デフォルト表紙
市場調査レポート
商品コード
1754657

インフラ検査ロボット市場レポート:2031年までの動向、予測、競合分析

Infrastructure Inspection Robot Market Report: Trends, Forecast and Competitive Analysis to 2031


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=145.80円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

インフラ検査ロボット市場レポート:2031年までの動向、予測、競合分析
出版日: 2025年06月20日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界のインフラ検査ロボット市場の将来性は、建築・建設、石油・ガス、発電、化学市場に機会があり、有望視されています。インフラ検査ロボットの世界市場は、2025年から2031年にかけてCAGR17.5%で成長する見込みです。この市場の主な促進要因は、インフラの保守・点検における自動化需要の高まりと、危険な環境における人間の介入を減らすことによる作業員の安全性への注目の高まりです。

Lucintelでは、タイプ別において自律型ロボットが予測期間中に高い成長を遂げると予測しています。

用途別では、建築・建設が最も高い成長が見込まれます。

地域別では、アジア太平洋が予測期間で最も高い成長が見込まれています。

インフラ検査ロボット市場の新たな動向

インフラ検査ロボット市場は、効率的で安全かつ費用対効果の高いインフラ保守のニーズの高まりにより、急速な成長を遂げています。インフラの老朽化と従来の検査方法の限界が相まって、ロボットソリューションへの需要が高まっています。新たな動向がこの市場の将来を形成しており、より洗練された汎用性の高い検査ロボットにつながっています。AI、コンピュータービジョン、自律航行などの分野における技術の進歩により、人間の介入を最小限に抑えながら複雑な検査作業を実行できるロボットの開発が可能になっています。こうした動向は、インフラの検査・保守方法を変革し、安全性、効率性、データ品質を向上させています。

  • AIによる欠陥検出:人工知能(AI)と機械学習の統合により、ロボットがインフラの欠陥(ひび割れ、腐食、漏水など)を自動的に検出・分類できるようになっています。AIアルゴリズムは、カメラ、LiDAR、超音波センサーなど様々なセンサーからのデータを分析し、異常を特定し、その重大性を評価することができます。この動向により、検査の精度とスピードが向上し、欠陥特定における人間の専門知識への依存度が低下しています。
  • 自律的ナビゲーションとマッピング:ロボットの自律化が進んでおり、複雑な環境をナビゲートし、人間の誘導なしにインフラの3Dマップを作成できるようになっています。これは、トンネル、橋、パイプラインなど、手が届きにくい場所や危険な場所を検査する際に特に重要です。自律航法は検査の効率と安全性を高め、ロボットがより広いエリアをカバーし、より包括的なデータを収集することを可能にします。
  • マルチロボット協働:インフラ点検では、複数のロボットが協働して作業する方法が普及しています。ロボットのチームを配備することで、各ロボットが特定のタスクやエリアに集中し、大規模な構造物をより迅速かつ効率的に検査することができます。複数のロボットが協働することで、検査速度と検査範囲が向上し、潜在的な問題を迅速に特定することが可能になります。
  • 小型・超小型ロボット:小型・超小型ロボットの開発により、インフラ内の限られたスペースやアクセスしにくい場所の検査に新たな可能性が生まれています。これらの小型ロボットは、パイプ、ダクト、その他の内部構造を検査するために配備され、それらの状態に関する貴重な洞察を提供することができます。小型化により、インフラ点検の範囲が拡大し、より詳細な評価が可能になります。
  • デジタルツインと予知保全:検査ロボットによって収集されたデータは、インフラ資産のデジタルツインの作成に利用され、予知保全や事前修理を可能にしています。データを長期にわたって分析することで、AIアルゴリズムがメンテナンスが必要な時期を予測し、コストのかかる故障を防いでインフラの寿命を延ばすことができます。デジタルツインは、データ主導の意思決定を可能にすることで、インフラ管理に変革をもたらしつつあります。

こうした新たな動向は、よりインテリジェントで自律的な協働ロボットソリューションの開発を促進することで、インフラ検査ロボット市場を再構築しています。AIを活用した欠陥検出、自律航行、複数ロボットの協働、小型化、デジタルツインにより、インフラの検査、保守、管理方法が変革されつつあります。これらの進歩により、安全性、効率性、データ品質が向上し、より積極的で費用対効果の高いインフラ管理の実践につながっています。

インフラ検査ロボット市場の最近の動向

インフラ検査ロボット市場は、インフラの老朽化、安全性への懸念の高まり、ロボット工学とAIの進歩などを背景に、急速な変貌を遂げつつあります。従来の検査方法はコストと時間がかかり、危険であることが多いため、自動化ソリューションに対する強い需要が生まれています。最近の動向は、先進技術の統合が特徴で、より洗練された汎用性の高い検査ロボットにつながっています。こうした進歩は、インフラ検査の効率、精度、安全性を向上させ、インフラの管理・維持方法を変革しています。市場競争は激化しており、ベンダー各社は特定のニーズに合わせた革新的なソリューションを提供しています。

  • センサー技術の強化:センサー技術の開発により、検査ロボットが収集するデータが大幅に向上しています。高解像度カメラ、LiDAR、超音波センサー、赤外線画像などが統合され、インフラの状態に関する詳細な情報を取得できるようになっています。これらの強化されたセンサーは、分析により包括的なデータを提供し、より正確な欠陥の検出と評価を可能にします。
  • 自律性とナビゲーションの向上:ロボットはますます自律的になり、複雑な環境をナビゲートし、人間の介入を最小限に抑えて検査タスクを実行できるようになっています。ナビゲーションアルゴリズム、マッピング技術、障害物回避技術の進歩により、ロボットは手の届きにくい場所にもアクセスできるようになり、より効率的に検査を実施できるようになっています。自律性の向上により、人間の介在の必要性が減り、安全性と生産性が向上します。
  • データ分析とAIの統合:データ分析とAIの統合は、検査データの処理・分析方法を変革しています。機械学習アルゴリズムは、自動的に欠陥を検出・分類し、メンテナンスの必要性を予測し、実用的な洞察を生み出すことができます。AIを活用したアナリティクスは、検査のスピードと精度を向上させ、予防的なメンテナンスを可能にし、コストのかかる故障を防ぎます。
  • 小型化とアクセシビリティの重視:インフラ内の限られたスペースや手の届きにくい場所にアクセスできる、より小型で機敏なロボットの開発に注目が集まっています。超小型ロボットやクローラーを含む小型化されたロボットは、パイプ、ダクト、その他の内部構造を検査するために開発されています。アクセス性が向上することで、検査の範囲が広がり、より詳細な洞察が可能になります。
  • 協働ロボット(コボット)の開発:人間と一緒に働くように設計された協働ロボットが、インフラ点検作業のために開発されています。コボットは、繰り返し作業を行ったり、機材を運んだり、困難な場所にアクセスしたりすることで、人間の検査員を支援することができます。コボットの使用は、人間の専門知識とロボットの能力を組み合わせることで、安全性と効率を高めます。

このような最近の動向は、よりインテリジェントで自律的かつ多用途な検査ソリューションの採用を促進することで、インフラ検査ロボット市場に大きな影響を与えています。センサーの強化、自律性の向上、AIの統合、小型化、協働ロボットへの注力は、インフラの検査・保守方法を変革しつつあります。これらの進歩は、より安全で、より効率的で、よりデータ駆動型のインフラ管理手法につながり、重要なインフラ資産の寿命と信頼性を向上させています。

目次

第1章 エグゼクティブサマリー

第2章 世界のインフラ検査ロボット市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 業界の促進要因と課題

第3章 市場動向と予測分析、2019年~2031年

  • マクロ経済動向(2019年~2024年)と予測(2025年~2031年)
  • 世界のインフラ検査ロボット市場の動向(2019年~2024年)と予測(2025年~2031年)
  • 世界のインフラ検査ロボット市場:タイプ別
    • 自律ロボット
    • 半自律ロボット
  • 世界のインフラ検査ロボット市場:用途別
    • 建築・建設
    • 石油・ガス
    • 発電
    • 化学薬品
    • その他

第4章 市場動向と予測分析:地域別、2019年~2031年

  • 世界のインフラ検査ロボット市場:地域別
  • 北米のインフラ検査ロボット市場
  • 欧州のインフラ検査ロボット市場
  • アジア太平洋のインフラ検査ロボット市場
  • その他地域のインフラ検査ロボット市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 運用統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 世界のインフラ検査ロボット市場の成長機会:タイプ別
    • 世界のインフラ検査ロボット市場の成長機会:用途別
    • 世界のインフラ検査ロボット市場の成長機会:地域別
  • 世界のインフラ検査ロボット市場における新たな動向
  • 戦略分析
    • 新製品開発
    • 世界のインフラ検査ロボット市場の能力拡大
    • 世界のインフラ検査ロボット市場の合併、買収、合弁事業
    • 認証とライセンシング

第7章 主要企業の企業プロファイル

  • ULC Robotics
  • Inuktun
  • Honeybee Robotics
  • Eddyfi
  • CUES
  • Envirosight
  • GE Inspection Robotics
  • IBAK Helmut Hunger
  • RedZone Robotics
  • MISTRAS Group
目次

The future of the global infrastructure inspection robot market looks promising with opportunities in the building & construction, oil & gas, power generation, and chemical markets. The global infrastructure inspection robot market is expected to grow with a CAGR of 17.5% from 2025 to 2031. The major drivers for this market are the increasing demand for automation in infrastructure maintenance & inspection and the rising focus on worker safety by reducing human intervention in hazardous environments.

Lucintel forecasts that, within the type category, autonomous robot is expected to witness higher growth over the forecast period.

Within the application category, building & construction is expected to witness the highest growth.

In terms of region, APAC is expected to witness the highest growth over the forecast period.

Gain valuable insights for your business decisions with our comprehensive 150+ page report. Sample figures with some insights are shown below.

Emerging Trends in the Infrastructure Inspection Robot Market

The infrastructure inspection robot market is experiencing rapid growth, driven by the increasing need for efficient, safe, and cost-effective infrastructure maintenance. Aging infrastructure, coupled with the limitations of traditional inspection methods, is fueling the demand for robotic solutions. Emerging trends are shaping the future of this market, leading to more sophisticated and versatile inspection robots. Technological advancements in areas like AI, computer vision, and autonomous navigation are enabling the development of robots capable of performing complex inspection tasks with minimal human intervention. These trends are transforming how infrastructure is inspected and maintained, improving safety, efficiency, and data quality.

  • AI-Powered Defect Detection: The integration of Artificial Intelligence (AI) and machine learning is enabling robots to automatically detect and classify defects in infrastructure, such as cracks, corrosion, and leaks. AI algorithms can analyze data from various sensors, including cameras, LiDAR, and ultrasonic sensors, to identify anomalies and assess their severity. This trend is improving the accuracy and speed of inspections, reducing the reliance on human expertise for defect identification.
  • Autonomous Navigation and Mapping: Robots are becoming increasingly autonomous, capable of navigating complex environments and creating 3D maps of infrastructure without human guidance. This is particularly important for inspecting hard-to-reach or dangerous areas, such as tunnels, bridges, and pipelines. Autonomous navigation enhances the efficiency and safety of inspections, allowing robots to cover larger areas and collect more comprehensive data.
  • Multi-Robot Collaboration: The use of multiple robots working collaboratively is gaining traction in infrastructure inspection. Teams of robots can be deployed to inspect large structures more quickly and efficiently, with each robot focusing on a specific task or area. Multi-robot collaboration enhances inspection speed and coverage, enabling faster identification of potential issues.
  • Miniaturization and Micro-Robots: The development of miniaturized and micro-robots is opening up new possibilities for inspecting confined spaces and hard-to-access areas within infrastructure. These small robots can be deployed to inspect pipes, ducts, and other internal structures, providing valuable insights into their condition. Miniaturization is expanding the scope of infrastructure inspection and enabling more detailed assessments.
  • Digital Twins and Predictive Maintenance: The data collected by inspection robots is being used to create digital twins of infrastructure assets, enabling predictive maintenance and proactive repairs. By analyzing data over time, AI algorithms can predict when maintenance is required, preventing costly failures and extending the lifespan of infrastructure. Digital twins are transforming infrastructure management by enabling data-driven decision-making.

These emerging trends are reshaping the infrastructure inspection robot market by driving the development of more intelligent, autonomous, and collaborative robotic solutions. AI-powered defect detection, autonomous navigation, multi-robot collaboration, miniaturization, and digital twins are transforming how infrastructure is inspected, maintained, and managed. These advancements are improving safety, efficiency, and data quality, leading to more proactive and cost-effective infrastructure management practices.

Recent Developments in the Infrastructure Inspection Robot Market

The infrastructure inspection robot market is undergoing rapid transformation, driven by aging infrastructure, increasing safety concerns, and advancements in robotics and AI. Traditional inspection methods are often costly, time-consuming, and dangerous, creating a strong demand for automated solutions. Recent developments are characterized by the integration of advanced technologies, leading to more sophisticated and versatile inspection robots. These advancements are improving the efficiency, accuracy, and safety of infrastructure inspections, transforming how infrastructure is managed and maintained. The market is becoming increasingly competitive, with vendors offering innovative solutions tailored to specific needs.

  • Enhanced Sensor Technologies: Developments in sensor technology are significantly improving the data collected by inspection robots. High-resolution cameras, LiDAR, ultrasonic sensors, and thermal imaging are being integrated to capture detailed information about the condition of infrastructure. These enhanced sensors provide more comprehensive data for analysis, enabling more accurate defect detection and assessment.
  • Improved Autonomy and Navigation: Robots are becoming increasingly autonomous, capable of navigating complex environments and performing inspection tasks with minimal human intervention. Advancements in navigation algorithms, mapping technologies, and obstacle avoidance are enabling robots to access hard-to-reach areas and perform inspections more efficiently. Improved autonomy reduces the need for human intervention, enhancing safety and productivity.
  • Data Analytics and AI Integration: The integration of data analytics and AI is transforming how inspection data is processed and analyzed. Machine learning algorithms can automatically detect and classify defects, predict maintenance needs, and generate actionable insights. AI-powered analytics improves the speed and accuracy of inspections, enabling proactive maintenance and preventing costly failures.
  • Focus on Miniaturization and Accessibility: There is a growing focus on developing smaller and more agile robots that can access confined spaces and hard-to-reach areas within infrastructure. Miniaturized robots, including micro-robots and crawlers, are being developed to inspect pipes, ducts, and other internal structures. Increased accessibility expands the scope of inspections and provides more detailed insights.
  • Development of Collaborative Robots (Cobots): Collaborative robots, designed to work alongside humans, are being developed for infrastructure inspection tasks. Cobots can assist human inspectors by performing repetitive tasks, carrying equipment, and accessing difficult locations. The use of cobots enhances safety and efficiency by combining the strengths of human expertise and robotic capabilities.

These recent developments are significantly impacting the infrastructure inspection robot market by driving the adoption of more intelligent, autonomous, and versatile inspection solutions. The focus on enhanced sensors, improved autonomy, AI integration, miniaturization, and collaborative robots is transforming how infrastructure is inspected and maintained. These advancements are leading to safer, more efficient, and more data-driven infrastructure management practices, improving the lifespan and reliability of critical infrastructure assets.

Strategic Growth Opportunities in the Infrastructure Inspection Robot Market

The infrastructure inspection robot market is experiencing a surge in growth, driven by aging infrastructure, increasing safety concerns, and advancements in robotics and AI. Traditional inspection methods are often costly, time-consuming, and dangerous, creating a strong demand for automated solutions. This demand, coupled with technological progress, is fueling the development of innovative robotic inspection solutions. The market is becoming increasingly competitive, with vendors focusing on specialized solutions tailored to specific industry needs. These advancements are opening up new avenues for growth across diverse applications, from bridges to pipelines and power lines.

  • Bridge Inspection: Aging bridges require frequent and thorough inspections to ensure safety and prevent failures. Robots equipped with advanced sensors and AI can automate bridge inspections, detecting cracks, corrosion, and other defects more efficiently and accurately than traditional methods. This application represents a significant growth opportunity, as it improves safety and reduces the time and cost associated with bridge inspections.
  • Pipeline Inspection: Pipelines transporting oil, gas, and water require regular inspection to prevent leaks and environmental damage. Robots can navigate through pipelines, inspecting their internal and external surfaces for defects. This application offers a significant growth opportunity, as it improves pipeline safety and reduces the risk of costly and environmentally damaging leaks.
  • Power Line Inspection: Power lines are often located in remote and difficult-to-access areas, making inspections challenging and dangerous. Drones and robots can be used to inspect power lines, detecting damage and preventing outages. This application presents a significant growth opportunity, as it improves the reliability of power grids and reduces the risk to human inspectors.
  • Tunnel Inspection: Tunnels require regular inspection to ensure structural integrity and safety. Robots can be used to inspect tunnels, detecting cracks, water leaks, and other defects. This application offers a significant growth opportunity, as it improves tunnel safety and reduces the disruption to traffic flow caused by manual inspections.
  • Dam Inspection: Dams are critical infrastructure assets that require regular inspection to ensure their safety and prevent catastrophic failures. Robots can be used to inspect dams, detecting cracks, erosion, and other defects. This application presents a significant growth opportunity, as it improves dam safety and reduces the risk of devastating dam failures.

These growth opportunities are significantly impacting the infrastructure inspection robot market by driving innovation and expansion across various applications. The increasing demand for safer, more efficient, and more cost-effective infrastructure inspections is creating a strong market for robotic solutions. The convergence of advanced technologies is further accelerating the growth of the market, leading to the development of more sophisticated and versatile inspection robots. These opportunities are transforming how infrastructure is inspected, maintained, and managed, improving safety, reliability, and sustainability.

Infrastructure Inspection Robot Market Driver and Challenges

The infrastructure inspection robot market is experiencing rapid growth, driven by a complex interplay of technological advancements, economic pressures, and evolving regulatory landscapes. Aging infrastructure, coupled with the limitations of traditional inspection methods, is fueling the demand for automated solutions. However, the market also faces challenges related to cost, regulatory hurdles, and technological limitations. These drivers and challenges are shaping the development and adoption of infrastructure inspection robots, impacting market growth and influencing its future trajectory. Understanding these factors is crucial for stakeholders to navigate this dynamic market effectively.

The factors responsible for driving the infrastructure inspection robot market include:

1. Aging Infrastructure: The world's infrastructure is aging, requiring frequent and thorough inspections to ensure safety and prevent failures. Robots offer a more efficient and cost-effective way to inspect aging infrastructure compared to traditional methods, driving market growth. The need to maintain and repair aging infrastructure is a primary driver.

2. Safety Concerns: Inspecting infrastructure can be dangerous, especially in hard-to-reach or hazardous environments. Robots can perform inspections without putting human lives at risk, improving safety and reducing the likelihood of accidents. This safety advantage is a significant market driver.

3. Cost Efficiency: While the initial investment in robots can be significant, they offer long-term cost savings by reducing the need for specialized personnel, minimizing downtime, and improving the accuracy of inspections. The long-term cost benefits are driving market adoption.

4. Technological Advancements: Rapid advancements in robotics, AI, computer vision, and sensor technology are enabling the development of more sophisticated and capable inspection robots. These technological advancements are improving the accuracy, efficiency, and autonomy of robotic inspections.

5. Data-Driven Decision Making: Inspection robots collect vast amounts of data that can be analyzed to identify trends, predict maintenance needs, and make data-driven decisions about infrastructure management. The ability to gather and analyze comprehensive data is a key driver.

Challenges in the infrastructure inspection robot market are:

1. High Initial Investment: The upfront cost of purchasing and deploying inspection robots can be a significant barrier, especially for smaller companies and municipalities. The high initial investment can slow down market adoption.

2. Regulatory Hurdles: The regulatory landscape for the use of robots in infrastructure inspection is still evolving, creating uncertainty and potential delays for companies. Navigating regulatory requirements can be challenging.

3. Technological Limitations: Despite advancements, there are still technological limitations to what inspection robots can do. Some tasks may require human expertise or dexterity, limiting the full potential of robotic inspections. Technological limitations pose a challenge.

The infrastructure inspection robot market is experiencing significant growth, driven by the need to maintain aging infrastructure, improve safety, and enhance efficiency. However, challenges related to cost, regulatory hurdles, and technological limitations need to be addressed for the market to reach its full potential. Overcoming these challenges will unlock the transformative power of robotics, improving infrastructure management and ensuring the safety and reliability of critical assets. A balanced approach to innovation, regulation, and cost reduction will shape the market's future.

List of Infrastructure Inspection Robot Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies infrastructure inspection robot companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the infrastructure inspection robot companies profiled in this report include-

  • ULC Robotics
  • Inuktun
  • Honeybee Robotics
  • Eddyfi
  • CUES
  • Envirosight
  • GE Inspection Robotics
  • IBAK Helmut Hunger
  • RedZone Robotics
  • MISTRAS Group

Infrastructure Inspection Robot Market by Segment

The study includes a forecast for the global infrastructure inspection robot market by type, application, and region.

Infrastructure Inspection Robot Market by Type [Value from 2019 to 2031]:

  • Autonomous Robot
  • Semi-autonomous Robot

Infrastructure Inspection Robot Market by Application [Value from 2019 to 2031]:

  • Building & Construction
  • Oil & Gas
  • Power Generation
  • Chemical
  • Others

Infrastructure Inspection Robot Market by Region [Value from 2019 to 2031]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Infrastructure Inspection Robot Market

The infrastructure inspection robot market is experiencing rapid growth, driven by the increasing need for efficient and cost-effective inspection of aging infrastructure. Traditional inspection methods can be time-consuming, dangerous, and often require specialized personnel. Robots offer a safer and more efficient alternative, capable of accessing difficult-to-reach areas and collecting high-quality data. Technological advancements in areas like AI, computer vision, and robotics are fueling innovation in this market. The demand for infrastructure inspection robots is rising across various sectors, including transportation, energy, and utilities, as governments and businesses prioritize infrastructure maintenance and safety.

  • United States: The US market is highly competitive, with a strong focus on developing advanced inspection robots for various infrastructure types, including bridges, pipelines, and power lines. Companies are investing in AI-powered robots that can autonomously navigate and detect defects. The FAA's increasing acceptance of drone-based inspections is also driving market growth. Government initiatives and funding programs are supporting research and development in this field, promoting innovation and adoption.
  • China: China is a rapidly growing market, driven by massive infrastructure development and a focus on smart city initiatives. The government is heavily investing in robotics and AI, creating a favorable environment for the development of infrastructure inspection robots. Chinese companies are focusing on developing cost-effective robots for large-scale inspections, utilizing advanced technologies like LiDAR and computer vision. The market is witnessing rapid adoption of these robots across various sectors.
  • Germany: Germany, with its focus on industrial automation and high-quality engineering, is a key market for infrastructure inspection robots. German companies are developing highly specialized robots for specific applications, such as inspecting bridges and tunnels. The market is characterized by a strong emphasis on reliability and precision. Industry 4.0 initiatives are further driving the adoption of robotics in infrastructure inspection.
  • India: India is an emerging market with a growing need for infrastructure inspection due to its rapidly developing infrastructure and aging existing structures. The Indian government is promoting the use of technology for infrastructure maintenance and safety. The market is witnessing increasing interest in cost-effective and adaptable robots that can be used for various inspection tasks. The focus is on developing robots suitable for diverse terrain and challenging environments.
  • Japan: Japan, with its aging infrastructure and a focus on safety, is a significant market for infrastructure inspection robots. Japanese companies are developing advanced robots with sophisticated sensors and AI capabilities for detailed inspections. The market is characterized by a strong emphasis on automation and efficiency. The country's focus on disaster prevention is also driving the adoption of robots for infrastructure monitoring and inspection.

Features of the Global Infrastructure Inspection Robot Market

Market Size Estimates: Infrastructure inspection robot market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.

Segmentation Analysis: Infrastructure inspection robot market size by type, application, and region in terms of value ($B).

Regional Analysis: Infrastructure inspection robot market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different types, applications, and regions for the infrastructure inspection robot market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the infrastructure inspection robot market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the infrastructure inspection robot market by type (autonomous robot and semi-autonomous robot), application (building & construction, oil & gas, power generation, chemical, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global Infrastructure Inspection Robot Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2019 to 2031

  • 3.1. Macroeconomic Trends (2019-2024) and Forecast (2025-2031)
  • 3.2. Global Infrastructure Inspection Robot Market Trends (2019-2024) and Forecast (2025-2031)
  • 3.3: Global Infrastructure Inspection Robot Market by Type
    • 3.3.1: Autonomous Robot
    • 3.3.2: Semi-autonomous Robot
  • 3.4: Global Infrastructure Inspection Robot Market by Application
    • 3.4.1: Building & Construction
    • 3.4.2: Oil & Gas
    • 3.4.3: Power Generation
    • 3.4.4: Chemical
    • 3.4.5: Others

4. Market Trends and Forecast Analysis by Region from 2019 to 2031

  • 4.1: Global Infrastructure Inspection Robot Market by Region
  • 4.2: North American Infrastructure Inspection Robot Market
    • 4.2.1: North American Market by Type: Autonomous Robot and Semi-autonomous Robot
    • 4.2.2: North American Market by Application: Building & Construction, Oil & Gas, Power Generation, Chemical, and Others
  • 4.3: European Infrastructure Inspection Robot Market
    • 4.3.1: European Market by Type: Autonomous Robot and Semi-autonomous Robot
    • 4.3.2: European Market by Application: Building & Construction, Oil & Gas, Power Generation, Chemical, and Others
  • 4.4: APAC Infrastructure Inspection Robot Market
    • 4.4.1: APAC Market by Type: Autonomous Robot and Semi-autonomous Robot
    • 4.4.2: APAC Market by Application: Building & Construction, Oil & Gas, Power Generation, Chemical, and Others
  • 4.5: ROW Infrastructure Inspection Robot Market
    • 4.5.1: ROW Market by Type: Autonomous Robot and Semi-autonomous Robot
    • 4.5.2: ROW Market by Application: Building & Construction, Oil & Gas, Power Generation, Chemical, and Others

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global Infrastructure Inspection Robot Market by Type
    • 6.1.2: Growth Opportunities for the Global Infrastructure Inspection Robot Market by Application
    • 6.1.3: Growth Opportunities for the Global Infrastructure Inspection Robot Market by Region
  • 6.2: Emerging Trends in the Global Infrastructure Inspection Robot Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global Infrastructure Inspection Robot Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global Infrastructure Inspection Robot Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: ULC Robotics
  • 7.2: Inuktun
  • 7.3: Honeybee Robotics
  • 7.4: Eddyfi
  • 7.5: CUES
  • 7.6: Envirosight
  • 7.7: GE Inspection Robotics
  • 7.8: IBAK Helmut Hunger
  • 7.9: RedZone Robotics
  • 7.10: MISTRAS Group