特集 : 国別レポートが13,000件から検索可能になりました!

特集 : 海外市場の委託調査がセミカスタムベースでお手軽にできます

株式会社グローバルインフォメーション
表紙
市場調査レポート
商品コード
921803

量子コンピューティング市場:技術・インフラ・サービス・産業別 (2020-2025年)

Quantum Computing Market by Technology, Infrastructure, Services, and Industry Verticals 2020 - 2025

出版日: | 発行: Mind Commerce | ページ情報: 英文 133 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=105.40円
量子コンピューティング市場:技術・インフラ・サービス・産業別 (2020-2025年)
出版日: 2020年01月15日
発行: Mind Commerce
ページ情報: 英文 133 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

従来の (非量子) コンピューターは現代のデジタル世界を可能にしていますが、従来の計算方法では解決できない多くの課題があります。量子コンピューターでは従来の方法よりもけた違いに大きな計算が可能となります。量子コンピューティングのハードウェア市場は、2025年までに62億米ドルへ達する見込みです。主要な量子コンピューティングのアプリケーションは、シミュレーション、最適化およびサンプリングです。量子コンピューティング専門サービスの規模は、2025年までに5億1,200万米ドルへ達すると予測されています。量子コンピューティングにおいて最も成長の早い産業は、政府・エネルギー・輸送と見られています。

当レポートでは、量子コンピューティング市場における技術、企業/組織、R&Dの取り組み、および潜在的なソリューションなどについて調査し、世界・地域市場の予測ならびにハードウェア、ソフトウェア、アプリケーションおよびサービスへ量子コンピューティングが及ぼす影響の展望などを提供しています。

第1章 エグゼクティブサマリー

第2章 イントロダクション

第3章 技術・市場分析

  • 量子コンピューティング技術スタック
  • 量子コンピューティングと人工知能 (AI)
  • 量子ニューロン
  • 量子コンピューティングとビッグデータ
  • リニア光量子コンピューティング
  • 量子コンピューティングのビジネスモデル
  • 量子ソフトウェアプラットフォーム
  • アプリケーション領域・利用例
  • 新しい収益部門
  • 量子コンピューティングの投資分析
  • 量子コンピューティングのイニシアチブ:国別

第4章 量子コンピューティングのバリューチェーン分析

  • 量子コンピューティングのバリューチェーン構造
  • 量子コンピューティングの競合分析
  • 大規模コンピューティングシステム

第5章 企業分析

  • D-Wave Systems Inc.
  • Google Inc.
  • Microsoft Corporation
  • IBM Corporation
  • Intel Corporation
  • Nokia Corporation
  • 東芝
  • Raytheon Company
  • その他の企業
  • エコシステム貢献企業

第6章 量子コンピューティング市場分析・予測

  • 量子コンピューティング市場:インフラ別

第7章 結論・提言

  • 広告主・メディア企業
  • 人工知能プロバイダー
  • 自動車企業
  • ブロードバンドインフラプロバイダー
  • 通信サービスプロバイダー
  • 量子コンピューティング企業
  • データ分析プロバイダー
  • 没入型技術(AR、VR、およびMR)プロバイダー
  • ネットワーク機器プロバイダー
  • ネットワークセキュリティプロバイダー
  • 半導体企業
  • IoTサプライヤー・サービスプロバイダー
  • ソフトウェアプロバイダー
  • スマートシティシステムインテグレーター
  • オートメーションシステムプロバイダー
  • ソーシャルメディア企業
  • ワークプレイスソリューションプロバイダー
  • 企業・政府
目次

Overview:

This report assesses the technology, companies/organizations, R&D efforts, and potential solutions facilitated by quantum computing. The report provides global and regional forecasts as well the outlook for quantum computing impact on infrastructure including hardware, software, applications, and services from 2020 to 2025. This includes the quantum computing market across major industry verticals.

While classical (non-quantum) computers make the modern digital world possible, there are many tasks that cannot be solved using conventional computational methods. This is because of limitations in processing power. For example, fourth generation computers cannot perform multiple computations at one time with one processor. Physical phenomena at the nano scale indicate that a quantum computer is capable of computational feats that are orders of magnitude greater than conventional methods.

This is due to the use of something referred to as a quantum bit (qubit), which may exist as a zero or one (as in classical computing) or may exist in two-states simultaneously (0 and 1 at the same time) due to the superposition principle of quantum physics. This enables greater processing power than the normal binary (zero only or one only) representation of data.

Whereas parallel computing is achieved in classical computer via linking processors together, quantum computers may conduct multiple computations with a single processor. This is referred to as quantum parallelism and is a major difference between hyper-fast quantum computers and speed-limited classical computers.

Quantum computing is anticipated to support many new and enhanced capabilities including:

  • Ultra-secure Data and Communications: Data is encrypted and also follow multiple paths through a phenomenon known as quantum teleportation
  • Super-dense Data and Communications: Significantly denser encoding will allow substantially more information to be sent from point A to point B

While there is great promise for quantum computing, it remains in the research and development (R&D) stage as companies, universities, and research organizations see to solve some of the practical problems for commercialization such as how to keep a qubit stable.

The stability problem is due to molecules always being in motion, even if that motion is merely a small vibration. When qubits are disturbed, a conditioned referred to as decoherence occurs, rendering computing results unpredictable or even useless.

One of the potential solutions is to use super-cooling methods such as cryogenics. Some say there is a need to reach absolute zero (the temperature at which all molecular motion ceases), but that is a theoretical temperature that is practically impossible to reach and even more difficult to maintain. If possible, it would require enormous amounts of energy.

There are some room temperature quantum computers in R&D using photonic qubits, but nothing is yet scalable. Some experts say that if the qubit energy level is high enough, cryogenic type cooling is not a requirement. Alternatives include ion trap quantum computing and other methods to achieve very cold super-cooled small scale demonstrate level computing platforms.

Additional issues arise with quantum computing due to quantum effects at the atomic level, such as interference between electrons. The implications are that Moore's law breaks down, which means one cannot simply assume computational innovation will grow at the same pace with quantum computers.

The implications for data processing, communications, digital commerce and security, and the Internet as whole cannot be overstated as quantum computing is poised to radically transform the Information and Communications Technology (ICT) sector.

In addition to many anticipated impacts within the ICT vertical, it is anticipated that quantum computing will disrupt entire industries ranging from government and defense to logistics and manufacturing. No industry vertical will be immune to the potential impact of quantum computing, and therefore, every industry must pay great attention to technology developments, implementation, integration, and market impacts.

Target Audience:

  • ICT Service Providers
  • ICT Infrastructure Providers
  • Security Solutions Providers
  • Data and Computing Companies
  • Governments and NGO R&D Organizations

Select Report Findings:

  • The market for QC hardware will reach $6.2 billion by 2025
  • Leading QC application areas are simulation, optimization, and sampling
  • QC professional services will reach $512 million by 2025 growing at 73.5% CAGR
  • Leading QC professional services will be deployment, maintenance, and consulting
  • The fastest growing market industry verticals for QC will be government, energy, and transportation

Report Benefits:

  • Detailed market forecasts globally, regionally, and opportunity areas for 2020 - 2025
  • Understand how quantum computing will accelerate growth of artificial intelligence
  • Identify opportunities to leverage quantum computing in different industry verticals
  • Understand challenges and limitations to deploying and operating quantum computing
  • Identify contribution of leading vendors, universities, and government agencies in R&D

Table of Contents

1.0. Executive Summary

2.0. Introduction

  • 2.1. Understanding Quantum Computing
  • 2.2. Quantum Computer Types
    • 2.2.1. Quantum Annealer
    • 2.2.2. Analog Quantum
    • 2.2.3. Universal Quantum
  • 2.3. Quantum Computing vs. Classical Computing
    • 2.3.1. Will Quantum replace Classical Computing?
    • 2.3.2. Physical Qubits vs. Logical Qubits
  • 2.4. Quantum Computing Development Timeline
  • 2.5. Quantum Computing Market Factors
  • 2.6. Quantum Computing Development Progress
    • 2.6.1. Increasing the Number of Qubits
    • 2.6.2. Developing New Types of Qubits
  • 2.7. Quantum Computing Patent Analysis
  • 2.8. Quantum Computing Regulatory Analysis
  • 2.9. Quantum Computing Disruption and Company Readiness Guideline

3.0. Technology and Market Analysis

  • 3.1. Quantum Computing Technology Stack
  • 3.2. Quantum Computing and Artificial Intelligence
  • 3.3. Quantum Neurons
  • 3.4. Quantum Computing and Big Data
  • 3.5. Linear Optical Quantum Computing
  • 3.6. Quantum Computing Business Model
  • 3.7. Quantum Software Platform
  • 3.8. Application Areas and Use Cases
  • 3.9. Emerging Revenue Sectors
  • 3.10. Quantum Computing Investment Analysis
  • 3.11. Quantum Computing Initiatives by Country
    • 3.11.1. USA
    • 3.11.2. Canada
    • 3.11.3. Mexico
    • 3.11.4. Brazil
    • 3.11.5. UK
    • 3.11.6. France
    • 3.11.7. Russia
    • 3.11.8. Germany
    • 3.11.9. Netherlands
    • 3.11.10. Denmark
    • 3.11.11. Sweden
    • 3.11.12. Saudi Arabia
    • 3.11.13. UAE
    • 3.11.14. Qatar
    • 3.11.15. Kuwait
    • 3.11.16. Israel
    • 3.11.17. Australia
    • 3.11.18. China
    • 3.11.19. Japan
    • 3.11.20. India
    • 3.11.21. Singapore

4.0. Quantum Computing Value Chain Analysis

  • 4.1. Quantum Computing Value Chain Structure
  • 4.2. Quantum Computing Competitive Analysis
    • 4.2.1. Leading Vendor Efforts
    • 4.2.2. Start-up Companies
    • 4.2.3. Government Initiatives
    • 4.2.4. University Initiatives
    • 4.2.5. Venture Capital Investments
  • 4.3. Large Scale Computing Systems

5.0. Company Analysis

  • 5.1. D-Wave Systems Inc.
  • 5.2. Google Inc.
  • 5.3. Microsoft Corporation
  • 5.4. IBM Corporation
  • 5.5. Intel Corporation
  • 5.6. Nokia Corporation
  • 5.7. Toshiba Corporation
  • 5.8. Raytheon Company
  • 5.9. Other Companies
    • 5.9.1. 1QB Information Technologies Inc. (IQbit)
    • 5.9.2. Cambridge Quantum Computing Ltd. (CQC)
    • 5.9.3. QC Ware Corp.
    • 5.9.4. MagiQ Technologies Inc.
    • 5.9.5. QxBranch LLC
    • 5.9.6. Rigetti Computing
    • 5.9.7. Anyon Systems Inc.
    • 5.9.8. Quantum Circuits Inc.
    • 5.9.9. Hewlett Packard Enterprise (HPE)
    • 5.9.10. Fujitsu Ltd.
    • 5.9.11. NEC Corporation
    • 5.9.12. SK Telecom
    • 5.9.13. Lockheed Martin Corporation
    • 5.9.14. NTT Docomo Inc.
    • 5.9.15. Alibaba Group Holding Limited
    • 5.9.16. Booz Allen Hamilton Inc.
    • 5.9.17. Airbus Group
    • 5.9.18. Amgen Inc.
    • 5.9.19. Biogen Inc.
    • 5.9.20. BT Group
    • 5.9.21. Mitsubishi Electric Corp.
    • 5.9.22. Volkswagen AG
    • 5.9.23. KPN
  • 5.10. Ecosystem Contributors
    • 5.10.1. Agilent Technologies
    • 5.10.2. Artiste-qb.net
    • 5.10.3. Avago Technologies
    • 5.10.4. Ciena Corporation
    • 5.10.5. CyOptics Inc.
    • 5.10.6. Eagle Power Technologies Inc
    • 5.10.7. Emcore Corporation
    • 5.10.8. Enablence Technologies
    • 5.10.9. Entanglement Partners
    • 5.10.10. Fathom Computing
    • 5.10.11. Alpine Quantum Technologies GmbH
    • 5.10.12. Atom Computing
    • 5.10.13. Black Brane Systems
    • 5.10.14. Delft Circuits
    • 5.10.15. EeroQ
    • 5.10.16. Everettian Technologies
    • 5.10.17. EvolutionQ
    • 5.10.18. H-Bar Consultants
    • 5.10.19. Horizon Quantum Computing
    • 5.10.20. ID Quantique (IDQ)
    • 5.10.21. InfiniQuant
    • 5.10.22. IonQ
    • 5.10.23. ISARA
    • 5.10.24. KETS Quantum Security
    • 5.10.25. Magiq
    • 5.10.26. MDR Corporation
    • 5.10.27. Nordic Quantum Computing Group (NQCG)
    • 5.10.28. Oxford Quantum Circuits
    • 5.10.29. Post-Quantum (PQ Solutions)
    • 5.10.30. ProteinQure
    • 5.10.31. PsiQuantum
    • 5.10.32. Q&I
    • 5.10.33. Qasky
    • 5.10.34. QbitLogic
    • 5.10.35. Q-Ctrl
    • 5.10.36. Qilimanjaro Quantum Hub
    • 5.10.37. Qindom
    • 5.10.38. Qnami
    • 5.10.39. QSpice Labs
    • 5.10.40. Qu & Co
    • 5.10.41. Quandela
    • 5.10.42. Quantika
    • 5.10.43. Quantum Benchmark Inc.
    • 5.10.44. Quantum Circuits Inc. (QCI)
    • 5.10.45. Quantum Factory GmbH
    • 5.10.46. QuantumCTek
    • 5.10.47. Quantum Motion Technologies
    • 5.10.48. QuantumX
    • 5.10.49. Qubitekk
    • 5.10.50. Qubitera LLC
    • 5.10.51. Quintessence Labs
    • 5.10.52. Qulab
    • 5.10.53. Qunnect
    • 5.10.54. QuNu Labs
    • 5.10.55. River Lane Research (RLR)
    • 5.10.56. SeeQC
    • 5.10.57. Silicon Quantum Computing
    • 5.10.58. Sparrow Quantum
    • 5.10.59. Strangeworks
    • 5.10.60. Tokyo Quantum Computing (TQC)
    • 5.10.61. TundraSystems Global Ltd.
    • 5.10.62. Turing
    • 5.10.63. Xanadu
    • 5.10.64. Zapata Computing
    • 5.10.65. Accenture
    • 5.10.66. Atos Quantum
    • 5.10.67. Baidu
    • 5.10.68. Northrup Grumman
    • 5.10.69. Quantum Computing Inc.
    • 5.10.70. Keysight Technologies
    • 5.10.71. Nano-Meta Technologies
    • 5.10.72. Optalysys Ltd.

6.0. Quantum Computing Market Analysis and Forecasts 2020-2025

  • 6.1.1. Quantum Computing Market by Infrastructure
    • 6.1.1.1. Quantum Computing Market by Hardware Type
    • 6.1.1.2. Quantum Computing Market by Application Software Type
    • 6.1.1.3. Quantum Computing Market by Service Type
      • 6.1.1.3.1. Quantum Computing Market by Professional Service Type
    • 6.1.2. Quantum Computing Market by Technology Segment
    • 6.1.3. Quantum Computing Market by Industry Vertical

7.0. Conclusions and Recommendations

  • 7.1. Advertisers and Media Companies
  • 7.2. Artificial Intelligence Providers
  • 7.3. Automotive Companies
  • 7.4. Broadband Infrastructure Providers
  • 7.5. Communication Service Providers
  • 7.6. Quantum Computing Companies
  • 7.7. Data Analytics Providers
  • 7.8. Immersive Technology (AR, VR, and MR) Providers
  • 7.9. Networking Equipment Providers
  • 7.10. Networking Security Providers
  • 7.11. Semiconductor Companies
  • 7.12. IoT Suppliers and Service Providers
  • 7.13. Software Providers
  • 7.14. Smart City System Integrators
  • 7.15. Automation System Providers
  • 7.16. Social Media Companies
  • 7.17. Workplace Solution Providers
  • 7.18. Enterprise and Government

Figures

  • Figure 1: Quantum Computing
  • Figure 2: Quantum Computing Disruption Sectors
  • Figure 3: Quantum Technology by Solution Area
  • Figure 4: Quantum Computing Application Areas
  • Figure 5: Quantum Computing Value Chain
  • Figure 6: Quantum Computing Competitive Landscape

Tables

  • Table 1: Quantum Computing Patent Applications
  • Table 3: Global Quantum Computing Market by Segment 2020 - 2025
  • Table 4: Global Quantum Computing Market by Hardware Type 2020 - 2025
  • Table 5: Global Quantum Computing Market by Application Software Type 2020 - 2025
  • Table 6: Global Quantum Computing Market by Service Type 2020 - 2025
  • Table 7: Global Quantum Computing Market by Professional Service Type 2020 - 2025
  • Table 8: Global Quantum Computing Market by Technology Segment 2020 - 2025
  • Table 9: Global Quantum Computing Market by Industry Vertical 2020 - 2025
株式会社グローバルインフォメーション
© Copyright 1996-2020, Global Information, Inc. All rights reserved.