デフォルト表紙
市場調査レポート
商品コード
1610094

グリッドサイドエネルギー貯蔵市場レポート:動向、予測、競合分析 (2030年まで)

Grid Side Energy Storage Market Report: Trends, Forecast and Competitive Analysis to 2030


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=145.63円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

グリッドサイドエネルギー貯蔵市場レポート:動向、予測、競合分析 (2030年まで)
出版日: 2024年11月29日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

グリッドサイドエネルギー貯蔵の動向と予測

世界のグリッドサイドエネルギー貯蔵市場の将来は、ピーク時・オフピーク時裁定取引 (Peak-to-Valley Arbitrage)、貯蔵エネルギー、ピークカット・周波数変調市場に機会があり、有望視されています。世界のグリッドサイドエネルギー貯蔵市場は、2024年から2030年にかけてCAGR 8.5%で成長すると予想されます。この市場の主な促進要因は、再生可能エネルギー源への投資の増加、電気自動車の普及、効果的なエネルギー消費に関する意識の高まり、余剰エネルギーの節約需要の高まりです。

  • Lucintel社の予測によると、エネルギー密度が高く、サイクル寿命が長く、コストが低いため、種類別では角型バッテリーが予測期間中に最も高い成長を遂げる見込みです。
  • 地域別では、北米の産業発展と急速な都市化により、予測期間中に最も高い成長が見込まれます。

グリッドサイドエネルギー貯蔵市場の戦略的成長機会

系統安定性の強化、効率的なエネルギー管理、再生可能エネルギー統合の増加といったニーズを背景に、グリッドサイドエネルギー貯蔵市場は急速に拡大しています。この分野が発展するにつれ、主要なアプリケーションにいくつかの戦略的成長機会が生まれつつあり、それぞれが特定の課題に対処し、より強靭で柔軟なエネルギー・インフラに貢献しています。これらの機会は、エネルギー貯蔵がグリッド性能を最適化し、持続可能性の目標をサポートし、現代のエネルギーシステムの需要を満たすために利用できる多様な方法を反映しています。

  • 再生可能エネルギーの統合:エネルギー貯蔵システムは、太陽光や風力などの再生可能エネルギーをグリッドに統合するために不可欠です。ピーク時に発電された余剰エネルギーを蓄えることで、発電量が低下したときにそれを放出し、継続的で安定した電力供給を確保することができます。戦略的成長機会には、再生可能エネルギー・プロジェクトを補完する大規模蓄電ソリューションの展開、送電網の柔軟性の強化、化石燃料への依存度の低減などが含まれます。先進的なバッテリー技術とグリッド規模の蓄電プロジェクトに投資することで、再生可能エネルギー統合の効率性と信頼性を大幅に改善することができます。
  • ピークカットと負荷管理:エネルギー貯蔵システムは、オフピーク時にエネルギーを貯蔵し、ピーク時に放電することで、ピークカットと負荷管理の大きな機会を提供します。この機能は、高需要期の送電網への負担を軽減し、エネルギーコストを下げ、発電容量を追加する必要性を最小限に抑えるのに役立ちます。戦略的成長機会には、高い充放電率に対応できる高度な蓄電システムの開発や、都市部と農村部の両方で性能とコスト削減を最適化するための高度なエネルギー管理システムの導入が含まれます。
  • 送電網の回復力とバックアップ電力:送電網の回復力を高め、停電時にバックアップ電力を供給することは、エネルギー貯蔵にとって極めて重要な用途です。蓄電システムは、重要なインフラに非常用電力を供給し、混乱時の送電網の安定性をサポートすることができます。主な成長機会には、遠隔地や災害の多い地域など、自然災害や信頼性の低い送電網が発生しやすい地域でのエネルギー貯蔵の導入が含まれます。さらに、蓄電をマイクログリッドと統合することで、局所的なバックアップ電力ソリューションを提供し、グリッド全体の信頼性を向上させ、緊急時のサービス継続性を確保することができます。
  • 周波数調整とアンシラリーサービス:エネルギー貯蔵システムは、周波数調整と、送電網を安定させるためのアンシラリーサービスの提供において重要な役割を果たします。電力需給の変動に迅速に対応することで、蓄電システムは送電網の安定に必要なバランスの維持に役立ちます。成長機会としては、リチウムイオンやスーパーキャパシタなど、高速応答時間と高電力密度を提供する技術への投資が挙げられます。さらに、蓄電システムはアンシラリーサービス市場に参加することで、新たな収益源を提供し、系統全体の効率と信頼性に貢献することができます。
  • 輸送の電化:運輸の電化は、特にビークル・ツー・グリッド (V2G) 技術の統合を通じて、エネルギー貯蔵の機会を増大させています。双方向充電機能を備えた電気自動車 (EV) は、移動可能なエネルギー貯蔵ユニットとして機能し、必要なときに余剰エネルギーを送電網に戻すことができます。戦略的成長機会には、V2Gインフラの整備、充電技術の強化、EVを活用したグリッド・サポート・サービスが含まれます。このような統合は、需要と供給のバランスを取り、再生可能エネルギーの利用を支援し、温室効果ガス排出削減という幅広い目標に貢献することができます。

顧客、製品、サービスを網羅するエネルギー貯蔵市場のバリューチェーンは、必ず複数のアプリケーションにまたがります。再生可能エネルギーのエネルギー貯蔵への組み込み、ピークカット、グリッドセキュリティ、周波数調整、輸送電化といった側面に集中することで、エネルギー貯蔵を緊急の問題や新たな機会に集中させることができるはずです。これらの機会は、送電網の性能を向上させるだけでなく、広範な持続可能性とエネルギー目標に貢献する、よりクリーンで強靭なエネルギーシステムの達成にも寄与します。

グリッドサイドエネルギー貯蔵市場の促進要因・課題

グリッドサイドエネルギー貯蔵市場は、技術的、経済的、規制的要因が複雑に絡み合って形成されています。主な促進要因と課題は、エネルギー貯蔵システムの成長と展開に影響を与え、グリッドとの統合、再生可能エネルギー源のサポート、グリッドの安定性と効率性への貢献の仕方に影響を与えます。これらの促進要因と課題を理解することは、進化するエネルギー情勢をナビゲートし、潜在的な障害に対処しながらチャンスを活かそうとする利害関係者にとって極めて重要です。

グリッドサイドエネルギー貯蔵市場の促進要因には、以下のようなものがある:

  • 技術の進歩:技術の進歩:リチウムイオン電池、固体電池、フロー電池などの電池技術の進歩が、グリッドサイドエネルギー貯蔵の成長を促進しています。これらの技術革新は、エネルギー密度の向上、寿命の延長、コスト削減につながっており、エネルギー貯蔵システムをより現実的で魅力的なものにしています。さらに、グリッド管理ソフトウェアとスマートグリッド技術の進歩が、蓄電システムの効率と統合を強化しています。こうした技術的改善により、性能と拡張性が向上し、グリッド用途におけるエネルギー貯蔵ソリューションの幅広い採用が可能になります。
  • コストの低下:製造プロセスの進歩と規模の経済によるエネルギー貯蔵システムのコスト低下は、市場成長の主な要因です。例えば、リチウムイオン電池の価格は過去10年間で大幅に低下し、電力会社や系統運用者にとって蓄電ソリューションがより手頃な価格になっています。コストが下がり続ければ、エネルギー貯蔵は、大規模グリッド貯蔵、ピークカット、再生可能エネルギー統合など、さまざまな用途でより利用しやすくなり、経済的にも実行可能になるため、市場導入が加速します。
  • 政策と規制の支援:政策と規制の枠組みは、グリッドサイドエネルギー貯蔵市場の成長を促進する重要な要因です。政府や規制機関は、エネルギー貯蔵システムの導入を奨励するため、インセンティブ、補助金、義務付けを実施しています。税額控除、補助金、再生可能エネルギー・ポートフォリオ基準などのプログラムは、蓄電技術への投資と開発を促進しています。規制当局の支援には、蓄電の統合や系統サービスの枠組み作りも含まれ、導入障壁を克服し、市場拡大に有利な環境を確保するのに役立っています。
  • 再生可能エネルギー統合の増加:再生可能エネルギー統合への注目の高まりは、エネルギー貯蔵市場成長の重要な促進要因です。太陽光、風力、その他の再生可能エネルギー源がグリッドに追加されるにつれ、それらの断続性を管理し、安定した電力供給を確保するためのエネルギー貯蔵の必要性が高まっています。蓄電システムは、需要と供給のバランスをとり、ピーク時に発生する余剰エネルギーを貯蔵し、低発電量時にバックアップ電力を供給するのに役立ちます。このような自然エネルギーの統合の増加は、よりクリーンで信頼性の高いエネルギー・グリッドをサポートする蓄電ソリューションへの強い需要を生み出しています。
  • 高まるグリッド回復力への需要:送電網の回復力強化の必要性が、エネルギー貯蔵システムの採用を促進しています。異常気象やその他の混乱が頻繁に起こるようになるにつれ、電力会社や送電網運営者は送電網の信頼性を向上させ、バックアップ電力を供給するために蓄電ソリューションに投資しています。エネルギー貯蔵システムは、停電に迅速に対応し、緊急時に重要なインフラをサポートし、全体的なグリッドの安定性に貢献することができます。このような回復力に対する需要の高まりは、より堅牢で信頼性の高いエネルギー・インフラを構築する上でのエネルギー貯蔵の重要性を強調しています。

グリッドサイドエネルギー貯蔵市場の課題は以下の通り:

  • 初期コストの高さ:価格の下落にもかかわらず、蓄電システムの初期資本コストの高さは依然として大きな課題です。特に大規模プロジェクトの場合、蓄電技術の購入と設置にかかる費用は、電力会社やその他の利害関係者にとって障壁となる可能性があります。高い初期費用は投資収益率に影響し、蓄電ソリューションの導入を遅らせる可能性があります。この課題を克服するためには、技術の継続的な進歩と市場競争の激化により、コストをさらに引き下げ、蓄電ソリューションをより財政的に実現可能なものにする必要があります。
  • エネルギー密度と貯蔵期間の制限:エネルギー貯蔵技術の中には、エネルギー密度と貯蔵期間に限界があり、特定のグリッド用途への適性に影響を及ぼすものがあります。例えば、リチウムイオン電池は短時間の貯蔵には効率的ですが、長時間のニーズには適さない場合があります。同様に、フロー電池やその他の技術には特定の性能特性があり、グリッド要件と必ずしも一致しない場合があります。これらの限界に対処するには、エネルギー密度を向上させ、蓄電期間を延長し、蓄電システムの全体的な性能を高めるための継続的な研究開発が必要です。
  • 規制と市場の不確実性:規制と市場の不確実性は、蓄電セクターにとって課題となります。一貫性のない、あるいは発展途上の規制、地域によって異なる政策、不明確な市場構造が、投資と導入の障害となる可能性があります。将来の規制変更や市場インセンティブに関する不確実性は、エネルギー貯蔵プロジェクトの長期的な計画や意思決定を妨げる可能性があります。このような課題を軽減するためには、より明確で安定した規制の枠組みと、エネルギー貯蔵投資に対する予測可能な支援とインセンティブを提供する市場メカニズムが必要です。

グリッドサイドエネルギー貯蔵市場は、技術進歩、コスト低下、政策支援、再生可能エネルギー統合、系統回復力の需要によって牽引されています。しかし、初期コストの高さ、エネルギー密度の限界、規制の不確実性といった課題に直面しています。これらの促進要因と課題に対処することは、この分野を発展させ、蓄電システムの効果的な導入を確保する上で極めて重要です。技術革新、支援政策、戦略的投資を活用することで、利害関係者はこれらの課題を克服し、進化するエネルギー貯蔵市場の成長機会を活用することができます。

目次

第1章 エグゼクティブサマリー

第2章 世界のグリッドサイドエネルギー貯蔵市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 業界の促進要因と課題

第3章 市場動向と予測分析 (2018年~2030年)

  • マクロ経済動向 (2018~2023年) と予測 (2024~2030年)
  • 世界のグリッドサイドエネルギー貯蔵市場の動向 (2018~2023年) と予測 (2024~2030年)
  • 世界のグリッドサイドエネルギー貯蔵市場:種類別
    • 角形バッテリー
    • 円筒形バッテリー
    • ソフトパック型バッテリー
  • 世界のグリッドサイドエネルギー貯蔵市場:用途別
    • ピーク時・オフピーク時裁定取引
    • 蓄積エネルギー
    • ピークシェービング・周波数変調
    • その他

第4章 地域別の市場動向と予測分析 (2018年~2030年)

  • 世界のグリッドサイドエネルギー貯蔵市場:地域別
  • 北米のグリッドサイドエネルギー貯蔵市場
  • 欧州のグリッドサイドエネルギー貯蔵市場
  • アジア太平洋のグリッドサイドエネルギー貯蔵市場
  • その他地域のグリッドサイドエネルギー貯蔵市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 運用統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 世界のグリッドサイドエネルギー貯蔵市場の成長機会:種類別
    • 世界のグリッドサイドエネルギー貯蔵市場の成長機会:用途別
    • 世界のグリッドサイドエネルギー貯蔵市場の成長機会:地域別
  • 世界のグリッドサイドエネルギー貯蔵市場の新たな動向
  • 戦略的分析
    • 新製品の開発
    • 世界のグリッドサイドエネルギー貯蔵市場の生産能力拡大
    • 世界のグリッドサイドエネルギー貯蔵市場における企業合併・買収 (M&A)、合弁事業
    • 認証とライセンシング

第7章 主要企業のプロファイル

  • SDI
  • LG
  • Panasonic
  • BYD
  • Narada Power
  • Guangzhou Great Power
  • CATL
目次

Grid Side Energy Storage Trends and Forecast

The future of the global grid side energy storage market looks promising with opportunities in the peak-to-valley arbitrage, stored energy, and peak shaving and frequency modulation markets. The global grid side energy storage market is expected to grow with a CAGR of 8.5% from 2024 to 2030. The major drivers for this market are increased investments in renewable energy sources, the growing popularity of electric vehicles, increased awareness regarding effective energy consumption, and the rising demand to save excess energy produced.

  • Lucintel forecasts that, within the type category, the square battery is expected to witness the highest growth over the forecast period because of higher energy density, longer cycle life, and lower cost.
  • In terms of regions, North America is expected to witness the highest growth over the forecast period due to growth of industrial development and rapid urbanization in the region.

Gain valuable insights for your business decisions with our comprehensive 150+ page report.

Emerging Trends in the Grid Side Energy Storage Market

As the global energy landscape evolves, grid-side energy storage technologies are increasingly vital for ensuring a stable and reliable power supply. Emerging trends reflect advancements in technology, changes in market dynamics, and new regulatory frameworks. These trends are shaping how energy storage systems are deployed and integrated into the grid, driving innovation and improving efficiency. Understanding these trends is essential for stakeholders aiming to navigate the rapidly changing energy storage sector and capitalize on new opportunities.

  • Rise of Advanced Battery Technologies: The energy storage market is seeing significant growth in advanced battery technologies beyond traditional lithium-ion systems. Innovations include solid-state batteries, which offer higher energy densities and enhanced safety, and flow batteries, known for their scalability and longer cycle life. These technologies are increasingly viable due to declining costs and improvements in performance. As they mature, they promise to address some limitations of current battery systems, such as energy density and longevity, making them more suitable for large-scale grid applications and contributing to greater overall efficiency and reliability.
  • Integration of Energy Storage with Renewable Energy: There is a growing trend towards integrating energy storage systems directly with renewable energy sources like solar and wind. This integration helps manage the intermittent nature of renewable energy by storing excess power generated during peak production times and releasing it when generation is low. This trend is driven by the need to enhance grid stability and optimize the use of renewable resources. Advancements in smart grid technologies and energy management systems are facilitating this integration, making it easier to balance supply and demand while reducing reliance on fossil fuels.
  • Deployment of Grid-Scale Energy Storage Projects: Large-scale, utility-scale energy storage projects are becoming more common as utilities seek to improve grid resilience and accommodate increasing renewable energy sources. These projects involve deploying large banks of batteries or other storage technologies at strategic points in the grid. Such deployments are crucial for managing peak loads, providing backup power, and stabilizing the grid during disruptions. The expansion of these projects is supported by declining storage costs, favorable regulatory environments, and increased investment from both the public and private sectors, reflecting a significant shift towards large-scale energy storage solutions.
  • Emergence of Hybrid Storage Systems: Hybrid energy storage systems, which combine different storage technologies, are gaining traction for their ability to optimize performance and cost. For instance, combining lithium-ion batteries with flow batteries or supercapacitors can leverage the strengths of each technology, such as fast discharge rates or high energy density. These hybrid systems can be tailored to specific grid needs, such as frequency regulation or long-duration storage, offering more flexibility and efficiency. The development and adoption of hybrid systems are being driven by their potential to provide more comprehensive solutions to diverse energy storage challenges.
  • Increased Focus on Sustainability and Recycling: The energy storage sector is increasingly focused on sustainability and the lifecycle management of storage systems. As the deployment of batteries scales up, there is a growing emphasis on developing recycling processes for used batteries and minimizing the environmental impact of storage technologies. Innovations in recycling methods and the use of sustainable materials are becoming more prominent. Additionally, efforts to improve the environmental footprint of battery production, such as reducing the use of rare or hazardous materials, are critical to ensuring that energy storage remains a sustainable and eco-friendly component of the energy grid.

The grid-side energy storage market is experiencing transformative changes driven by technological advancements, evolving market needs, and a focus on sustainability. The growth in long-duration storage, expansion of battery systems, adoption of AI, increased decentralization, and development of eco-friendly technologies are all shaping the future of energy storage. These trends reflect a concerted effort to enhance grid stability, integrate renewable energy, and address environmental impacts, ultimately contributing to a more resilient, efficient, and sustainable energy system. As these trends continue to evolve, they will play a crucial role in advancing the global energy transition.

Recent Developments in the Grid Side Energy Storage Market

The grid-side energy storage market is undergoing significant transformations driven by advancements in technology, policy shifts, and growing demands for renewable energy integration. These developments are reshaping how energy is stored, managed, and utilized, aiming to enhance grid reliability, reduce costs, and support sustainability goals. With increasing investments and innovations, the sector is poised for substantial growth. Here are five key recent developments in the grid-side energy storage market that highlight its dynamic evolution and potential impact on the future of energy systems.

  • Surge in Utility-Scale Battery Installations: Utility-scale battery installations are expanding rapidly, driven by falling costs and the need to support large-scale renewable energy projects. Recent developments include significant deployments of lithium-ion batteries and emerging technologies such as flow batteries. These large-scale systems are crucial for stabilizing the grid, managing peak demand, and integrating intermittent renewable sources like solar and wind. Major projects in regions like California and China are setting new benchmarks for storage capacity and performance, demonstrating the scalability and effectiveness of battery energy storage in enhancing grid resilience and reliability.
  • Advances in Solid-State Battery Technology: Solid-state batteries are making notable strides in the energy storage market due to their potential for higher energy densities, improved safety, and longer lifespans compared to traditional lithium-ion batteries. Recent advancements include successful pilot projects and research breakthroughs that have reduced manufacturing costs and improved performance metrics. Solid-state batteries are particularly promising for grid-side applications requiring high energy storage and safety. Their development is expected to address some of the limitations of current battery technologies, offering a safer and more efficient solution for large-scale energy storage needs.
  • Emergence of Long-Duration Storage Solutions: Long-duration energy storage (LDES) technologies are gaining traction as they address the challenge of storing energy for extended periods, from hours to days. Recent developments include the deployment and scaling of technologies like pumped hydro storage, compressed air energy storage, and redox flow batteries. These systems are particularly valuable for managing seasonal variations in renewable energy production and providing reliable backup power. Investments and research in LDES are growing as utilities seek to balance renewable integration and ensure grid stability, highlighting their critical role in future energy systems.
  • Increased Integration with Smart Grid Technologies: The integration of energy storage systems with smart grid technologies is enhancing grid management and operational efficiency. Recent developments include the use of advanced grid management software, real-time data analytics, and automated control systems to optimize the deployment and performance of storage assets. Smart grid technologies enable better coordination between storage systems and renewable energy sources, improve demand response, and enhance grid reliability. This integration is crucial for maximizing the benefits of energy storage and supporting a more flexible and responsive grid infrastructure.
  • Focus on Sustainable and Recyclable Materials: There is a growing emphasis on developing energy storage technologies with sustainable and recyclable materials to address environmental concerns. Recent efforts include the advancement of battery chemistries that use less harmful materials, improved recycling processes for used batteries, and the development of more eco-friendly manufacturing practices. Innovations in sustainable storage technologies, such as sodium-ion and organic flow batteries, are gaining momentum. These developments aim to reduce the environmental impact of energy storage systems and support the broader goal of creating a more sustainable and circular economy in the energy sector.

Recent developments in the grid-side energy storage market reflect a dynamic shift towards more advanced, efficient, and sustainable solutions. The expansion of utility-scale projects, advancements in solid-state and long-duration storage technologies, integration with smart grid systems, and a focus on sustainability are all pivotal in shaping the future of energy storage. These trends collectively contribute to a more resilient and adaptable grid, capable of supporting increased renewable energy integration and addressing the challenges of modern energy management. As these developments continue to evolve, they will play a crucial role in advancing the global energy transition.

Strategic Growth Opportunities for Grid Side Energy Storage Market

The grid-side energy storage market is expanding rapidly, driven by the need for enhanced grid stability, efficient energy management, and increased renewable energy integration. As the sector evolves, several strategic growth opportunities are emerging across key applications, each addressing specific challenges and contributing to a more resilient and flexible energy infrastructure. These opportunities reflect the diverse ways energy storage can be utilized to optimize grid performance, support sustainability goals, and meet the demands of modern energy systems.

  • Renewable Energy Integration: Energy storage systems are critical for integrating renewable energy sources such as solar and wind into the grid. By storing excess energy generated during peak production times, these systems can release it when generation is low, ensuring a continuous and stable power supply. Strategic growth opportunities include deploying large-scale storage solutions to complement renewable projects, enhancing grid flexibility, and reducing reliance on fossil fuels. Investing in advanced battery technologies and grid-scale storage projects can significantly improve the efficiency and reliability of renewable energy integration.
  • Peak Shaving and Load Management: Energy storage systems offer significant opportunities for peak shaving and load management by storing energy during off-peak periods and discharging it during peak demand. This capability helps reduce the strain on the grid during high-demand periods, lowers energy costs, and minimizes the need for additional power generation capacity. Strategic growth opportunities involve developing advanced storage systems that can handle high charge and discharge rates and implementing sophisticated energy management systems to optimize performance and cost savings in both urban and rural settings.
  • Grid Resilience and Backup Power: Enhancing grid resilience and providing backup power during outages are crucial applications for energy storage. Storage systems can supply emergency power to critical infrastructure and support grid stability during disruptions. Key growth opportunities include deploying energy storage in areas prone to natural disasters or unreliable grid conditions, such as remote or disaster-prone regions. Additionally, integrating storage with microgrids can offer localized backup power solutions, improving overall grid reliability and ensuring continuity of service during emergencies.
  • Frequency Regulation and Ancillary Services: Energy storage systems play a vital role in frequency regulation and providing ancillary services to stabilize the grid. By rapidly responding to fluctuations in electricity supply and demand, storage systems can help maintain the balance required for grid stability. Growth opportunities include investing in technologies that provide fast response times and high power densities, such as lithium-ion and supercapacitors. Additionally, storage systems can participate in ancillary services markets, offering additional revenue streams and contributing to overall grid efficiency and reliability.
  • Electrification of Transportation: The electrification of transportation presents a growing opportunity for energy storage, particularly through the integration of vehicle-to-grid (V2G) technology. Electric vehicles (EVs) equipped with bidirectional charging capabilities can serve as mobile energy storage units, feeding excess energy back into the grid when needed. Strategic growth opportunities involve developing V2G infrastructure, enhancing charging technologies, and leveraging EVs to provide grid support services. This integration can help balance supply and demand, support renewable energy use, and contribute to the broader goal of reducing greenhouse gas emissions.

The energy storage market's value chain, covering customers, products, and services invariably cuts across multiple applications which in the end ensures more system reliability, efficiency, and sustainability. By concentrating on aspects such as the incorporation of renewables into energy storage, peak shaving, grid security, frequency regulation, or transportation electrification, one should be able to focus energy storage on urgent problems, as well as new business opportunities. These opportunities not only increase the performance of the grid but also contribute towards the achievement of cleaner and resilient energy systems benefiting the broad sustainability and energy goals.

Grid Side Energy Storage Market Driver and Challenges

The grid-side energy storage market is shaped by a complex interplay of technological, economic, and regulatory factors. Major drivers and challenges influence the growth and deployment of energy storage systems, affecting how they integrate with the grid, support renewable energy sources, and contribute to grid stability and efficiency. Understanding these drivers and challenges is crucial for stakeholders looking to navigate the evolving energy landscape and capitalize on opportunities while addressing potential obstacles.

The factors responsible for driving the grid-side energy storage market include:

  • Technological Advancements: Advances in battery technologies, such as lithium-ion, solid-state, and flow batteries, are driving the growth of grid-side energy storage. Innovations in these technologies are leading to improved energy densities, longer lifespans, and reduced costs, making energy storage systems more viable and attractive. Additionally, advancements in grid management software and smart grid technologies enhance the efficiency and integration of storage systems. These technological improvements enable better performance and scalability, supporting the broader adoption of energy storage solutions in grid applications.
  • Falling Costs: The declining costs of energy storage systems, driven by advancements in manufacturing processes and economies of scale, are a major driver of market growth. Prices for lithium-ion batteries, for example, have dropped significantly over the past decade, making storage solutions more affordable for utilities and grid operators. As costs continue to decrease, energy storage becomes more accessible and economically viable for a range of applications, including large-scale grid storage, peak shaving, and renewable energy integration, thereby accelerating market adoption.
  • Policy and Regulatory Support: Supportive policies and regulatory frameworks are crucial drivers for the growth of the grid-side energy storage market. Governments and regulatory bodies are implementing incentives, subsidies, and mandates to encourage the deployment of energy storage systems. Programs such as tax credits, grants, and renewable portfolio standards facilitate investment and development in storage technologies. Regulatory support also includes creating frameworks for storage integration and grid services, which helps overcome barriers to adoption and ensures a favorable environment for market expansion.
  • Increased Integration of Renewable Energy: The growing focus on renewable energy integration is a significant driver for energy storage market growth. As more solar, wind, and other renewable energy sources are added to the grid, there is a need for energy storage to manage their intermittency and ensure a stable power supply. Storage systems help balance supply and demand, store excess energy generated during peak production, and provide backup power during low-generation periods. This increased integration of renewables creates a strong demand for storage solutions to support a cleaner and more reliable energy grid.
  • Growing Demand for Grid Resilience: The need for enhanced grid resilience is driving the adoption of energy storage systems. As extreme weather events and other disruptions become more frequent, utilities and grid operators are investing in storage solutions to improve grid reliability and provide backup power. Energy storage systems can offer rapid response to outages, support critical infrastructure during emergencies, and contribute to overall grid stability. This growing demand for resilience underscores the importance of energy storage in creating a more robust and reliable energy infrastructure.

Challenges in the grid-side energy storage market are:

  • High Initial Costs: Despite declining prices, the high initial capital costs of energy storage systems remain a significant challenge. The expense of purchasing and installing storage technologies, especially for large-scale projects, can be a barrier for utilities and other stakeholders. High upfront costs can affect the return on investment and slow down the deployment of storage solutions. To overcome this challenge, continued advancements in technology and increased competition in the market are needed to drive down costs further and make storage solutions more financially feasible.
  • Limited Energy Density and Storage Duration: Some energy storage technologies face limitations in energy density and storage duration, affecting their suitability for certain grid applications. For example, while lithium-ion batteries are efficient for short-duration storage, they may not be ideal for long-duration needs. Similarly, flow batteries and other technologies have specific performance characteristics that may not always align with grid requirements. Addressing these limitations requires ongoing research and development to improve energy densities, extend storage durations, and enhance the overall performance of storage systems.
  • Regulatory and Market Uncertainty: Regulatory and market uncertainties pose challenges for the energy storage sector. Inconsistent or evolving regulations, varying policies across regions, and unclear market structures can create obstacles to investment and deployment. Uncertainty about future regulatory changes or market incentives can hinder long-term planning and decision-making for energy storage projects. To mitigate these challenges, there is a need for clearer and more stable regulatory frameworks, as well as market mechanisms that provide predictable support and incentives for energy storage investments.

The grid-side energy storage market is driven by technological advancements, falling costs, policy support, renewable energy integration, and the demand for grid resilience. However, it faces challenges such as high initial costs, limited energy density, and regulatory uncertainty. Addressing these drivers and challenges is crucial for advancing the sector and ensuring the effective deployment of energy storage systems. By leveraging technological innovations, supportive policies, and strategic investments, stakeholders can navigate these challenges and capitalize on the growth opportunities in the evolving energy storage market.

List of Grid Side Energy Storage Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies grid side energy storage companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the grid side energy storage companies profiled in this report include-

  • SDI
  • LG
  • Panasonic
  • BYD
  • Narada Power
  • Guangzhou Great Power
  • CATL

Grid Side Energy Storage by Segment

The study includes a forecast for the global grid side energy storage by type, application, and region.

Grid Side Energy Storage Market by Type [Analysis by Value from 2018 to 2030]:

  • Square Battery
  • Cylindrical Battery
  • Soft Pack Battery

Grid Side Energy Storage Market by Application [Analysis by Value from 2018 to 2030]:

  • Peak-to-Valley Arbitrage
  • Stored Energy
  • Peak Shaving & Frequency Modulation
  • Others

Grid Side Energy Storage Market by Region [Shipment Analysis by Value from 2018 to 2030]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Grid Side Energy Storage Market

As the global energy landscape shifts towards sustainable and renewable sources, energy storage has become a crucial component in managing grid stability and efficiency. This technology supports the integration of intermittent renewable resources like wind and solar, enhancing energy reliability and reducing dependence on fossil fuels. Recent developments in the grid-side energy storage market reflect a growing commitment across major economies to innovate and scale up solutions that address energy demands and sustainability goals. Here's a snapshot of the latest advancements in the United States, China, Germany, India, and Japan.

  • United States: The U.S. energy storage market is experiencing rapid growth driven by declining costs and supportive policies. Key advancements include increased deployment of lithium-ion batteries and the expansion of utility-scale storage projects. The Inflation Reduction Act has incentivized investment in storage technologies, while California and other states are implementing ambitious storage targets. Additionally, new technologies like solid-state batteries and flow batteries are emerging, promising improved performance and safety. Recent grid upgrades are also enhancing storage integration, helping to balance renewable energy sources and improve grid resilience.
  • China: China is leading the global energy storage market with significant investments in large-scale projects and advancements in battery technology. The country has focused on reducing the cost of energy storage through innovations in lithium iron phosphate (LFP) batteries, which are gaining traction due to their safety and longevity. China's 14th Five-Year Plan includes substantial goals for energy storage capacity, and state-owned enterprises are spearheading numerous projects. Additionally, China is developing large-scale energy storage systems integrated with renewable energy sources to support its ambitious carbon neutrality targets.
  • Germany: Germany continues to be a frontrunner in integrating energy storage with renewable energy systems, driven by its energy transition policy. Recent developments include the expansion of both home-scale and utility-scale storage solutions. The German government is supporting these advancements through subsidies and incentives, particularly for battery storage systems that complement solar PV installations. Moreover, Germany is exploring innovative storage technologies like hydrogen and grid-scale batteries to enhance energy security and manage the variable supply from its extensive wind and solar resources.
  • India: India is rapidly advancing its energy storage capabilities to support its growing renewable energy sector. The country is focusing on deploying both lithium-ion and emerging technologies like sodium-sulfur batteries. The Indian government has set ambitious targets for energy storage capacity as part of its National Energy Storage Mission. Recent developments include the establishment of large-scale storage projects and the promotion of domestic manufacturing through initiatives like the Production-Linked Incentive (PLI) scheme. These efforts are aimed at improving grid stability, reducing energy costs, and supporting India's renewable energy goals.
  • Japan: Japan is advancing its grid-side energy storage market with a focus on enhancing grid reliability and disaster resilience. Recent developments include increased investments in both lithium-ion and advanced solid-state batteries. The Japanese government has introduced policies to promote energy storage adoption, including subsidies and research grants. Japan's strategy also emphasizes the integration of storage with renewable energy sources and the development of innovative technologies such as flow batteries. Efforts to improve energy efficiency and reduce greenhouse gas emissions are driving these advancements, supporting Japan's transition to a more sustainable energy future.

Features of the Global Grid Side Energy Storage Market

Market Size Estimates: Grid side energy storage market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2018 to 2023) and forecast (2024 to 2030) by various segments and regions.

Segmentation Analysis: Grid side energy storage market size by type, application, and region in terms of value ($B).

Regional Analysis: Grid side energy storage market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different type, application, and regions for the grid side energy storage market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the grid side energy storage market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this market or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the grid side energy storage market by type (square battery, cylindrical battery, and soft pack battery), application (peak-to-valley arbitrage, stored energy, peak shaving & frequency modulation, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global Grid Side Energy Storage Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2018 to 2030

  • 3.1. Macroeconomic Trends (2018-2023) and Forecast (2024-2030)
  • 3.2. Global Grid Side Energy Storage Market Trends (2018-2023) and Forecast (2024-2030)
  • 3.3: Global Grid Side Energy Storage Market by Type
    • 3.3.1: Square Battery
    • 3.3.2: Cylindrical Battery
    • 3.3.3: Soft Pack Battery
  • 3.4: Global Grid Side Energy Storage Market by Application
    • 3.4.1: Peak-to-Valley Arbitrage
    • 3.4.2: Stored Energy
    • 3.4.3: Peak Shaving & Frequency Modulation
    • 3.4.4: Others

4. Market Trends and Forecast Analysis by Region from 2018 to 2030

  • 4.1: Global Grid Side Energy Storage Market by Region
  • 4.2: European Grid Side Energy Storage Market
    • 4.2.1: North American Market by Type: Square Battery, Cylindrical Battery, and Soft Pack Battery
  • 4.2:2: North American Market by Application: Peak-to-Valley Arbitrage, Stored Energy, Peak Shaving & Frequency Modulation, and Others
  • 4.3: European Grid Side Energy Storage Market
    • 4.3.1: European Market by Type: Square Battery, Cylindrical Battery, and Soft Pack Battery
    • 4.3.2: European Market by Application: Peak-to-Valley Arbitrage, Stored Energy, Peak Shaving & Frequency Modulation, and Others
  • 4.4: APAC Grid Side Energy Storage Market
    • 4.4.1: APAC Market by Type: Square Battery, Cylindrical Battery, and Soft Pack Battery
    • 4.4.2: APAC Market by Application: Peak-to-Valley Arbitrage, Stored Energy, Peak Shaving & Frequency Modulation, and Others
  • 4.5: ROW Grid Side Energy Storage Market
    • 4.5.1: ROW Market by Type: Square Battery, Cylindrical Battery, and Soft Pack Battery
    • 4.5.2: ROW Market by Application: Peak-to-Valley Arbitrage, Stored Energy, Peak Shaving & Frequency Modulation, and Others

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global Grid Side Energy Storage Market by Type
    • 6.1.2: Growth Opportunities for the Global Grid Side Energy Storage Market by Application
    • 6.1.3: Growth Opportunities for the Global Grid Side Energy Storage Market by Region
  • 6.2: Emerging Trends in the Global Grid Side Energy Storage Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global Grid Side Energy Storage Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global Grid Side Energy Storage Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: SDI
  • 7.2: LG
  • 7.3: Panasonic
  • 7.4: BYD
  • 7.5: Narada Power
  • 7.6: Guangzhou Great Power
  • 7.7: CATL