 7.3.1.2.1.4. Sealing and Dispensing
          • 7.3.1.2.1.5. Material Handling
          • 7.3.1.2.1.5.1. Composite Layup Automation
          • 7.3.1.2.1.5.2. Component Transfer
          • 7.3.1.2.1.5.3. Tooling Automation
        • 7.3.1.2.2. By Robot Type
          • 7.3.1.2.2.1. Traditional Robots
          • 7.3.1.2.2.1.1. Articulated Robots
          • 7.3.1.2.2.1.2. SCARA Robots
          • 7.3.1.2.2.1.3. Cartesian/Linear Robots
          • 7.3.1.2.2.1.4. Parallel Robots
          • 7.3.1.2.2.2. Collaborative Robots
          • 7.3.1.2.2.2.1. Human-Robot Assembly
          • 7.3.1.2.2.2.2. Precision Handling
          • 7.3.1.2.2.2.3. Inspection Tasks
        • 7.3.1.2.3. By Component
          • 7.3.1.2.3.1. End Effectors
          • 7.3.1.2.3.1.1. Grippers
          • 7.3.1.2.3.1.2. Welding Guns
          • 7.3.1.2.3.1.3. Sanding Tools
          • 7.3.1.2.3.1.4. Specialty Tools
          • 7.3.1.2.3.2. Controllers
          • 7.3.1.2.3.3. Sensors and Vision Systems
          • 7.3.1.2.3.4. Drive Systems
    • 7.3.2. Canada
    • 7.3.3. Mexico

All segments will be provided for all regions and countries covered

8. Europe Aerospace Robotics Market Outlook, 2018-2032F

  • 8.1. Germany
  • 8.2. France
  • 8.3. Italy
  • 8.4. United Kingdom
  • 8.5. Russia
  • 8.6. Netherlands
  • 8.7. Spain
  • 8.8. Turkey
  • 8.9. Poland

9. Asia-Pacific Aerospace Robotics Market Outlook, 2018-2032F

  • 9.1. India
  • 9.2. China
  • 9.3. Japan
  • 9.4. Australia
  • 9.5. Vietnam
  • 9.6. South Korea
  • 9.7. Indonesia
  • 9.8. Philippines

10. South America Aerospace Robotics Market Outlook, 2018-2032F

  • 10.1. Brazil
  • 10.2. Argentina

11. Middle East and Africa Aerospace Robotics Market Outlook, 2018-2032F

  • 11.1. Saudi Arabia
  • 11.2. UAE
  • 11.3. South Africa

12. Porter's Five Forces Analysis

13. PESTLE Analysis

14. Market Dynamics

  • 14.1. Market Drivers
  • 14.2. Market Challenges

15. Market Trends and Developments

16. Case Studies

17. Competitive Landscape

  • 17.1. Competition Matrix of Top 5 Market Leaders
  • 17.2. SWOT Analysis for Top 5 Players
  • 17.3. Key Players Landscape for Top 10 Market Players
    • 17.3.1. Hexagon AB
      • 17.3.1.1. Company Details
      • 17.3.1.2. Key Management Personnel
      • 17.3.1.3. Key Products Offered
      • 17.3.1.4. Key Financials (As Reported)
      • 17.3.1.5. Key Market Focus and Geographical Presence
      • 17.3.1.6. Recent Developments/Collaborations/Partnerships/Mergers and Acquisitions
    • 17.3.2. KUKA AG
    • 17.3.3. ABB Ltd
    • 17.3.4. FANUC AMERICA CORPORATION
    • 17.3.5. YASKAWA Electric Corporation
    • 17.3.6. Universal Robots A/S
    • 17.3.7. Electroimpact, Inc.
    • 17.3.8. Staubli International AG
    • 17.3.9. Kawasaki Heavy Industries Ltd.
    • 17.3.10. Comau S.p.A.

Companies mentioned above DO NOT hold any order as per market share and can be changed as per information available during research work.

18. Strategic Recommendations

19. About Us and Disclaimer