![]() |
市場調査レポート
商品コード
1806649
シングルセルシーケンス市場:製品タイプ、技術、エンドユーザー、用途別-2025-2030年の世界予測Single Cell Sequencing Market by Product Type, Technology, End User, Application - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
シングルセルシーケンス市場:製品タイプ、技術、エンドユーザー、用途別-2025-2030年の世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 198 Pages
納期: 即日から翌営業日
|
シングルセルシーケンス市場は、2024年には24億9,000万米ドルとなり、2025年には28億3,000万米ドル、CAGR13.94%で成長し、2030年には54億5,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年2024 | 24億9,000万米ドル |
推定年2025 | 28億3,000万米ドル |
予測年2030 | 54億5,000万米ドル |
CAGR(%) | 13.94% |
精密医療と革新的バイオテクノロジーの時代において、シングルセルシーケンスは、前例のない解像度で細胞の不均一性を解き明かす画期的なツールとして登場しました。このテクノロジーにより、研究者は組織の複雑性を個々の細胞レベルで解明することが可能になり、がん生物学、免疫学、発生生物学、そしてそれ以上の分野でのブレークスルーへの道が開かれます。
過去10年間、シングルセルシーケンスは、マイクロ流体液滴システム、マイクロウェルプラットフォーム、高スループットプレートベースのソリューションの台頭により、変革的な変化を遂げてきました。液滴ベースの方法は、個々の細胞をナノリットルの液滴に封入することでアクセスを民主化し、1回のランで数万細胞の並列処理を可能にしました。マイクロウェルベースのシステムは、高密度アレイでの正確な細胞捕捉とバーコード化を可能にし、スループットと確実なデータ品質とのバランスをとっています。一方、プレートベースの技術は、より少ない細胞数のディープシーケンスを必要とする特殊なアプリケーションに対応し続けています。
2025年に発効する米国の関税案は、重要な装置、消耗品、試薬に対する輸入課税を増加させることで、シングルセルシーケンスのエコシステムに影響を与えようとしています。製造業者とエンドユーザーは、シーケンサーとマイクロ流体デバイスの陸揚げコストの上昇に直面する可能性があり、サプライチェーンの再編成と国内製造イニシアチブの加速を促す可能性があります。
製品開発と市場開拓戦略をエンドユーザーのニーズに合わせるには、市場セグメンテーションの微妙な理解が不可欠です。製品タイプに基づくと、シングルセルシーケンシングのエコシステムには機器と試薬・キットの両方が含まれます。機器には、希少な亜集団を分離する特殊なセルソーター、ハイスループットのカプセル化ワークフローを可能にするマイクロ流体デバイス、シングルセル読み取り深度に最適化された次世代シーケンサーなどがあります。試薬とキットには、転写物の完全性を維持するテーラーメイドの増幅ケミストリー、多重化されたサンプルのインデックス付けのためのラベリングキット、個々の細胞からの核酸回収を最大化するように設計された溶解キットなどがあります。
地域のダイナミクスは、シングルセルシーケンスの採用と進化を大きく左右します。南北アメリカでは、北米の強固な学術エコシステムが最先端プラットフォームの早期採用を促進し、一方、主要なバイオ医薬品クラスターが臨床応用への移行を加速させています。国内製造と共同研究イニシアティブへの投資は、この地域の新しいワークフローの革新と商業化の能力を強化します。
業界をリードする企業は、シングルセルシーケンスプラットフォームと消耗品に対する需要の高まりに対応するため、戦略的なポジショニングをとっています。10x GenomicsやIlluminaのような装置メーカーは、データスループットと信頼性を高めるために、マイクロ流体イノベーションを高度な光学系と流体ハンドリングに統合し、ハードウェア設計を改良し続けています。こうした努力を補完するように、BDバイオサイエンシズやフルイディグムを含む専門プロバイダーは、細胞の捕捉とバーコード化を合理化するターンキー・ソリューションを提供し、エンドユーザーのワークフローの複雑さを軽減しています。
業界リーダーは、拡大するシングルセルシーケンスの展望を活かすために積極的なアプローチを採用する必要があります。投資は、装置の能力を最先端の試薬化学物質と整合させ、多様なサンプルタイプにわたるシームレスなワークフローとバリデーションを保証する共同開発パートナーシップを優先すべきです。主要な学術機関や製薬企業との共同技術ロードマップを確立することで、早期導入と共同ブランド化の機会を促進し、市場への浸透を高めます。
当社の調査手法は、シングルセルシーケンスの状況を確実かつ包括的に分析するために、定性的および定量的アプローチを統合しています。1次調査では、技術導入の障壁、ワークフローの嗜好、新たなアプリケーションのニーズに関する直接の洞察を収集するため、学術研究者、臨床検査室長、製薬企業の研究開発幹部など、主要なオピニオンリーダーへの詳細なインタビューを実施しました。
サマリー:シングルセルシーケンスは科学的イノベーションの最前線に位置し、細胞解像に対する従来の障壁を取り払い、腫瘍学、免疫学、神経学、そしてそれ以上の分野でのブレークスルーを促進します。新たな液滴およびマイクロウェルプラットフォームがアクセスを民主化し、統合されたケミストリーがワークフローを合理化するにつれて、この技術は基礎研究と臨床診断の両方を再形成する態勢が整っています。
The Single Cell Sequencing Market was valued at USD 2.49 billion in 2024 and is projected to grow to USD 2.83 billion in 2025, with a CAGR of 13.94%, reaching USD 5.45 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 2.49 billion |
Estimated Year [2025] | USD 2.83 billion |
Forecast Year [2030] | USD 5.45 billion |
CAGR (%) | 13.94% |
In the era of precision medicine and transformative biotechnology, single cell sequencing has emerged as a revolutionary tool that dissects cellular heterogeneity with unprecedented resolution. This technology enables researchers to unravel the complexity of tissues at the individual cell level, paving the way for breakthroughs in cancer biology, immunology, developmental biology, and beyond.
By capturing transcriptomic and genomic information from individual cells, scientists can identify rare cell populations, map differentiation trajectories, and characterize tumor microenvironments with a depth that bulk sequencing cannot achieve. As a result, single cell sequencing is redefining how we understand disease mechanisms, accelerating biomarker discovery, and informing the development of targeted therapies. With continuous innovations in instrumentation, chemistry, and computational analysis, the field is on the cusp of even greater sophistication and accessibility.
As research institutions, pharmaceutical companies, and clinical laboratories adopt these advanced workflows, the strategic importance of single cell sequencing grows. Decision-makers must understand the technological foundations and transformative potential of this field to harness its capabilities effectively. This introduction sets the stage for an in-depth exploration of the shifts, challenges, and opportunities that will shape the trajectory of single cell sequencing in the coming years.
Over the past decade, single cell sequencing has undergone transformative shifts driven by the rise of microfluidic droplet systems, microwell platforms, and high-throughput plate-based solutions. Droplet-based methods have democratized access by encapsulating individual cells in nanoliter droplets, enabling parallel processing of tens of thousands of cells in a single run. Microwell-based systems offer precise cell capture and barcoding in dense arrays, balancing throughput with robust data quality. Meanwhile, plate-based techniques continue to serve specialized applications requiring deep sequencing of fewer cells.
These technological leaps have been accompanied by advancements in library preparation chemistries, molecular barcoding strategies, and bioinformatic pipelines. As researchers demand greater sensitivity and lower input requirements, instrument vendors and reagent developers have responded with streamlined workflows and integrated analysis software. The convergence of hardware miniaturization and cloud-native data processing is further reducing barriers to entry, empowering academic laboratories and biotech startups alike.
Looking ahead, the landscape will be defined by continued integration of multi-omic approaches, spatial context preservation, and real-time data visualization. These emerging paradigms promise to expand the application scope of single cell sequencing, from early disease detection and immunoprofiling to monitoring therapeutic efficacy in clinical trials. Such shifts underscore the importance of staying abreast of platform innovations and aligning research strategies with evolving capabilities.
The proposed United States tariffs effective in 2025 are poised to influence the single cell sequencing ecosystem by increasing import levies on critical instruments, consumables, and reagents. Manufacturers and end users may face higher landed costs for sequencers and microfluidic devices, potentially prompting supply chain realignments and accelerated domestic manufacturing initiatives.
In response, many global instrument vendors are exploring localized assembly hubs to mitigate tariff impact while preserving price competitiveness. Parallel efforts by reagent suppliers to establish regional production facilities aim to ensure uninterrupted supply of barcoding chemistries, amplification kits, and labeling reagents. However, scaling local manufacturing involves rigorous validation processes and adherence to quality standards, which could introduce short-term bottlenecks.
As laboratories adjust procurement strategies, some may seek alternative suppliers or re-evaluate long-term service contracts, emphasizing total cost of ownership rather than unit price. Collaboration between instrument OEMs and reagent innovators will become even more critical to deliver integrated solutions that justify premium pricing through enhanced performance and support. Moreover, stakeholders should monitor policy developments closely, using scenario planning to anticipate further trade policy shifts.
Ultimately, the cumulative impact of these tariffs will hinge on the ability of the industry to adapt supply chain models, optimize inventory buffers, and leverage strategic partnerships to sustain momentum in high-impact research programs.
A nuanced understanding of market segmentation is essential for aligning product development and go-to-market strategies with end-user needs. Based on product type, the single cell sequencing ecosystem encompasses both instruments and reagents and kits. Instruments span specialized cell sorters that isolate rare subpopulations, microfluidic devices that enable high-throughput encapsulation workflows, and next-generation sequencers optimized for single cell read depth. Reagents and kits comprise tailored amplification chemistries that preserve transcript integrity, labeling kits for multiplexed sample indexing, and lysis kits engineered to maximize nucleic acid recovery from individual cells.
In parallel, technological segmentation distinguishes droplet-based approaches, which excel in scalability; microwell-based platforms, which balance throughput and data fidelity; and plate-based solutions, which facilitate deep profiling of targeted cell cohorts. Each technology addresses unique research questions, from broad discovery studies to focused lineage tracing investigations.
End users range from academic research institutions-spanning both universities and independent research institutes-to clinical diagnostics laboratories and hospital centers where patient-derived samples inform precision oncology decisions. Clinical research organizations, subdivided into preclinical and clinical service providers, increasingly integrate single cell workflows into drug development pipelines. Similarly, pharmaceutical and biotech companies leverage these tools for biomarker discovery and drug screening, driving collaborations with instrument and reagent partners.
Applications further segment into cancer research, including studies of circulating tumor cells and tumor heterogeneity, developmental biology investigations, immunology analyses such as immune repertoire profiling and T cell functional assays, and neurological research focused on neurodegenerative disease models and neuronal cell type mapping. This layered segmentation framework empowers stakeholders to tailor solutions to the precise demands of diverse research and clinical markets.
Regional dynamics profoundly shape the adoption and evolution of single cell sequencing. In the Americas, robust academic ecosystems in North America drive early adoption of cutting-edge platforms, while leading biopharmaceutical clusters accelerate translation into clinical applications. Investment in domestic manufacturing and collaborative research initiatives bolsters the region's capacity to innovate and commercialize new workflows.
In Europe, Middle East, and Africa, cross-border consortia support large-scale population studies and translational research, leveraging harmonized regulatory frameworks and funding partnerships. European Union-led initiatives promote data sharing and standardization, facilitating multi-center studies in oncology, immunology, and neurobiology. Emerging markets in the Middle East and Africa are investing in infrastructure and training to integrate single cell techniques into regional health priorities.
Asia-Pacific exhibits the fastest growth trajectory, driven by strategic government funding programs, expanding biotechnology hubs, and a growing network of contract research organizations. Countries across the region are establishing centers of excellence focused on single cell genomics to support drug discovery and precision diagnostics. Local partnerships between instrument providers and regional distributors enhance accessibility and technical support, ensuring that researchers can fully leverage advanced sequencing platforms.
These distinct regional landscapes underscore the importance of tailored market entry and expansion strategies, from localized manufacturing and regulatory alignment to targeted collaborator networks.
Leading industry players have strategically positioned themselves to capitalize on the growing demand for single cell sequencing platforms and consumables. Instrument manufacturers such as 10x Genomics and Illumina continue to refine hardware designs, integrating microfluidic innovations with advanced optics and fluid handling to enhance data throughput and reliability. Complementing these efforts, specialized providers-including BD Biosciences and Fluidigm-offer turnkey solutions that streamline cell capture and barcoding, reducing workflow complexity for end users.
On the reagents front, companies like Takara Bio and Bio-Rad Laboratories have invested heavily in optimizing chemistries for single cell library preparation, focusing on sensitivity, specificity, and compatibility with diverse sample types. Meanwhile, emerging biotech firms are forging strategic alliances with large pharmaceutical organizations, co-developing custom assays tailored to high-value therapeutic areas such as immuno-oncology and regenerative medicine.
Collaborative partnerships between instrument OEMs, reagent suppliers, and software innovators are increasingly common, as integrated platforms become essential to address the data analysis bottleneck inherent to single cell studies. By uniting expertise in molecular biology, engineering, and bioinformatics, these consortia accelerate time-to-insight for researchers and bolster competitive moats through proprietary workflows and support services.
The success of these companies hinges on their ability to anticipate evolving user requirements, drive continuous innovation, and foster robust, user-centered ecosystems that extend beyond hardware and reagents into informatics and application support.
Industry leaders must adopt a proactive approach to capitalize on the expanding single cell sequencing landscape. Investments should prioritize co-development partnerships that align instrument capabilities with cutting-edge reagent chemistries, ensuring seamless workflows and validation across diverse sample types. Establishing joint technology roadmaps with key academic and pharmaceutical collaborators will foster early adoption and co-branding opportunities that enhance market penetration.
Building resilient supply chains is equally critical; diversifying manufacturing footprints and qualifying secondary suppliers will mitigate risks associated with geopolitical shifts, including tariff changes and trade restrictions. Leaders should implement agile inventory management systems to balance just-in-time delivery with strategic buffer stock, avoiding disruptions to high-priority research programs.
Embedding data analysis solutions within instrument offerings can create differentiated value propositions. By integrating cloud-native bioinformatics platforms and developing intuitive visualization tools, companies can lower the barrier to entry for laboratories lacking deep computational expertise. Tailored training programs, combined with certification pathways for single cell workflows, will reinforce customer loyalty and drive recurring revenue streams through reagent and service contracts.
Lastly, engaging with regulatory bodies and standardization consortia will position organizations to influence emerging guidelines for clinical translation of single cell assays. By contributing to best practice frameworks, leaders can accelerate approval pathways for diagnostic applications and solidify their role in the future of precision medicine.
Our research methodology integrates both qualitative and quantitative approaches to ensure a robust and comprehensive analysis of the single cell sequencing landscape. Primary research entailed in-depth interviews with key opinion leaders, including academic investigators, clinical laboratory directors, and pharmaceutical R&D executives, to gather firsthand insights on technology adoption barriers, workflow preferences, and emerging application needs.
On the quantitative side, publicly available data from peer-reviewed publications, conference proceedings, and patent filings were systematically analyzed to track technology maturation, funding trends, and geographic diffusion. We also mined instrument and reagent performance metrics to compare sensitivity, throughput, and cost-efficiency across competing platforms.
Secondary research leveraged industry white papers, regulatory filings, and corporate disclosures to validate primary findings and refine market segmentation. Cross-validation techniques were applied to reconcile disparate data sources, ensuring consistency and accuracy. Our analytical framework combined trend analysis, scenario modeling, and SWOT assessments to identify strategic imperatives and forecast potential market shifts.
This blended methodology, underpinned by continuous data quality checks and expert review panels, delivers actionable intelligence to support investment decisions, product development roadmaps, and go-to-market strategies in the fast-evolving single cell sequencing space.
In summary, single cell sequencing stands at the forefront of scientific innovation, dismantling traditional barriers to cellular resolution and fueling breakthroughs across oncology, immunology, neurology, and beyond. As emerging droplet and microwell platforms democratize access, and integrated chemistries streamline workflows, the technology is poised to reshape both basic research and clinical diagnostics.
Navigating the evolving landscape requires a deep understanding of segmentation dynamics-from product typologies and technological modalities to end-user applications and geographic nuances. Concurrently, the industry must adapt to external pressures, including upcoming trade policies and shifting regulatory expectations. Leading organizations are already forging collaborative partnerships, investing in domestic supply chains, and embedding analytics solutions to maintain competitive advantage.
The strategic imperatives distilled here underscore the importance of aligning innovation with user needs, diversifying risk exposures, and proactively engaging in standards development. By synthesizing these insights, decision-makers can chart a path toward sustainable growth, operational resilience, and scientific leadership in an era where single cell technologies redefine what is possible in life science research.