デフォルト表紙
市場調査レポート
商品コード
1734684

宇宙用太陽電池市場レポート:動向、予測、競合分析 (2031年まで)

Space Photovoltaic Cell Market Report: Trends, Forecast and Competitive Analysis to 2031


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.63円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

宇宙用太陽電池市場レポート:動向、予測、競合分析 (2031年まで)
出版日: 2025年05月27日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の宇宙用太陽電池市場の将来性は有望で、低軌道、中軌道、静止軌道、高度楕円軌道、極軌道の各市場における機会が期待されています。世界の宇宙用太陽電池市場は、2025年から2031年にかけてCAGR 7.8%で成長すると予想されています。この市場の主な促進要因は、通信用衛星配備の増加、宇宙探査への投資の増加、高効率太陽電池の需要拡大です。

  • Lucintelの予測では、種類別ではガリウムヒ素が予測期間中に最も高い成長を遂げる見込みです。
  • 用途別では、極軌道が最も高い成長が見込まれます。
  • 地域別では、アジア太平洋が予測期間で最も高い成長が見込まれます。

宇宙用太陽電池市場の新たな動向

宇宙用太陽電池市場は、高効率多接合セル、宇宙ベースの太陽光発電システム、耐放射線材料の進歩などの主要動向によって進化しています。これらの動向は、人工衛星や宇宙ミッション用のエネルギー生成の将来を形成しています。

  • 高効率多接合セルの開発:効率を高めた多接合太陽電池は、宇宙用途の標準になりつつあります。複数の半導体層を使用することで、これらのセルはエネルギー変換率を最大化し、人工衛星や深宇宙ミッションの信頼性の高い電力供給を保証します。
  • 宇宙太陽光発電(SBSP)システム:政府や民間企業は、宇宙ベースの太陽光発電ステーションに投資しています。これらのシステムは、軌道上で太陽エネルギーを捕捉し、それを地球に伝送することで、地上のアプリケーションに継続的かつ効率的な電源を提供することを目的としています。
  • 耐放射線材料の進歩:耐放射線性を向上させた太陽電池の開発に重点が置かれています。ガリウムヒ素やペロブスカイトベースのコーティングなどの材料は、高放射線環境での寿命と性能を向上させるために試験されています。
  • 小型軽量太陽電池モジュール:ペイロード効率を最適化するため、小型・軽量のソーラー・パネルの需要が高まっています。薄膜太陽電池やローラブル太陽電池は、小型衛星や長時間ミッション向けに人気を集めています。
  • 深宇宙ミッション用のハイブリッド太陽電池技術:ペロブスカイト太陽電池とシリコン系太陽電池を組み合わせたハイブリッド太陽電池技術は、低照度や過酷な宇宙環境での発電を改善するために開発されています。これらの技術革新により、惑星間探査のための持続的なエネルギー生産が保証されます。

宇宙用太陽電池市場は、効率、耐久性、軽量設計の革新によって進歩しています。こうした動向は、宇宙エネルギー生成と持続可能な衛星運用の新たな可能性を後押ししています。

宇宙用太陽電池市場の最近の動向

宇宙用太陽電池市場は、効率の向上、耐久性の強化、新素材の統合など、著しい進歩を遂げています。これらの開発により、宇宙エネルギーシステムと衛星電源ソリューションが大きく変化しています。

  • 高効率ペロブスカイト太陽電池の導入:ペロブスカイト太陽電池は、その高い効率と適応性から、宇宙用太陽電池として調査研究が進められています。これらの太陽電池は、軌道上における軽量でコスト効率の高いエネルギー・ソリューションの可能性を提供します。
  • フレキシブルでロール可能な太陽電池パネルの拡大:軽量で折り畳み可能な太陽電池モジュールは、宇宙空間での利用や衛星への配備を最適化するために開発されています。この技術革新により、小型衛星ミッションの効率が向上しています。
  • タンデム太陽電池技術の進歩:異なる半導体材料を組み合わせたタンデム太陽電池により、電力変換率が向上しています。これらのセルは、地球軌道を超えた長期ミッションの安定したエネルギー生成を保証します。
  • 宇宙ベースの太陽光発電プロジェクトへの投資の増加:各国は、軌道上で継続的にエネルギーを生成するため、宇宙ベースの太陽光発電所に投資しています。これらのプロジェクトは、宇宙ステーションや将来の月面居住施設に信頼できるエネルギー源を提供することを目的としています。
  • 自己修復型太陽光発電材料の開発:過酷な宇宙環境に耐えうる自己修復型太陽電池の研究が進んでいます。これらの材料は、長時間のミッションに耐える太陽電池の寿命と耐久性を向上させます。

これらの主な発展により、宇宙用太陽電池市場に革命が起き、太陽エネルギーはより効率的で軽量になり、多様な宇宙用途に適応できるようになります。

目次

第1章 エグゼクティブサマリー

第2章 世界の宇宙用太陽電池市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 業界の促進要因と課題

第3章 市場動向と予測分析 (2019年~2031年)

  • マクロ経済動向 (2019~2024年) と予測 (2025~2031年)
  • 世界の宇宙用太陽電池市場の動向 (2019~2024年) と予測 (2025~2031年)
  • 世界の宇宙用太陽電池市場:種類別
    • シリコン
    • 銅インジウムガリウムセレン
    • ガリウムヒ素
    • その他
  • 世界の宇宙用太陽電池市場:用途別
    • 低軌道
    • 中軌道
    • 静止軌道
    • 高度楕円軌道
    • 極軌道

第4章 地域別の市場動向と予測分析 (2019年~2031年)

  • 世界の宇宙用太陽電池市場:地域別
  • 北米の宇宙用太陽電池市場
  • 欧州の宇宙用太陽電池市場
  • アジア太平洋の宇宙用太陽電池市場
  • その他地域の宇宙用太陽電池市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 運用統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 世界の宇宙用太陽電池市場の成長機会:種類別
    • 世界の宇宙用太陽電池市場の成長機会:用途別
    • 世界の宇宙用太陽電池市場の成長機会:地域別
  • 世界の宇宙用太陽電池市場の新たな動向
  • 戦略的分析
    • 新製品の開発
    • 世界の宇宙用太陽電池市場の生産能力拡大
    • 世界の宇宙用太陽電池市場における企業合併・買収 (M&A)、合弁事業
    • 認証とライセンシング

第7章 主要企業のプロファイル

  • Spectrolab
  • Azur Space
  • Rocket Lab
  • CESI
  • Mitsubishi Electric
  • Emcore
  • Airbus
  • Flexell Space
  • Northrop Grumman
  • Thales Alenia Space
目次

The future of the global space photovoltaic cell market looks promising with opportunities in the low earth orbit, medium earth orbit, geostationary orbit, highly elliptical orbit, and polar orbit markets. The global space photovoltaic cell market is expected to grow with a CAGR of 7.8% from 2025 to 2031. The major drivers for this market are the increasing satellite deployments for communication, the rising investments in space exploration, and the growing demand for high-efficiency solar cells.

  • Lucintel forecasts that, within the type category, gallium arsenide is expected to witness the highest growth over the forecast period.
  • Within the application category, polar orbit is expected to witness the highest growth.
  • In terms of region, APAC is expected to witness the highest growth over the forecast period.

Emerging Trends in the Space Photovoltaic Cell Market

The space photovoltaic cell market is evolving with key trends such as high-efficiency multi-junction cells, space-based solar power systems, and advancements in radiation-resistant materials. These trends are shaping the future of energy generation for satellites and space missions.

  • Development of High-Efficiency Multi-Junction Cells: Multi-junction solar cells with enhanced efficiency are becoming the standard for space applications. By using multiple semiconductor layers, these cells maximize energy conversion rates, ensuring reliable power supply for satellites and deep-space missions.
  • Space-Based Solar Power (SBSP) Systems: Governments and private enterprises are investing in space-based solar power stations. These systems aim to capture solar energy in orbit and transmit it to Earth, offering a continuous and efficient power source for terrestrial applications.
  • Advancements in Radiation-Resistant Materials: Research is focused on developing photovoltaic cells with improved radiation tolerance. Materials such as gallium arsenide and perovskite-based coatings are being tested to enhance longevity and performance in high-radiation environments.
  • Miniaturization and Lightweight Solar Modules: The demand for compact and lightweight solar panels is rising to optimize payload efficiency. Thin-film and rollable solar cells are gaining popularity for small satellites and long-duration missions.
  • Hybrid Solar Technologies for Deep-Space Missions: Hybrid solar technologies combining perovskite and silicon-based cells are being developed to improve power generation in low-light and extreme space conditions. These innovations ensure sustained energy production for interplanetary exploration.

The space photovoltaic cell market is advancing with innovations in efficiency, durability, and lightweight designs. These trends are driving new possibilities for space energy generation and sustainable satellite operations.

Recent Developments in the Space Photovoltaic Cell Market

The space photovoltaic cell market is undergoing significant advancements, including improvements in efficiency, enhanced durability, and the integration of novel materials. These developments are transforming space energy systems and satellite power solutions.

  • Introduction of High-Efficiency Perovskite Solar Cells: Researchers are exploring perovskite-based solar cells for space applications due to their high efficiency and adaptability. These cells offer the potential for lightweight and cost-effective energy solutions in orbit.
  • Expansion of Flexible and Rollable Solar Panels: Lightweight and foldable solar modules are being developed to optimize space utilization and deployment in satellites. This innovation is enhancing efficiency in small satellite missions.
  • Advancements in Tandem Solar Cell Technology: Tandem solar cells combining different semiconductor materials are improving power conversion rates. These cells ensure stable energy generation for long-duration missions beyond Earth's orbit.
  • Increased Investments in Space-Based Solar Power Projects: Countries are investing in space-based solar power stations to generate continuous energy in orbit. These projects aim to provide a reliable energy source for space stations and future lunar habitats.
  • Development of Self-Healing Photovoltaic Materials: Research is progressing on self-repairing solar cells capable of withstanding extreme space conditions. These materials enhance the longevity and durability of photovoltaic cells for extended missions.

These key developments are revolutionizing the space photovoltaic cell market, making solar energy more efficient, lightweight, and adaptable for diverse space applications.

Strategic Growth Opportunities in the Space Photovoltaic Cell Market

The space photovoltaic cell market offers growth opportunities in satellite power generation, deep-space exploration, lunar missions, and space-based solar power projects. Technological advancements are driving market expansion.

  • Satellite Power Supply for Growing Constellations: The increasing deployment of communication and observation satellites is boosting demand for high-efficiency photovoltaic cells. These cells ensure reliable power generation for commercial and scientific missions.
  • Deep-Space Exploration and Planetary Missions: Space agencies require durable solar cells capable of withstanding extreme space environments. Advanced photovoltaic technologies are essential for powering long-duration deep-space missions.
  • Lunar and Martian Habitat Power Systems: The need for sustainable energy solutions on the Moon and Mars is creating demand for compact and efficient solar cells. Research is focused on developing space-adapted photovoltaic technologies for extraterrestrial habitats.
  • Integration of Space-Based Solar Power for Earth Applications: Space-based solar power stations are being explored to generate continuous energy in orbit and transmit it to Earth. This technology offers a long-term solution for global energy needs.
  • Advancements in Autonomous Spacecraft Energy Systems: The development of self-sustaining energy systems for autonomous spacecraft is driving the adoption of smart photovoltaic solutions. These systems enhance mission efficiency and power longevity.

The expansion of satellite networks, deep-space exploration, and space-based energy solutions are key growth opportunities in the space photovoltaic cell market. Technological innovation will drive sustainable and efficient energy generation in space.

Space Photovoltaic Cell Market Driver and Challenges

The space photovoltaic cell market is driven by increasing satellite launches, advancements in solar cell efficiency, and investments in space-based power. However, challenges such as high development costs and radiation exposure need to be addressed.

The factors responsible for driving the space photovoltaic cell market include:

1. Rising Satellite Deployments for Communication and Observation: The demand for space-based communication, navigation, and Earth observation is increasing, boosting the need for high-performance photovoltaic cells.

2. Advancements in High-Efficiency Solar Cell Technology: Multi-junction and perovskite-based solar cells are enhancing energy conversion rates, making them ideal for space missions.

3. Growth of Space-Based Solar Power Initiatives: Governments and private companies are investing in solar power generation from orbit, creating new market opportunities.

4. Increased Funding for Deep-Space Exploration: Space agencies are prioritizing long-duration missions, driving the need for durable and radiation-resistant solar cells.

5. Development of Lightweight and Flexible Solar Modules: Innovations in thin-film and rollable solar panels are improving payload efficiency, making solar power viable for a wider range of space applications.

Challenges in the space photovoltaic cell market are:

1. High Cost of Development and Deployment: Advanced photovoltaic technologies require significant investment, limiting their adoption in budget-constrained missions.

2. Radiation Damage and Space Environment Challenges: Space radiation affects the efficiency and longevity of solar cells, necessitating further research into durable materials.

3. Technical Challenges in Space-Based Solar Power Transmission: Efficiently transmitting solar energy from space to Earth remains a technological hurdle, requiring further advancements.

The space photovoltaic cell market is expanding due to increasing demand for efficient solar power solutions in space. Overcoming cost and radiation-related challenges will be crucial for future market growth.

List of Space Photovoltaic Cell Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies space photovoltaic cell companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the space photovoltaic cell companies profiled in this report include-

  • Spectrolab
  • Azur Space
  • Rocket Lab
  • CESI
  • Mitsubishi Electric
  • Emcore
  • Airbus
  • Flexell Space
  • Northrop Grumman
  • Thales Alenia Space

Space Photovoltaic Cell Market by Segment

The study includes a forecast for the global space photovoltaic cell market by type, application, and region.

Space Photovoltaic Cell Market by Type [Value from 2019 to 2031]:

  • Silicon
  • Copper Indium Gallium Selenide
  • Gallium Arsenide
  • Others

Space Photovoltaic Cell Market by Application [Value from 2019 to 2031]:

  • Low Earth Orbit
  • Medium Earth Orbit
  • Geostationary Orbit
  • Highly Elliptical Orbit
  • Polar Orbit

Space Photovoltaic Cell Market by Region [Value from 2019 to 2031]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Space Photovoltaic Cell Market

The space photovoltaic cell market is advancing with innovations in high-efficiency solar cells, lightweight materials, and radiation-resistant designs. The growing demand for space-based power solutions, satellite constellations, and deep-space missions is driving technological progress. Countries such as the United States, China, Germany, India, and Japan are making significant strides in improving photovoltaic technology for space applications.

  • United States: The United States is investing in next-generation photovoltaic cells with improved efficiency and durability. NASA and private companies are developing multi-junction solar cells for deep-space missions. Research on perovskite-silicon hybrid cells is gaining traction, aiming to enhance energy conversion rates for long-duration space missions.
  • China: China is accelerating the development of high-performance space solar cells for its growing satellite network. State-backed research institutions are focusing on gallium arsenide-based photovoltaic technology for enhanced efficiency. The country is also exploring space-based solar power stations to harness energy from orbit.
  • Germany: Germany is leading research in ultra-lightweight and flexible solar cells for space applications. Companies and institutions are working on tandem solar cells with higher power output. The nation's commitment to satellite-based communication and energy projects is driving further advancements in space photovoltaics.
  • India: India is expanding its capabilities in space solar technology through collaborations between ISRO and domestic manufacturers. The focus is on cost-effective, radiation-resistant photovoltaic cells for satellite programs. Research into flexible and rollable solar panels is gaining momentum to improve deployment efficiency in space.
  • Japan: Japan is pioneering thin-film solar cell technology for space missions. The nation's focus is on compact, high-output photovoltaic solutions for small satellites and lunar exploration projects. Advances in lightweight solar modules are supporting Japan's efforts in sustainable space energy generation.

Features of the Global Space Photovoltaic Cell Market

Market Size Estimates: Space photovoltaic cell market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.

Segmentation Analysis: Space photovoltaic cell market size by type, application, and region in terms of value ($B).

Regional Analysis: Space photovoltaic cell market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different type, application, and regions for the space photovoltaic cell market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the space photovoltaic cell market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the space photovoltaic cell market by type (silicon, copper indium gallium selenide, gallium arsenide, and others), application (low earth orbit, medium earth orbit, geostationary orbit, highly elliptical orbit, and polar orbit), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global Space Photovoltaic Cell Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2019 to 2031

  • 3.1. Macroeconomic Trends (2019-2024) and Forecast (2025-2031)
  • 3.2. Global Space Photovoltaic Cell Market Trends (2019-2024) and Forecast (2025-2031)
  • 3.3: Global Space Photovoltaic Cell Market by Type
    • 3.3.1: Silicon
    • 3.3.2: Copper Indium Gallium Selenide
    • 3.3.3: Gallium Arsenide
    • 3.3.4: Others
  • 3.4: Global Space Photovoltaic Cell Market by Application
    • 3.4.1: Low Earth Orbit
    • 3.4.2: Medium Earth Orbit
    • 3.4.3: Geostationary Orbit
    • 3.4.4: Highly Elliptical Orbit
    • 3.4.5: Polar Orbit

4. Market Trends and Forecast Analysis by Region from 2019 to 2031

  • 4.1: Global Space Photovoltaic Cell Market by Region
  • 4.2: North American Space Photovoltaic Cell Market
    • 4.2.1: North American Market by Type: Silicon, Copper Indium Gallium Selenide, Gallium Arsenide, and Others
    • 4.2.2: North American Market by Application: Low Earth Orbit, Medium Earth Orbit, Geostationary Orbit, Highly Elliptical Orbit, and Polar Orbit
  • 4.3: European Space Photovoltaic Cell Market
    • 4.3.1: European Market by Type: Silicon, Copper Indium Gallium Selenide, Gallium Arsenide, and Others
    • 4.3.2: European Market by Application: Low Earth Orbit, Medium Earth Orbit, Geostationary Orbit, Highly Elliptical Orbit, and Polar Orbit
  • 4.4: APAC Space Photovoltaic Cell Market
    • 4.4.1: APAC Market by Type: Silicon, Copper Indium Gallium Selenide, Gallium Arsenide, and Others
    • 4.4.2: APAC Market by Application: Low Earth Orbit, Medium Earth Orbit, Geostationary Orbit, Highly Elliptical Orbit, and Polar Orbit
  • 4.5: ROW Space Photovoltaic Cell Market
    • 4.5.1: ROW Market by Type: Silicon, Copper Indium Gallium Selenide, Gallium Arsenide, and Others
    • 4.5.2: ROW Market by Application: Low Earth Orbit, Medium Earth Orbit, Geostationary Orbit, Highly Elliptical Orbit, and Polar Orbit

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global Space Photovoltaic Cell Market by Type
    • 6.1.2: Growth Opportunities for the Global Space Photovoltaic Cell Market by Application
    • 6.1.3: Growth Opportunities for the Global Space Photovoltaic Cell Market by Region
  • 6.2: Emerging Trends in the Global Space Photovoltaic Cell Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global Space Photovoltaic Cell Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global Space Photovoltaic Cell Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: Spectrolab
  • 7.2: Azur Space
  • 7.3: Rocket Lab
  • 7.4: CESI
  • 7.5: Mitsubishi Electric
  • 7.6: Emcore
  • 7.7: Airbus
  • 7.8: Flexell Space
  • 7.9: Northrop Grumman
  • 7.10: Thales Alenia Space