|
市場調査レポート
商品コード
1474077
リチウムイオン電池用ハロゲン化物固体電解質:特許情勢の分析 (2024年)Halide Solid Electrolytes for Li-ion Batteries Patent Landscape Analysis 2024 |
||||||
|
リチウムイオン電池用ハロゲン化物固体電解質:特許情勢の分析 (2024年) |
出版日: 2024年05月07日
発行: KnowMade
ページ情報: 英文 PDF >90 slides, Excel file >300 patent families
納期: 即日から翌営業日
|
当レポートでは、リチウムイオン電池用ハロゲン化物固体電解質に関する特許出願・公開の動きについて分析し、特許公開件数の推移 (国別・特許権者別) や、セグメント別の主な特許権者や新規参入企業、主要企業のポジショニングと特許ポートフォリオの拡充度、材料構成別・技術課題別の特許一覧、主要企業のIPプロファイル (特許ポートフォリオの概要、技術的カバー率、地理的カバー率、主要特許ほか) などを調査すると共に、分析対象特許 (全330件以上) の概略を取りまとめたExcelファイルを添付してお届けいたします。
固体リチウムイオン電池は、安全性と高エネルギー密度の可能性という特筆すべき利点があるため、ここ数十年で大きな注目を集めています。この有望な次世代リチウム電池の実用化には、迅速なイオン輸送と優れた安定性を有する固体電解質 (SE) が不可欠です。そのため、硫化物系電解質や酸化物系電解質など、無機固体電解質の研究が盛んに行われてきました。しかし、両者とも導電性と安定性の最適なバランスをとることはできていません。酸化物は粒界のインピーダンスが高く、硫化物は安定性が低いです。しかし、ハロゲン化物系固体電解質は、室温でのイオン伝導度 (>10-3 S.cm-1)、酸化物正極材料との良好な相溶性、優れた化学的安定性・拡張性を備えているため、固体リチウムイオン電池の最も有望な選択肢の1つとして認識されつつあります。
ハロゲン化物固体電解質への関心が高まっていることは、固体リチウムイオン電池に関する特許のモニターからも確認されています。2023年9月現在、リチウムイオン電池用ハロゲン化物固体電解質材料に関する特許は330件以上公開されています。固体電池業界で事業を展開する企業にとって、技術、競合、知的財産 (IP) の観点からこれらの新興材料を精査することは、今や極めて重要です。
当レポートでは、特許ポートフォリオの強さ、主要な特許権者 (特許譲受人) 企業の主な技術と活用領域を分析します。また、特許技術とその利用の現状と動向についても概観しています。さらに、この分野の大手企業と新規参入企業の戦略的・技術的方向性についても検証しています。
特許は、請求大賞の材料組成 (LiMX4、Li3MX6、ハロゲン化物材料単独、シェルを有するハロゲン化物材料、他の材料と混合されたハロゲン化物材料)、特許請求対象の製造方法 (メカノケミカル、共溶融、液相)、および課題/解決策、発明によって開示された室温での最良の材料/イオン伝導度に従って、手作業で分類されています。
Panasonic/Sanyoがハロゲン化物固体電解質の特許をリードしており、Samsung、GLABAT、SVOLT、Saint-Gobain、TDKがこれに対抗しています。さらに、IP分析により、2022年以降に最初のハロゲン化物関連特許を出願した60以上のIP新規参入企業を特定することができました:EVE Energy、Korea Electronics Technology Institute (KETI)、Liongo New Energy、Qingtao Energy Development、Global Grapheneなどです。特許の新規参入者の80%は中国からです。専用セクションでは、主要企業 (Panasonic、Samsung、Saint-Govain、GLABAT、SVOLT、EVE Energy、University of Western Ontario、TDK、Toyotaなど) が保有するIPポートフォリオに焦点を当てています。それぞれについて、ハロゲン化物固体電解質に関連する特許ポートフォリオの概要と、主要な特許技術の説明を提供します。
当レポートには、分析対象の全ての特許を含む広範なExcelデータベースも含まれています。この便利な特許データベースは、多基準検索が可能で、特許公開番号、更新されたオンラインデータベースへのハイパーリンク (原文、法的ステータスなど)、優先日、タイトル、要約、特許譲受人、セグメント (課題/解決策、材料組成、ハロゲン化物処方、合成方法など) を含んでいます。
Baoneng Group、Baowu Steel Group、BASF、Beijing Institute of Technology、BYD、China Automotive Battery Research Institute、China Electrics、Corning、EVE Energy、FAW (China First Automobile Works)、Global Graphene、GRINM (General Research Institute for Nonferrous Metals) / GRIMAT、GRIREM Advanced Materials、GTC Power、Guolian Automobile Power Battery Research Institute (GLABAT)、Guoxuan High Tech Power Energy / Gotion、Hanyang University、Hyundai / Kia、Institute of Chemistry - Chinese Academy of Sciences、Korea Electronics Technology Institute (KETI)、Liongo New Energy Technology、Nankai University、Nanmu Nanotechnology、Nichia、Panasonic / Sanyo、QingTao Energy Development、Rare Earth Functional Materials Innovation Center、Saint-Gobain、Samsung、Shenzhen University、Silver Leaf Element、Solvay、South University of Science & Technology of China (SUSTech)、SVOLT / Fengchao Energy Technology、TDK、Toyota、Tsinghua Shenzhen International Graduate School、University of Maryland、University of Waterloo、University of Western Ontario、University of Science and Technology of China (USTC)、Xi'an Jiaotong University、Yonsei University、Zengzhou New Century Materials Genome Institute、Zhejiang University、など。
Solid-state Li-ion batteries have garnered significant attention in recent decades due to their notable advantages of safety and potential for high energy density. Solid electrolytes (SE) with rapid ionic transport and excellent stability are essential for the commercialization of this promising next-generation of Lithium batteries. Hence, there has been extensive exploration of inorganic solid electrolytes, including sulfide- and oxide-based electrolytes. Unfortunately, both have been unable to strike an optimal balance between conductivity and stability. Oxides suffer from high impedance of grain boundaries, while sulfides experience poor stability. However, halide-based solid electrolytes are increasingly being recognized as one of the most promising options for solid-state Li-ion batteries, owing to their decent room temperature ionic conductivity (>10-3 S.cm-1), good compatibility with oxide cathode materials, excellent chemical stability, and scalability.
The increasing interest in halide solid electrolytes has been observed while monitoring patents on solid-state Li-ion batteries. As of September 2023, over 330 patent families have been published on halide solid electrolyte materials for Li-ion batteries. It is now crucial for companies operating in the solid-state battery industry to closely examine these emerging materials from technological, competitive, and intellectual property (IP) perspectives.
In this context, Knowmade is releasing a new patent landscape report that focuses on halide solid electrolyte materials for Li-ion batteries. In this report, Knowmade's analysts have selected and analyzed over 860 patents and patent applications from more than 330 patent families (inventions) filed by 110+ different entities. The report provides a detailed analysis of the IP landscape and noteworthy patents concerning halide solid electrolyte materials. This new IP report is complementary to our previous patent landscape reports and patent monitors on solid-state batteries.
IP competition analysis should reflect the vision of players with a strategy to enter and develop their business in the solid-state Li-ion battery market. In this report, Knowmade's analysts provide a comprehensive overview of the competitive IP landscape and latest technological developments in this field. The report covers IP dynamics and key trends in terms of patents applications, patent assignees, filing countries, and patented technologies. It also identifies the IP leaders, most active patent applicants, and new entrants in the IP landscape. The report also sheds light on under-the-radar companies and new players in this field.
In this report, we analyze the strength of patent portfolios and the technology and application focus of key patent assignees. An overview of the current status and trends of patented technologies and their applications is also provided. Furthermore, the report examines the strategic and technological directions of both leading companies and newcomers in the field.
The patents have been manually categorized according the claimed material compositions (LiMX4, Li3MX6, halide material alone, halide material with a shell, halide material mixed with another material), the claimed manufacturing methods (mechano-chemical, co-melting, liquid-phase), as well as the challenges/solutions and the best materials/ionic conductivities at room temperature disclosed by the inventions.
Panasonic/Sanyo is leading the halide solid electrolytes patent landscape, challenged by Samsung, GLABAT, SVOLT, Saint-Gobain, and TDK. Additionally, the IP analysis allowed us to pinpoint over 60 IP newcomers who filed their first halide-related patents in 2022 or after: EVE Energy, Korea Electronics Technology Institute (KETI), Liongo New Energy, Qingtao Energy Development, Global Graphene, etc. 80% of new entrants in the patent landscape come from China. In a dedicated section, we focus on the IP portfolios held by key players (Panasonic, Samsung, Saint-Gobain, GLABAT, SVOLT, EVE Energy, University of Western Ontario, TDK, Toyota, etc.). For each, we provide an overview of their patent portfolio related to halide solid electrolytes and a description of their key patented technologies.
This report also includes an extensive Excel database with all patents analyzed in this study. This useful patent database allows for multi-criteria searches and includes patent publication numbers, hyperlinks to an updated online database (original documents, legal status, etc.), priority date, title, abstract, patent assignees, and segments (challenges/solutions, material composition, halide formula, synthesis methods, etc.).
Baoneng Group, Baowu Steel Group, BASF, Beijing Institute of Technology, BYD, China Automotive Battery Research Institute, China Electrics, Corning, EVE Energy, FAW (China First Automobile Works), Global Graphene, GRINM (General Research Institute for Nonferrous Metals) / GRIMAT, GRIREM Advanced Materials, GTC Power, Guolian Automobile Power Battery Research Institute (GLABAT), Guoxuan High Tech Power Energy / Gotion, Hanyang University, Hyundai / Kia, Institute of Chemistry - Chinese Academy of Sciences, Korea Electronics Technology Institute (KETI), Liongo New Energy Technology, Nankai University, Nanmu Nanotechnology, Nichia, Panasonic / Sanyo, QingTao Energy Development, Rare Earth Functional Materials Innovation Center, Saint-Gobain, Samsung, Shenzhen University, Silver Leaf Element, Solvay, South University of Science & Technology of China (SUSTech), SVOLT / Fengchao Energy Technology, TDK, Toyota, Tsinghua Shenzhen International Graduate School, University of Maryland, University of Waterloo, University of Western Ontario, University of Science and Technology of China (USTC), Xi'an Jiaotong University, Yonsei University, Zengzhou New Century Materials Genome Institute, Zhejiang University, and more.