![]() |
市場調査レポート
商品コード
1806304
波力・潮力エネルギー市場:技術タイプ別、コンポーネントタイプ別、設置タイプ別、最終用途別、エンドユーザー別-2025-2030年世界予測Wave & Tidal Energy Market by Technology Type, Component Type, Installation Type, End-Use Application, End User - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
波力・潮力エネルギー市場:技術タイプ別、コンポーネントタイプ別、設置タイプ別、最終用途別、エンドユーザー別-2025-2030年世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 190 Pages
納期: 即日から翌営業日
|
波力・潮力エネルギー市場は、2024年には21億3,000万米ドルとなり、2025年には25億4,000万米ドル、CAGR18.81%で成長し、2030年には60億1,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年2024 | 21億3,000万米ドル |
推定年2025 | 25億4,000万米ドル |
予測年2030 | 60億1,000万米ドル |
CAGR(%) | 18.81% |
クリーンエネルギーの世界的な追求により、海洋の巨大なパワーを利用することへの関心が高まっています。波力エネルギーと潮力エネルギーは、最も予測可能で未開発の再生可能資源であり、太陽光発電や風力発電を補完する貴重な資源です。各国が電力システムの脱炭素化に取り組む中、海洋エネルギーの魅力は、見た目のフットプリントが小さく、ライフサイクルでの二酸化炭素排出量が少なく、安定したベースロード電力を供給できることから、ますます高まっています。このイントロダクションでは、エネルギー安全保障を強化し、持続可能な目標を達成するために海洋の力を活用することの意義を説明します。
海洋エネルギーの状況は、バリューチェーン全体にわたる技術的躍進と戦略的再編成の収束によって、大きな変貌を遂げつつあります。デバイスのモジュール化が中心的な設計理念となり、開発者はコンポーネントを迅速に反復し、リードタイムを短縮できるようになりました。この動向は、デジタルツインプラットフォームによって補完され、リアルタイムのデータ分析を活用することで、メンテナンススケジュールを改善し、水中機械の稼動寿命を延ばしています。その結果、コストドライバーはプロトタイプから、予測可能な生産サイクルと合理化された設置プロセスへとシフトしています。
2025年初頭に導入された米国の関税措置は、海洋エネルギー機器のグローバル・サプライチェーン全体に波紋を広げています。この関税措置は国内メーカーを保護するためのものではあるが、特殊な部品に依存する国際的な開発企業にとってはコスト圧迫要因となっています。例えば、ダイナミック潮力発電や振動水柱装置メーカーは、海外から係留システムを調達しているが、サプライヤーが新たなコンプライアンス要件に対応するため、リードタイムの延長に直面しています。
様々なセグメンテーションの側面から洞察することで、プロジェクトの実現可能性とパフォーマンスを形成する微妙な要因が明らかになります。技術タイプというレンズを通して見ると、ダイナミック潮力発電、潮干狩り場、潮間ラグーン、潮流発電機などの潮力エネルギーアプローチは、減衰器や点吸収器、振動水柱、オーバートップ装置、回転質量システムなどの振動体コンバータを含む波力エネルギーコンバータと著しく対照的です。予測可能な潮流を利用するものから、表面波のうねるような動きを利用するものまで、それぞれの技術的経路は、明確な利点と工学的課題を提供しています。
地域の情勢は、海洋エネルギー開発にとって多様な機会と課題を示しています。南北アメリカ大陸では、再生可能エネルギーの多様化に対する強い関心から、両海岸で試験的な導入が行われ、連邦政府の研究助成金により、大学や民間企業が温帯海域で潮流発電機のテストを行っています。地元のサプライチェーンは、すでに確立された洋上風力発電製造の恩恵を受けており、部品製造や船舶の動員における相乗効果を可能にしています。
主要企業は、独自の技術パイプラインを進化する市場の需要に合わせることで、競争上の優位性を切り拓いています。潮流発電機を専門とする企業は、エネルギー捕捉量を最大化するためにローターの設計を進めており、波力エネルギーの革新企業は、弾力性のある素材や適応係留システムを通じて装置の生存性を高めることに注力しています。機器メーカーとオフショアサービスプロバイダーとの戦略的提携は、設置・保守作業を合理化し、船舶の所要時間と運用経費を削減しています。
業界のリーダーは、関税の変動や物流の途絶に対するリスクを軽減するため、部品供給元を多様化し、現地製造パートナーシップを育成することにより、サプライチェーンの回復力を優先すべきです。係留システムや電気インフラの地域的な製造ハブを確立することで、組織は納品スケジュールを維持し、同時に労働力開発イニシアチブを支援することができます。
本調査は、波力・潮力エネルギー技術の進化をマッピングするために、技術文献、特許出願、政策白書、学術出版物を調査する広範な机上調査から始まり、多層的なアプローチを統合しています。これらの洞察は、装置設計者、海洋生態学者、港湾運営者、金融の専門家など、各分野の専門家との一次インタビューによって補完され、工学的実現可能性と商業的実現可能性の両方についてバランスの取れた視点が確保されました。
波力・潮力エネルギーは、予測可能で環境に適合した電力ソリューションを提供することで、既存の再生可能エネルギー・ポートフォリオを補完する態勢を整えています。機器設計、デジタル・モニタリング、資金調達の仕組みの総合的な進歩は、参入障壁を下げ、プロジェクトの信頼性を向上させています。それにもかかわらず、部品サプライチェーンの最適化、規制枠組みの調和、多様な海洋条件下での大規模実証の検証など、課題は山積しています。
The Wave & Tidal Energy Market was valued at USD 2.13 billion in 2024 and is projected to grow to USD 2.54 billion in 2025, with a CAGR of 18.81%, reaching USD 6.01 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 2.13 billion |
Estimated Year [2025] | USD 2.54 billion |
Forecast Year [2030] | USD 6.01 billion |
CAGR (%) | 18.81% |
The global pursuit of clean energy solutions has intensified interest in harnessing the immense power of the ocean. Wave and tidal energy represent two of the most predictable and underexploited renewable resources, offering a valuable complement to solar and wind generation. As nations strive to decarbonize their power systems, the appeal of marine energy has grown, driven by its minimal visual footprint, low carbon lifecycle emissions, and capacity to deliver consistent baseload power. This introduction frames the significance of tapping ocean forces to bolster energy security and achieve sustainability goals.
Recent advances in hydrodynamic simulation, materials science, and sensor technologies have spurred a wave of innovation in device design. Beyond proof-of-concept prototypes, commercial-scale projects are beginning to demonstrate viable returns under supportive policy regimes. Meanwhile, collaborative efforts across academia, industry, and government have accelerated knowledge transfer, enhancing resource assessment methodologies and optimizing deployment strategies. These factors collectively underscore the transformational potential of wave and tidal technologies and set the stage for deeper analysis.
Moreover, growing public awareness of climate risks and mounting pressure to adhere to international emission targets have intensified investments in next-generation renewables. Governments are enacting incentive programs, streamlining permitting frameworks, and fostering public-private partnerships. As you explore this report, consider how these evolving conditions create momentum for wave and tidal energy to emerge from niche experimentation into mainstream energy portfolios.
The marine energy landscape is undergoing a profound transformation, driven by converging technological breakthroughs and strategic realignments across the value chain. Device modularity has become a central design philosophy, allowing developers to iterate components rapidly and reduce lead times. This trend is complemented by digital twin platforms that leverage real-time data analytics to refine maintenance schedules and extend operational lifespans of submerged machinery. Consequently, cost drivers are shifting from prototypes toward predictable production cycles and streamlined installation processes.
Furthermore, financing mechanisms have evolved to de-risk large-scale deployments. Green bonds and sustainability-linked loans are increasingly underwriting wave and tidal ventures, reflecting investor confidence in predictable revenue streams. Policy shifts have also played a pivotal role, with emerging market frameworks embedding marine energy targets into national decarbonization roadmaps. These regulatory developments have enhanced bilateral collaborations, enabling regional hubs to share best practices and accelerate technology transfer.
Importantly, ecosystem integration is gaining traction as developers explore co-location with offshore wind farms and aquaculture operations. Such synergies enhance grid connectivity and maximize returns on marine infrastructure investments. In parallel, community engagement initiatives are setting new standards for environmental monitoring, ensuring that biodiversity considerations remain central to project execution. Taken together, these transformative shifts signal a maturation of wave and tidal energy from experimental ventures to scalable, resilient power solutions.
United States tariff measures introduced in early 2025 have created ripples throughout the global supply chain for marine energy equipment. While intended to protect domestic manufacturers, these duties have introduced cost pressures for international developers reliant on specialized components. For instance, dynamic tidal power and oscillating water column device producers sourcing mooring systems from overseas have faced extended lead times as suppliers navigate new compliance requirements.
In response, several manufacturers have begun localizing critical subassembly lines for cables, electrical infrastructure enclosures, and power take-off systems. This repatriation of production mitigates exposure to tariff fluctuations but often entails significant capital outlays and workforce training programs. Simultaneously, some technology licensors are renegotiating licensing agreements to accommodate joint-venture models that qualify for tariff exemptions under specific trade agreements.
Looking ahead, adaptation strategies are emerging across the industry. Developers are exploring hybrid procurement models, mixing imported turbine blades with domestically fabricated generators to optimize cost structures and maintain project timelines. At the same time, policymakers are evaluating tariff reviews and targeted waivers to preserve momentum in marine energy adoption. Although short-term disruptions persist, these collective adjustments underscore the industry's agility in navigating evolving trade landscapes while safeguarding progress toward decarbonization objectives.
Insights across varied segmentation dimensions reveal nuanced drivers shaping project feasibility and performance. When viewed through the lens of technology type, tidal energy approaches such as dynamic tidal power, tidal barrages, tidal lagoons, and tidal stream generators contrast markedly with wave energy converters including oscillating body converters in the form of attenuators and point absorbers, oscillating water columns, overtopping devices, and rotating mass systems. Each technological pathway offers distinct benefits and engineering challenges, from harnessing predictable tidal currents to capturing the undulating motion of surface waves.
Component type analysis underscores the vital roles of cables and connections linking seabed turbines to onshore substations, robust electrical infrastructure housing grid-interface equipment, and power take-off systems that convert kinetic forces into controllable electricity. Generators and mooring and foundation assemblies demand precise materials selection to withstand corrosive marine environments while minimizing installation complexity. Installation type segmentation further deepens understanding by comparing fixed structures anchored to the seabed against floating platforms designed for deeper waters and subsea units optimized for minimal surface footprint.
End-use applications span desalination projects producing freshwater for coastal communities, utility-scale power generation feeding national grids, research and development facilities validating next-generation devices, and water pumping systems supporting remote operations. Across this spectrum, end users ranging from commercial enterprises and industrial operators to residential microgrid integrators and public utilities define distinct procurement criteria, risk tolerances, and operational benchmarks. As evidenced, segmentation analysis illuminates strategic entry points and guides targeted technology roadmaps.
Regional landscapes present diverse opportunities and challenges for marine energy development. In the Americas, strong interest in renewable diversification has led to pilot deployments along both coasts, with federal research grants fostering universities and private firms to test tidal stream generators in temperate waters. Local supply chains benefit from established offshore wind manufacturing, enabling synergies in component fabrication and vessel mobilization.
Over in Europe, Middle East and Africa, regulatory support frameworks are among the most advanced globally, with several coastal nations instituting quotas and feed-in tariffs for wave and tidal systems. Demonstration zones in the North Sea and Atlantic have attracted multinational collaborations, showcasing scalable dynamic tidal power prototypes and pioneering energy-transfer hubs. In certain Mediterranean and African coastal regions, desalination partnerships illustrate how marine energy underpins critical water management solutions.
Meanwhile, Asia-Pacific economies are rapidly emerging as influential players. Governments in nations with extensive coastlines are channeling infrastructure funds into floating platform innovations, leveraging domestic shipbuilding expertise. Collaborative research programs between academic institutes and local utilities are accelerating oscillating water column projects in temperate and tropical zones. This regional momentum, coupled with competitive manufacturing capacities, positions the Asia-Pacific to drive down technology costs and catalyze broader global adoption.
Leading companies are carving out competitive advantages by aligning proprietary technology pipelines with evolving market demands. Firms specializing in tidal stream generators are advancing rotor designs to maximize energy capture, while wave energy innovators focus on enhancing device survivability through resilient materials and adaptive mooring systems. Strategic alliances between equipment manufacturers and offshore service providers are streamlining installation and maintenance operations, reducing vessel time and operational expenditure.
Several players have embraced open-architecture platforms, enabling third-party developers to integrate custom control systems and data analytics modules. This interoperability fosters ecosystem growth by lowering barriers to entry and promoting collaborative testing of new subsystems under real-world conditions. At the same time, vertically integrated enterprises are optimizing end-to-end workflows, from site assessment and consent acquisition to grid connection planning and asset management.
Moreover, forward-looking companies are investing in digital infrastructure that underpins predictive maintenance and lifecycle cost modeling. By deploying underwater sensor networks and remote monitoring consoles, these organizations are transforming service delivery from reactive to proactive, ensuring higher availability rates and extended operational horizons. Together, these strategic orientations illustrate how leading industry actors are orchestrating technological, commercial, and operational innovations to define the next chapter of marine energy evolution.
Industry leaders should prioritize supply chain resilience by diversifying component sources and fostering local manufacturing partnerships to mitigate exposure to tariff volatility and logistics disruptions. By establishing regional fabrication hubs for mooring systems and electrical infrastructure, organizations can maintain delivery schedules and support workforce development initiatives simultaneously.
Next, cultivating cross-sector collaborations with offshore wind, aquaculture, and desalination stakeholders can unlock shared infrastructure benefits. Integrating wave and tidal energy devices alongside existing marine operations reduces capital intensity and accelerates permitting processes. Additionally, co-location strategies enhance stakeholder value by distributing fixed costs and expanding revenue streams through service bundling.
Investments in pilot scale-ups and demonstration clusters are essential to validate emerging device configurations under diverse environmental conditions. Engaging with port authorities and research institutions ensures robust environmental monitoring and social acceptance. Through iterative testing, firms can refine installation methodologies and validate maintenance protocols, driving down operations and maintenance costs over successive deployments.
Finally, active policy engagement is critical to establish stable incentive frameworks and harmonize standards across jurisdictions. Thought leadership in regulatory forums and technical committees can influence grid connection policies, consenting processes, and eligibility criteria for sustainability financing. By shaping conducive market environments, industry stakeholders will accelerate the transition from demonstration projects to commercial-scale deployments.
This research integrates a multi-layered approach, commencing with extensive desk research that surveyed technical literature, patent filings, policy white papers, and academic publications to map the evolution of wave and tidal energy technologies. These insights were complemented by primary interviews with domain experts spanning device designers, marine ecologists, port operators, and finance professionals, ensuring a balanced perspective on both engineering feasibility and commercial viability.
Quantitative analyses employed process-based modeling to assess energy yield projections and cost drivers for different technology configurations. Sensitivity scenarios were developed to explore the impact of key variables such as resource variability, component costs, and tariff regimes on project economics. These models were cross-validated through industry workshops, where participants reviewed assumptions and provided real-world feedback on emerging trends.
To guarantee rigor, the methodology incorporated third-party data sources for environmental conditions and grid integration constraints. Advisory panels facilitated peer review and challenged hypotheses, resulting in refined conclusions grounded in robust evidence. Throughout the study, a continuous feedback loop ensured that evolving policy announcements and technological breakthroughs were incorporated up to final publication, delivering a reliable and forward-looking analysis of the marine energy landscape.
Wave and tidal energy are poised to complement existing renewable portfolios by delivering predictable and environmentally compatible power solutions. The collective advancements in device design, digital monitoring, and financing mechanisms have lowered entry barriers and improved project reliability. Nonetheless, challenges persist in optimizing component supply chains, harmonizing regulatory frameworks, and validating large-scale demonstrations under diverse oceanographic conditions.
Strategic segmentation reveals clear pathways for targeted deployment, whether through dynamic tidal power in high-flow estuaries, oscillating body converters in energetic wave climates, or fixed and floating platforms adapted to local seabed characteristics. Regional analyses further illustrate how government support, local manufacturing capabilities, and cross-sector synergies drive adoption in the Americas, EMEA, and Asia-Pacific arenas. Meanwhile, leading companies are setting benchmarks for collaboration, interoperability, and proactive maintenance strategies.
As the industry evolves, actionable recommendations underscore the importance of robust partnerships, localized production, and active policy engagement. By aligning strategic initiatives with technological readiness and environmental stewardship, stakeholders can accelerate the shift from pilot projects to commercially sustainable operations. Ultimately, a cohesive market development strategy will be instrumental in unlocking the full promise of marine energy as a cornerstone of the global clean energy transition.