|
市場調査レポート
商品コード
1341022
水素ガス貯蔵市場:状態別、貯蔵タイプ別、技術別、エンドユーザー別、地域別、機会、予測、2016年~2030年Hydrogen Gas Storage Market Assessment, By State, By Storage Type, By Technology, By End-user, By Region, Opportunities and Forecast, 2016-2030F |
||||||
カスタマイズ可能
|
水素ガス貯蔵市場:状態別、貯蔵タイプ別、技術別、エンドユーザー別、地域別、機会、予測、2016年~2030年 |
出版日: 2023年09月01日
発行: Market Xcel - Markets and Data
ページ情報: 英文 121 Pages
納期: 3~5営業日
|
水素ガス貯蔵の市場規模は、2022年に25億1,114万米ドルと評価され、2023年から2030年の予測期間に8.3%のCAGRで拡大し、2030年には47億5,220万米ドルに達すると予測されています。水素元素は周期表の最初の元素であり、軽く、エネルギー密度が高く、貯蔵可能で、多領域にわたる様々な形態での応用に適しています。他の元素とは異なり、水素は他の燃料に比べて質量あたりのエネルギーが最も高くなります。クリーンな水素は、世界中のさまざまなプロジェクトに不可欠な燃料源と考えられており、調査によって技術の拡大が進められています。発電においては、水素貯蔵は再生可能エネルギーの貯蔵につながり、ガスタービンで使用することができます。
炭素ベースの燃料の使用と排出を削減するための継続的な世界的努力により、水素燃料電池の重要性は、小型の電子機器から巨大な運搬車両、航空、そして人間社会を含む電力開発プロジェクトに、より環境に優しい解決策を生み出す手助けをするものとして説明することができます。水素は、用途に応じて液体または気体として貯蔵することができます。水素を気体で貯蔵するには通常、高圧タンク(5000~10000psi)が必要であり、液体で貯蔵するには極低温が必要です。水素はまた、吸着や吸着と呼ばれる固体物質の中や表面に貯蔵することもできます。
水素の貯蔵が難しいのは、体積エネルギー密度が低いことや、ヘリウムよりも軽い元素であることなど、さまざまなパラメータが関係しています。液体水素は、宇宙旅行で広く使用されるため需要がありますが、特有の課題があり、最も一般的なのは貯蔵温度が低いことです。液体水素が気体に変化するのを防ぐため、-252.8℃以下にしなければなりません。その後、水素を圧縮する前に冷却する圧縮法が、極低温冷却とともに開発された水素貯蔵プロセスです。このプロセスで必要なエネルギーは、圧縮に利用可能なエネルギーの9~12%、液化に利用可能なエネルギーの約30%に相当します。
さらに、水素はさまざまなプロセスで材料を使用して貯蔵することもできます。固体材料と液体を使用する水素化物貯蔵は、水素貯蔵に広く使用されています。工業的規模では、塩の洞窟、石油・ガスの廃井戸、帯水層を使って地下水素貯蔵ができます。余剰水素は、複数のガスネットワークに挿入して水素富化天然ガス(HENG)を生成することができます。
水素は一般に、温室効果ガス排出がほぼゼロになる可能性のある燃料と考えられています。水素は多様な資源から生成することができ、別の燃料電池で電力を生産することができます。排出されるのは水蒸気と暖かい空気だけであり、水素は純粋で環境に優しい燃料です。石炭、天然ガス、太陽エネルギー、風力など、地元のさまざまな天然資源は、水素を製造するための有力な供給源となり、実質的に電気自動車の燃料電池として機能します。水素燃料は世界のエネルギー安全保障を強化し、石油埋蔵量を保全し、エネルギー輸送をより良いものに変えます。従来の燃料が自動車から排出するものとは異なり、有害な亜酸化窒素、炭化水素、そして重大な汚染物質とされる不要な粒子状物質が排出されます。しかし、水素を燃料とする自動車は、水と暖かい空気しか排出しないため、自然を愛する自動車となります。その結果、水素は、2050年までに世界全体でネット・ゼロ・エミッションを達成するという大きな課題を回避する可能性を秘めています。
当レポートでは、世界の水素ガス貯蔵市場について調査し、市場の概要とともに、状態別、貯蔵タイプ別、技術別、エンドユーザー別、地域別動向、および市場に参入する企業のプロファイルなどを提供しています。
The Hydrogen Gas Storage Market size was valued at USD 2511.14 million in 2022, expected to reach USD 4752.2 million in 2030 with a CAGR of 8.3% for the forecast period between 2023 and 2030. The hydrogen element is the first one in the periodic table, which is light, energy-dense, storable, and commensurate with its application in various forms across multi-domains. Unlikely other elements, hydrogen has the highest energy per mass compared to other fuels. Clean hydrogen is considered an essential source of fuel for various projects across the globe, and research is driving us to scale up technologies. In power generation, hydrogen storage leads to storing renewable energy, which can be used in gas turbines.
With the continuous global efforts to reduce emissions and the use of carbon-based fuels, the importance of hydrogen fuel cells can be accounted for as it assists in creating a greener solution to the power development projects, including small electronic devices to huge-carrying vehicles, aviation, and the human community. Hydrogen can be stored as liquid or gas according to the required applications. High-pressure tanks (5000-10000 psi) are usually needed for storing hydrogen in gaseous form, while cryogenic temperatures drive hydrogen storage in liquid form. Hydrogen can also be stored within solid materials or on the surface, called absorption and adsorption.
The various parameters, such as low volumetric energy density and lightest element than Helium, account for the difficulty in storing hydrogen. Liquid hydrogen, which is in demand for being used extensively in space travel, has specific challenges; the most common is low storage temperature. Cryogenically, hydrogen can be stored in liquid form where the temperature must be lower than -252.8°C to prevent liquid hydrogen from converting into gaseous form. Subsequently, compression, along with cryogenic cooling, is an advanced developed process for storing hydrogen where the hydrogen is cooled before compressing it. The energy required using this process is equivalent to 9-12% of the energy available for compression and around 30% liquefaction.
To a further extent, hydrogen can also be stored using materials with different processes. Hydride storage, which uses solid materials and liquid, has been extensively used for storing hydrogen. On an industrial scale, underground hydrogen storage can be obtained using salt caverns, abandoned oil and gas wells, or aquifers. Surplus hydrogen can be inserted into the multiple gas network to generate hydrogen-enriched natural gas (HENG), which could be an alternative to underground cavern storage.
Hydrogen is generally considered a potential fuel that is on the mark of near-zero greenhouse gas emissions. It can be generated from diverse resources that impulse to produce electric power in a different fuel cell. The emitted elements are only water vapor and warm air, making hydrogen a pure, environmentally friendly fuel. Locally various natural resources such as coal, natural gas, solar energy, wind, etc., can be a prominent source to produce hydrogen, substantially serving as a fuel cell for electric vehicles. Hydrogen fuel strengthens global energy security, preserves petroleum reserves, and transforms energy transportation into a better one. Unlikely emissions from conventional fuels from vehicles are harmful nitrous oxides, hydrocarbons, and unwanted particulates, which is considered a significant pollutant. Still, hydrogen-powered fuel vehicles indispensably produce only water and warm air, ultimately making them nature-loving. Consequently, hydrogen carries the potential to circumvent significant challenges to meet net zero emissions globally by 2050.
With the increasing demand for the mobility of compressed hydrogen systems, the capacities and pressure of tube trailers has significantly increased to 1000 kg of hydrogen at 500 bar, the largest. Cryostars' transferable system is very effective as their systems are equipped with a wide range of compressed hydrogen container filling pumps with larger capacities and lower power consumptions than usual compressors.
The COVID-19 pandemic has led to unprecedented economic crises, affecting the clean hydrogen sector. During the outbreak, a significant lagging has occurred in the adoption and commercial roll-out of pure hydrogen. The momentum of building hydrogen storage infrastructure has slowed as annual installations of energy storage subsequently declined-the structures of the power grid scale fell by around 20%, which created uncertainties around battery safety. The COVID-19 outbreak has impacted several clean hydrogen projects using CCUS technology due to supply chain disruptions, a global economic downturn, and a fall in effective capital investment across energy sectors. Despite various troubles and uncertainties with the growth, there are more rising opportunities to mobilize investments toward clean hydrogen energy storage.
The annexation of Russia on Ukraine has developed sternness in energy security globally, which resembles the center of the geopolitical conversation. The International Renewable Energy Agency (IRENA) has proposed a strategy for the emergence of clean hydrogen as a mainstream source which aims to reevaluate global trade relations, minimize the dependence, and shift the power far away from oil and gas-dominating countries, including Russia and gulf regions. The invasion has soared energy prices globally, which drives 25 countries to commit an investment of around USD 73 billion in fresh lower-cost green hydrogen. A progressive acceleration in the buy to produce clean hydrogen assets has inspired investors across the globe as they are looking at hydrogen as an alternative fuel source.
In October 2022, the cost of pure green hydrogen ranges between USD3.8 to 5.8 per kg, and the impact of war has led to lower prices in a very short time interval. Massive energy importers like Morocco, Chile, and Namibia have already developed strategies to become green hydrogen producers and exporters.
Prominent companies are heavily investing in sustainability goals to develop technologies for producing green energy. FuelCell Energy Inc., a key player in the green hydrogen industry, offers an environmentally friendly alternative to conventional energy generation. The company's specifications can be admired in different applications such as designing, manufacturing, and operating fuel cell power plants. The company has already implemented operations in over 50 countries, from which only 21 power plants are established in South Korea. It uses trigeneration technology to generate green hydrogen from natural gas or biogas, extending its domain to serve commercial and industrial clients across the globe.
All segments will be provided for all regions and countries covered
Companies mentioned above DO NOT hold any order as per market share and can be changed as per information available during research work