デフォルト表紙
市場調査レポート
商品コード
1661889

3Dプリント手術モデル市場レポート:動向、予測、競合分析 (2031年まで)

3D Printed Surgical Model Market Report: Trends, Forecast and Competitive Analysis to 2031


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

3Dプリント手術モデル市場レポート:動向、予測、競合分析 (2031年まで)
出版日: 2025年02月21日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の3Dプリント手術モデル市場の将来は、ステレオリソグラフィ、カラージェットプリンティング、マルチジェット/ポリジェットプリンティング、溶融成膜モデリング市場に機会があり、有望視されています。世界の3Dプリント手術モデル市場は、2025年から2031年までのCAGRが15.0%で、2031年までに推定19億米ドルに達すると予想されています。この市場の主な促進要因は、3Dプリント材料、個別化医療、手術器具・技術に対するニーズの高まり、製薬・医療分野での3Dプリントの利用拡大、医療に対する政府支出の世界の増加です。

  • Lucintelは、材料カテゴリーでは、強化された熱可塑性プラスチックと生分解性プラスチックが存在し、費用対効果や再利用性も高いことから、予測期間中もプラスチックが最も急成長するセグメントであり続けると予測しています。
  • 地域別では、高齢者の増加や、座りっぱなしのライフスタイルに関連した疾病の発生率の増加により、北米が予測期間中に最も高い成長を遂げる見込みです。

3Dプリント手術モデル市場の戦略的成長機会

3Dプリント手術モデル市場は、技術の進歩と個別化された医療ソリューションに対する需要の増加により、著しい成長を遂げています。この成長は、術前計画、手術トレーニング、患者専用インプラントなど、さまざまな用途にわたって数多くの戦略的機会をもたらしています。こうした機会は、手術精度の向上、患者の転帰の改善、より効果的な医療教育の必要性に対する要望によってもたらされています。これらの主要な成長機会を探ることで、利害関係者がどのように新たな動向を活用し、この進化する市場でプレゼンスを拡大できるかについて、貴重な洞察を得ることができます。

  • 術前計画とシミュレーション:3Dプリント手術モデルは、術前計画とシミュレーションに大きな機会を提供します。患者に特化した詳細な解剖モデルを作成することで、外科医は複雑な構造を視覚化し、より精度の高い手術計画を立てることができます。これにより、実際の手術前に潜在的な課題を予測し、手技を洗練させることができるため、手術成績の向上につながります。このようなモデルを使用して手術のリハーサルを行えるため、意思決定が強化され、術中合併症のリスクが軽減されるため、術前計画は3Dプリント手術モデルの重要な成長分野となっています。
  • 医療トレーニングと教育:医療トレーニングと教育における3Dプリント手術モデルの応用は、成長する機会です。これらのモデルは、医学生や外科研修医に現実的で実践的なトレーニング体験を提供し、解剖学や手術手技の理解を深めます。様々な病態や手術シナリオを正確に表現した模型を使用することで、研修生は管理された環境で技術を練習し、洗練させることができます。この実践的な経験は、理論的な知識と実際の応用とのギャップを埋めるのに役立ち、全体的な外科手術の能力と有効性を向上させます。
  • パーソナライズド・インプラントの開発:パーソナライズド・インプラントに対する需要は、3Dプリント手術モデル市場に大きな成長機会をもたらしています。個々の患者の解剖学的構造に合わせたカスタムインプラントは、患者の画像データから得られた3Dプリントモデルを使用して設計することができます。このパーソナライゼーションは、より優れた適合性と機能性を保証し、臨床転帰と患者満足度の向上につながります。人工関節置換術や頭蓋インプラントなど、複雑な症例に対応するオーダーメイドインプラントを作成できることが、この分野の技術革新と市場拡大の原動力となっています。
  • ロボット工学やAIとの統合:3Dプリント手術モデルとロボット工学や人工知能(AI)との統合は、新たな成長機会です。ロボット工学はこれらのモデルを正確な手術ナビゲーションに使用でき、AIアルゴリズムはモデルの精度を高めて手術計画を最適化できます。この相乗効果により、より正確で低侵襲な処置が可能になり、患者の転帰が改善され、高度な手術環境での3Dプリントモデルの使用が拡大します。技術の進化に伴い、これらのシステムの統合は市場成長と応用の新たな道を提供すると思われます。
  • 新興国市場への開拓:新興国市場への3Dプリント手術モデルの使用拡大は、大きな成長機会となります。費用対効果の高い3Dプリント技術と遠隔プリントソリューションの進歩により、リソースの少ない環境でも医療従事者が高品質の手術モデルを利用できるようになっています。このような拡大は、これらの地域における手術計画とトレーニングを改善するだけでなく、全体的な医療の質も向上させます。新興国市場をターゲットにすることで、企業は新たな顧客基盤を開拓し、先進医療技術へのアクセスにおける世界の格差に対処することができます。

3Dプリント手術モデル市場は、いくつかの主要用途で戦略的成長を遂げる態勢が整っています。術前計画、医療トレーニング、パーソナライズドインプラント、ロボット工学の統合、新興国市場への拡大などの機会が市場を前進させています。これらの動向を活用することで、利害関係者は手術の精度を高め、医療教育を改善し、リーチを拡大することができ、最終的に患者の転帰改善に貢献し、手術分野を発展させることができます。

3Dプリント手術モデル市場促進要因・課題

3Dプリント手術モデル市場は、その成長と開拓を形作るさまざまな促進要因・課題の影響を受けています。技術的進歩、経済的要因、規制上の考慮事項が、この市場の進化において極めて重要な役割を果たしています。医療における3Dプリンティング技術の採用は、手術精度の向上と個別化医療の可能性が原動力となっています。しかし、高コスト、規制上のハードル、技術的専門知識の必要性などの課題は、市場拡大に影響を与える可能性があります。

3Dプリント手術モデル市場を牽引する要因は以下の通りである:

  • 3Dプリンティング技術の進歩:3Dプリンティング技術の急速な進歩は、手術モデル市場成長の主な促進要因です。印刷材料、解像度、速度の向上により、非常に詳細で正確なモデルの作成が可能になりました。生体適合材料やマルチマテリアル・プリンティングなどの技術革新により、術前計画から手術シミュレーションまで、応用範囲が広がっています。このような技術開発により、3Dプリントモデルの有用性が高まり、複雑な外科手術における価値が高まり、医療現場での採用が増加しています。
  • 個別化医療に対する需要の高まり:個別化医療に対する需要の高まりは、3Dプリント手術モデル市場の重要な促進要因です。個々の患者の解剖学的構造に合わせたパーソナライズドモデルは、より正確な手術計画とカスタムインプラントを可能にし、臨床転帰の改善につながります。医療が個別化された治療アプローチに向かうにつれて、固有の解剖学的特徴を反映した患者固有のモデルの必要性が高まっています。この動向は、複雑で多様な病状に対するカスタマイズされたソリューションの作成における3Dプリント技術の採用を加速しています。
  • 手術の精度とプランニングの強化:3Dプリント手術モデルは、精度とプランニング機能を強化し、医療分野での採用を促進しています。リアルで患者固有の解剖学的表現を提供することで、これらのモデルは外科医が複雑な処置をより効果的に計画し、リハーサルすることを可能にします。このような術前の利点は、合併症のリスクを低減し、手術結果を改善します。手術を実施する前に視覚化し、シミュレーションできることは、特に複雑でリスクの高い手術において、3Dプリントモデルの需要を高める重要な要因です。
  • 医療トレーニングにおける用途の拡大:医療トレーニングにおける3Dプリント手術モデルの使用は、市場の成長を促進しています。これらのモデルは、医学生や外科研修生に現実的でインタラクティブなトレーニングツールを提供し、学習体験を向上させます。解剖学的に正確なモデルを練習することで、研修生は管理された環境でスキルを開発し、向上させることができ、理論的な知識と実践的な応用のギャップを埋めることができます。このようなトレーニング用途の拡大は、教育機関やトレーニングプログラムにおける3Dプリントモデルの採用拡大を促進しています。
  • 投資と資金調達の拡大:3Dプリントを含む医療技術への投資と資金調達の増加が、市場の成長を後押ししています。ベンチャーキャピタル、研究助成金、戦略的パートナーシップは、3Dプリント手術モデルの革新と商業化を支援しています。資金援助は、高度な印刷技術、材料、アプリケーションの開発を可能にします。このような資本の流入は、市場の拡大を加速し、技術の進歩を促進し、医療分野における3Dプリントモデルの全体的な能力とアクセシビリティを高めます。

3Dプリント手術モデル市場の課題は以下の通りである:

  • 高い生産コスト:高品質の3Dプリント手術モデルの製造コストは、高価な機器、材料、専門知識を伴い、相当なものになる可能性があります。製造コストが高いため、小規模な医療施設ではアクセスが制限され、これらのモデルの全体的な採用に影響を与える可能性があります。モデルの品質を維持しながらコストの課題に対処することは、市場範囲を拡大する上で極めて重要です。
  • 規制上のハードル:3Dプリント手術モデルの規制要件に対応するのは、複雑で時間のかかる作業です。モデルが医療機器規制を満たしていることを確認し、必要な認証を取得することは、大きな課題となります。3Dプリント医療機器の規制状況は進化しており、変化する基準に準拠し続けることは製造業者にとって困難です。
  • 材料と品質のばらつき:3Dプリント材料とモデルの品質のばらつきは、手術モデルの信頼性と精度に影響を与える可能性があります。一貫した材料特性とモデルの忠実度を確保することは、効果的な術前計画とトレーニングに不可欠です。材料の性能と標準化に関する問題に対処することは、3Dプリント手術モデルの信頼性と有効性を維持するために極めて重要です。

結論として、3Dプリント手術モデル市場は、技術の進歩、個別化医療の需要、手術精度の向上、医療トレーニングにおける用途の拡大により、大きく成長する態勢を整えています。これらの要因は、複雑な外科手術における3Dプリントモデルの有用性と価値を高め、医療環境での採用を促進します。しかし、製造コストの高さ、規制上のハードル、材料のばらつきといった課題に対処して、より広範なアクセシビリティと品質の一貫性を促進する必要があります。投資と技術革新がこの分野を前進させ続ける中、患者の転帰を改善し、外科診療を変革する3Dプリント手術モデルの可能性を最大限に実現するには、これらの課題を克服することが極めて重要になります。

目次

第1章 エグゼクティブサマリー

第2章 世界の3Dプリント手術モデル市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 業界の促進要因と課題

第3章 市場動向と予測分析 (2019年~2031年)

  • マクロ経済動向 (2019~2024年) と予測 (2025~2031年)
  • 世界の3Dプリント手術モデル市場の動向 (2019~2024年) と予測 (2025~2031年)
  • 世界の3Dプリント手術モデル市場:技術別
    • ステレオリソグラフィー
    • カラージェット印刷
    • マルチジェット/ポリジェット印刷
    • 熱溶解積層法
    • その他
  • 世界の3Dプリント手術モデル市場:専門分野別
    • 心臓外科/インターベンショナル心臓病学
    • 消化器科食道内視鏡検査
    • 脳神経外科
    • 整形外科
    • 再建手術
    • 外科腫瘍学
    • 移植手術
  • 世界の3Dプリント手術モデル市場:材料別
    • 金属
    • ポリマー
    • プラスチック
    • その他

第4章 地域別の市場動向と予測分析 (2019年~2031年)

  • 世界の3Dプリント手術モデル市場:地域別
  • 北米の3Dプリント手術モデル市場
  • 欧州の3Dプリント手術モデル市場
  • アジア太平洋の3Dプリント手術モデル市場
  • その他地域の3Dプリント手術モデル市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 運用統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 世界の3Dプリント手術モデル市場の成長機会:技術別
    • 世界の3Dプリント手術モデル市場の成長機会:専門分野別
    • 世界の3Dプリント手術モデル市場の成長機会:材料別
    • 世界の3Dプリント手術モデル市場の成長機会:地域別
  • 世界の3Dプリント手術モデル市場の新たな動向
  • 戦略的分析
    • 新製品の開発
    • 世界の3Dプリント手術モデル市場の生産能力拡大
    • 世界の3Dプリント手術モデル市場における企業合併・買収 (M&A)、合弁事業
    • 認証とライセンシング

第7章 主要企業のプロファイル

  • 3D Systems
  • EnvisionTEC
  • Materialise
  • Stratasys
  • GPI Prototype
目次

The future of the global 3D printed surgical model market looks promising with opportunities in the stereolithography, colorjet printing, multijet/polyjet printing, and fused deposition modeling markets. The global 3D printed surgical model market is expected to reach an estimated $1.9 billion by 2031 with a CAGR of 15.0% from 2025 to 2031. The major drivers for this market are the increasing need for 3D printed materials, individualized healthcare, and surgical instruments and techniques, the growing use of 3D printing in the pharmaceutical and healthcare sectors, and the global rise in government spending on healthcare.

  • Lucintel forecasts that, within the material category, plastics will remain the fastest-growing segment over the forecast period due to the presence of enhanced thermoplastics and biodegradable plastics, along with their cost-effectiveness and reusability.
  • In terms of regions, North America is expected to witness the highest growth over the forecast period due to the rising number of elderly people and the increasing incidence of diseases linked to a sedentary lifestyle.

Gain valuable insights for your business decisions with our comprehensive 150+ page report.

Emerging Trends in the 3D Printed Surgical Model Market

The 3D printed surgical model market is evolving rapidly, driven by technological advancements and increasing adoption in the medical field. These models are transforming preoperative planning, surgical training, and personalized medicine by providing detailed and patient-specific anatomical representations. As the technology matures and becomes more accessible, several emerging trends are shaping the market. Understanding these trends is crucial for stakeholders aiming to leverage the latest innovations and stay competitive in this dynamic sector.

  • Enhanced Material Technology: Advances in material science are significantly impacting the 3D printed surgical model market. New materials, such as biocompatible polymers and advanced composites, are being developed to improve the accuracy and functionality of surgical models. These materials offer better durability, flexibility, and resolution, enabling the creation of highly detailed and realistic models. The use of these advanced materials enhances surgical planning and simulation, leading to better patient outcomes and more precise surgical interventions.
  • Integration of AI and Machine Learning: The integration of artificial intelligence (AI) and machine learning (ML) into 3D printing processes is revolutionizing the creation of surgical models. AI algorithms can analyze patient imaging data to automatically generate highly accurate and personalized models. Machine learning techniques enhance the efficiency of the printing process by optimizing parameters and predicting potential issues. This integration not only speeds up model production but also increases the precision and customization of surgical models, making them more valuable for complex procedures.
  • Expansion of Applications in Medical Education: The use of 3D printed surgical models in medical education is expanding rapidly. These models are increasingly being used for training medical students and surgical residents, providing hands-on experience with realistic anatomical structures. They facilitate a better understanding of complex procedures and anatomical variations, enhancing the learning experience. Educational institutions are adopting these models to improve surgical skills and knowledge, bridging the gap between theoretical learning and practical application in a controlled environment.
  • Personalized and Patient-Specific Models: There is a growing trend towards creating highly personalized and patient-specific 3D printed surgical models. By using patient imaging data, such as CT scans and MRIs, clinicians can produce models that accurately reflect the individual's unique anatomy. These custom models aid in preoperative planning and surgical rehearsal, allowing surgeons to anticipate challenges and devise optimal strategies for each patient. Personalized models improve surgical precision and outcomes, leading to a more tailored approach to patient care.
  • Growth in Remote and Low-Cost Solutions: The development of remote and low-cost 3D printing solutions is making surgical models more accessible globally. Advances in desktop 3D printers and open-source software are enabling smaller healthcare facilities and remote locations to produce high-quality surgical models affordably. This democratization of technology is expanding the use of 3D printed models beyond well-funded institutions, improving access to advanced medical tools in underserved areas, and supporting global health equity.

The 3D printed surgical model market is witnessing transformative changes driven by material advancements, technological integration, and expanded applications. Trends such as enhanced material technology, AI integration, and the focus on personalized models are setting new standards in surgical planning and education. The growth of remote and low-cost solutions is further broadening the market's reach, making advanced medical tools more accessible worldwide. These developments are poised to improve surgical outcomes and patient care, underscoring the dynamic nature of the 3D printed surgical model market.

Recent Developments in the 3D Printed Surgical Model Market

Recent advancements in the 3D printed surgical model market are transforming the landscape of medical practice by improving surgical planning, training, and patient-specific treatments. The market is experiencing rapid growth due to technological innovations, increasing adoption of personalized medicine, and expanded applications in various medical fields. These developments are enhancing the precision, efficiency, and accessibility of surgical models, leading to better patient outcomes and advancements in medical education.

  • Advances in 3D Printing Materials: Recent developments in 3D printing materials have significantly improved the quality and functionality of surgical models. Innovations include biocompatible materials that mimic human tissue properties, high-resolution resins for detailed anatomical accuracy, and durable composites that withstand surgical manipulation. These advancements enable the creation of more realistic and reliable models, enhancing preoperative planning and surgical simulation. The use of these advanced materials also supports the development of models for complex procedures, providing surgeons with valuable insights into patient-specific anatomical challenges.
  • Integration of AI and Machine Learning: The integration of artificial intelligence (AI) and machine learning into the 3D printing process is revolutionizing surgical model creation. AI algorithms can analyze medical imaging data to automatically generate accurate, patient-specific models, reducing the time required for manual design. Machine learning enhances the optimization of printing parameters, improving model quality and consistency. This integration facilitates faster turnaround times for model production and increases the precision of surgical simulations, aiding in more effective preoperative planning and better surgical outcomes.
  • Expansion of Applications in Medical Training: The use of 3D printed surgical models in medical training is expanding, offering hands-on learning experiences for students and surgical trainees. These models provide realistic representations of anatomical structures, allowing learners to practice techniques and understand complex procedures in a controlled environment. Institutions are increasingly adopting 3D printed models for training purposes, enhancing the educational experience and bridging the gap between theoretical knowledge and practical skills. This development is contributing to improved competency and confidence among medical professionals.
  • Increased Focus on Personalized Models: The market is seeing a significant shift towards personalized 3D printed surgical models tailored to individual patient anatomies. By using patient-specific imaging data, such as CT scans and MRIs, clinicians can produce highly accurate models that reflect each patient's unique anatomical features. These personalized models aid in precise surgical planning, enable better anticipation of surgical challenges, and enhance patient-specific treatment strategies. The focus on personalization is improving surgical outcomes and patient satisfaction by providing more tailored and effective care.
  • Growth of Remote and Cost-Effective Solutions: The proliferation of remote and cost-effective 3D printing solutions is expanding access to surgical models globally. Advances in desktop 3D printers and open-source design software are making it feasible for smaller healthcare facilities and remote locations to produce high-quality models at lower costs. This democratization of technology is improving accessibility to advanced surgical tools in underserved areas and enabling a broader range of healthcare providers to benefit from 3D printing innovations. As a result, the market is experiencing increased inclusivity and global reach.

The 3D printed surgical model market is undergoing transformative changes driven by advancements in materials, technology, and application scope. Innovations such as improved printing materials, AI integration, and personalized models are enhancing the quality and utility of surgical models. The expansion of applications in medical training and the growth of remote, cost-effective solutions are broadening access and impact. These developments are shaping the future of surgical planning and training, leading to better patient outcomes and more effective medical practices.

Strategic Growth Opportunities for 3D Printed Surgical Model Market

The 3D printed surgical model market is experiencing significant growth due to advancements in technology and increasing demand for personalized medical solutions. This growth presents numerous strategic opportunities across various applications, including preoperative planning, surgical training, patient-specific implants, and more. These opportunities are driven by the desire for enhanced surgical precision, improved patient outcomes, and the need for more effective medical education. Exploring these key growth opportunities can provide valuable insights into how stakeholders can capitalize on emerging trends and expand their presence in this evolving market.

  • Preoperative Planning and Simulation: 3D printed surgical models offer significant opportunities for preoperative planning and simulation. By creating detailed, patient-specific anatomical models, surgeons can visualize complex structures and plan procedures with greater precision. This leads to improved surgical outcomes by allowing for better anticipation of potential challenges and refinement of techniques before actual surgery. The ability to rehearse surgeries using these models enhances decision-making and reduces the risk of intraoperative complications, making preoperative planning a crucial growth area for 3D printed surgical models.
  • Medical Training and Education: The application of 3D printed surgical models in medical training and education is a growing opportunity. These models provide realistic, hands-on training experiences for medical students and surgical residents, enhancing their understanding of anatomy and surgical techniques. By using models that accurately represent various pathologies and surgical scenarios, trainees can practice and refine their skills in a controlled environment. This practical experience helps bridge the gap between theoretical knowledge and real-world application, improving overall surgical competency and effectiveness.
  • Development of Personalized Implants: The demand for personalized implants is creating substantial growth opportunities in the 3D printed surgical model market. Custom implants tailored to individual patient anatomies can be designed using 3D printed models derived from patient imaging data. This personalization ensures better fit and functionality, leading to improved clinical outcomes and patient satisfaction. The ability to create bespoke implants for complex cases, such as joint replacements or cranial implants, is driving innovation and expansion in this segment of the market.
  • Integration with Robotics and AI: Integrating 3D printed surgical models with robotics and artificial intelligence (AI) is an emerging growth opportunity. Robotics can use these models for precise surgical navigation, while AI algorithms can enhance model accuracy and optimize surgical plans. This synergy allows for more precise and minimally invasive procedures, improving patient outcomes and expanding the use of 3D printed models in advanced surgical environments. As technology evolves, the integration of these systems will offer new avenues for market growth and application.
  • Expansion into Developing Markets: Expanding the use of 3D printed surgical models into developing markets represents a significant growth opportunity. Advances in cost-effective 3D printing technologies and remote printing solutions are making it possible for healthcare providers in low-resource settings to access high-quality surgical models. This expansion not only improves surgical planning and training in these regions but also enhances overall healthcare quality. By targeting developing markets, companies can tap into new customer bases and address global disparities in access to advanced medical technologies.

The 3D printed surgical model market is poised for strategic growth across several key applications. Opportunities in preoperative planning, medical training, personalized implants, robotics integration, and expansion into developing markets are driving the market forward. By capitalizing on these trends, stakeholders can enhance surgical precision, improve medical education, and expand their reach, ultimately contributing to better patient outcomes and advancing the field of surgery.

3D Printed Surgical Model Market Driver and Challenges

The 3D printed surgical model market is influenced by a range of drivers and challenges that shape its growth and development. Technological advancements, economic factors, and regulatory considerations play pivotal roles in the evolution of this market. The adoption of 3D printing technology in healthcare is driven by its potential for improved surgical precision and personalized medicine. However, challenges such as high costs, regulatory hurdles, and the need for technical expertise can impact market expansion.

The factors responsible for driving the 3D printed surgical model market include:

  • Technological Advancements in 3D Printing: Rapid advancements in 3D printing technology are a primary driver for the growth of the surgical model market. Improvements in printing materials, resolution, and speed enable the creation of highly detailed and accurate models. Innovations such as biocompatible materials and multi-material printing expand the scope of applications, from preoperative planning to surgical simulation. These technological developments enhance the utility of 3D printed models, making them more valuable in complex surgical procedures and increasing their adoption in medical settings.
  • Growing Demand for Personalized Medicine: The rising demand for personalized medicine is a significant driver for the 3D printed surgical model market. Personalized models tailored to individual patient anatomies allow for more precise surgical planning and custom implants, leading to improved clinical outcomes. As healthcare moves towards individualized treatment approaches, the need for patient-specific models that reflect unique anatomical features grows. This trend accelerates the adoption of 3D printing technologies in creating customized solutions for complex and diverse medical conditions.
  • Enhanced Surgical Precision and Planning: 3D printed surgical models offer enhanced precision and planning capabilities, driving their adoption in the healthcare sector. By providing realistic, patient-specific anatomical representations, these models enable surgeons to plan and rehearse complex procedures more effectively. This preoperative advantage reduces the risk of complications and improves surgical outcomes. The ability to visualize and simulate surgeries before performing them is a critical factor in increasing the demand for 3D printed models, particularly in intricate and high-stakes procedures.
  • Expanding Applications in Medical Training: The use of 3D printed surgical models in medical training is driving market growth. These models provide realistic and interactive training tools for medical students and surgical trainees, enhancing their learning experiences. By practicing anatomically accurate models, trainees can develop and refine their skills in a controlled environment, bridging the gap between theoretical knowledge and practical application. This expansion in training applications is fostering greater adoption of 3D printed models in educational institutions and training programs.
  • Growing Investment and Funding: Increased investment and funding in healthcare technologies, including 3D printing, are fueling market growth. Venture capital, research grants, and strategic partnerships are supporting the innovation and commercialization of 3D printed surgical models. Financial backing enables the development of advanced printing technologies, materials, and applications. This influx of capital accelerates market expansion, fosters technological advancements, and enhances the overall capability and accessibility of 3D printed models in the medical field.

Challenges in the 3D printed surgical model market are:

  • High Production Costs: The cost of producing high-quality 3D printed surgical models can be substantial, involving expensive equipment, materials, and expertise. High production costs can limit accessibility for smaller healthcare facilities and impact the overall adoption of these models. Addressing cost challenges while maintaining model quality is crucial for expanding market reach.
  • Regulatory Hurdles: Navigating regulatory requirements for 3D printed surgical models can be complex and time-consuming. Ensuring that models meet medical device regulations and obtaining necessary certifications pose significant challenges. The regulatory landscape for 3D printed medical devices is evolving, and staying compliant with changing standards can be difficult for manufacturers.
  • Material and Quality Variability: Variability in 3D printing materials and model quality can impact the reliability and accuracy of surgical models. Ensuring consistent material properties and model fidelity is essential for effective pre-surgical planning and training. Addressing issues related to material performance and standardization is crucial for maintaining trust and effectiveness in 3D printed surgical models.

In conclusion, the 3D printed surgical model market is poised for significant growth driven by technological advancements, the demand for personalized medicine, enhanced surgical precision, and expanding applications in medical training. These factors collectively enhance the utility and value of 3D printed models in complex surgical procedures, promoting their adoption in healthcare settings. However, challenges such as high production costs, regulatory hurdles, and material variability must be addressed to facilitate broader accessibility and consistency in quality. As investment and innovation continue to propel this field forward, overcoming these challenges will be crucial for realizing the full potential of 3D printed surgical models in improving patient outcomes and transforming surgical practices.

List of 3D Printed Surgical Model Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies 3D printed surgical model companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the 3D printed surgical model companies profiled in this report include-

  • 3D Systems
  • EnvisionTEC
  • Materialise
  • Stratasys
  • GPI Prototype

3D Printed Surgical Model by Segment

The study includes a forecast for the global 3D printed surgical model market by technology, specialty, material, and region.

3D Printed Surgical Model Market by Technology [Analysis by Value from 2019 to 2031]:

  • Stereolithography
  • Colorjet Printing
  • Multijet/Polyjet Printing
  • Fused Deposition Modeling
  • Others

3D Printed Surgical Model Market by Specialty [Analysis by Value from 2019 to 2031]:

  • Cardiac Surgery/Interventional Cardiology
  • Gastroenterology Endoscopy of Esophageal
  • Neurosurgery
  • Orthopaedic Surgery
  • Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery

3D Printed Surgical Model Market by Material [Analysis by Value from 2019 to 2031]:

  • Metal
  • Polymer
  • Plastic
  • Others

3D Printed Surgical Model Market by Region [Analysis by Value from 2019 to 2031]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the 3D Printed Surgical Model Market

The 3D printed surgical model market has seen significant advancements globally, driven by innovations in 3D printing technology and increasing demand for personalized medicine. These models are revolutionizing preoperative planning, surgical training, and patient-specific treatments. As healthcare systems evolve, different regions are experiencing unique developments. In the United States, cutting-edge technology is enhancing surgical precision, while China is focusing on expanding its manufacturing capabilities. Germany, India, and Japan are also making strides, with Germany emphasizing regulatory advancements, India expanding access to 3D printing in healthcare, and Japan integrating models into its advanced medical practices.

  • United States: In the United States, recent developments in the 3D printed surgical model market include advancements in technology and its integration into clinical practice. Leading medical institutions are adopting 3D printing for creating highly detailed and patient-specific surgical models, improving preoperative planning and outcomes. Companies are focusing on the development of more sophisticated materials and techniques, such as biocompatible and high-resolution prints.
  • China: China is rapidly advancing in the 3D printed surgical model market through significant investments in manufacturing capabilities and research. Chinese companies are developing cost-effective 3D printing solutions and expanding their production facilities to meet growing domestic demand. Additionally, there is a push towards integrating 3D printing technology into the healthcare system to improve medical training and patient-specific surgical planning.
  • Germany: Germany is making strides in the 3D printed surgical model market with a strong emphasis on regulatory advancements and quality standards. The country is known for its stringent regulatory environment, which ensures that 3D printed models meet high safety and efficacy standards. Recent developments include partnerships between medical device companies and research institutions to enhance the precision and functionality of surgical models.
  • India: In India, the 3D printed surgical model market is experiencing growth due to increased access to 3D printing technology and rising awareness of its benefits. Recent developments include the expansion of 3D printing services in hospitals and medical institutions, making advanced surgical models more accessible to a broader population. Indian startups and healthcare providers are collaborating to develop affordable and effective 3D printing solutions tailored to local needs.
  • Japan: Japan is at the forefront of integrating 3D printed surgical models into advanced medical practices. Recent developments include the incorporation of 3D printing technology into complex surgical procedures and medical research. Japanese medical institutions are utilizing high-resolution 3D printed models to enhance surgical precision and planning. The country is also focusing on developing innovative materials and techniques to improve the performance and utility of these models.

Features of the Global 3D Printed Surgical Model Market

Market Size Estimates: 3D printed surgical model market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.

Segmentation Analysis: 3D printed surgical model market size by technology, specialty, material, and region in terms of value ($B).

Regional Analysis: 3D printed surgical model market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different technology, specialty, material, and regions for the 3D printed surgical model market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the 3D printed surgical model market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the 3D printed surgical model market by technology (stereolithography, colorjet printing, multijet/polyjet printing, fused deposition modeling, and others), specialty (cardiac surgery/interventional cardiology, gastroenterology endoscopy of esophageal, neurosurgery, orthopaedic surgery, reconstructive surgery, surgical oncology, and transplant surgery), material (metal, polymer, plastic, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global 3D Printed Surgical Model Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2019 to 2031

  • 3.1. Macroeconomic Trends (2019-2024) and Forecast (2025-2031)
  • 3.2. Global 3D Printed Surgical Model Market Trends (2019-2024) and Forecast (2025-2031)
  • 3.3: Global 3D Printed Surgical Model Market by Technology
    • 3.3.1: Stereolithography
    • 3.3.2: ColorJet Printing
    • 3.3.3: MultiJet/PolyJet Printing
    • 3.3.4: Fused Deposition Modeling
    • 3.3.5: Others
  • 3.4: Global 3D Printed Surgical Model Market by Specialty
    • 3.4.1: Cardiac Surgery/Interventional Cardiology
    • 3.4.2: Gastroenterology Endoscopy of Esophageal
    • 3.4.3: Neurosurgery
    • 3.4.4: Orthopaedic Surgery
    • 3.4.5: Reconstructive Surgery
    • 3.4.6: Surgical oncology
    • 3.4.7: Transplant Surgery
  • 3.5: Global 3D Printed Surgical Model Market by Material
    • 3.5.1: Metal
    • 3.5.2: Polymer
    • 3.5.3: Plastic
    • 3.5.4: Others

4. Market Trends and Forecast Analysis by Region from 2019 to 2031

  • 4.1: Global 3D Printed Surgical Model Market by Region
  • 4.2: North American 3D Printed Surgical Model Market
    • 4.2.1: North American Market by Technology: Stereolithography, ColorJet Printing, MultiJet/PolyJet Printing, Fused Deposition Modeling, and Others
    • 4.2.2: North American Market by Material: Metal, Polymer, Plastic, and Others
  • 4.3: European 3D Printed Surgical Model Market
    • 4.3.1: European Market by Technology: Stereolithography, ColorJet Printing, MultiJet/PolyJet Printing, Fused Deposition Modeling, and Others
    • 4.3.2: European Market by Material: Metal, Polymer, Plastic, and Others
  • 4.4: APAC 3D Printed Surgical Model Market
    • 4.4.1: APAC Market by Technology: Stereolithography, ColorJet Printing, MultiJet/PolyJet Printing, Fused Deposition Modeling, and Others
    • 4.4.2: APAC Market by Material: Metal, Polymer, Plastic, and Others
  • 4.5: ROW 3D Printed Surgical Model Market
    • 4.5.1: ROW Market by Technology: Stereolithography, ColorJet Printing, MultiJet/PolyJet Printing, Fused Deposition Modeling, and Others
    • 4.5.2: ROW Market by Material: Metal, Polymer, Plastic, and Others

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global 3D Printed Surgical Model Market by Technology
    • 6.1.2: Growth Opportunities for the Global 3D Printed Surgical Model Market by Specialty
    • 6.1.3: Growth Opportunities for the Global 3D Printed Surgical Model Market by Material
    • 6.1.4: Growth Opportunities for the Global 3D Printed Surgical Model Market by Region
  • 6.2: Emerging Trends in the Global 3D Printed Surgical Model Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global 3D Printed Surgical Model Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global 3D Printed Surgical Model Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: 3D Systems
  • 7.2: EnvisionTEC
  • 7.3: Materialise
  • 7.4: Stratasys
  • 7.5: GPI Prototype