![]() |
市場調査レポート
商品コード
1715629
エネルギーハーベスティングシステム市場:コンポーネント、技術、材料、エンドユーザー別-2025-2030年の世界予測Energy Harvesting System Market by Component, Technology, Material, End-User - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
エネルギーハーベスティングシステム市場:コンポーネント、技術、材料、エンドユーザー別-2025-2030年の世界予測 |
出版日: 2025年04月01日
発行: 360iResearch
ページ情報: 英文 194 Pages
納期: 即日から翌営業日
|
エネルギーハーベスティングシステム市場は、2024年には8億2,019万米ドルとなり、2025年には8億9,031万米ドル、CAGR 8.91%で成長し、2030年には13億6,910万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年 2024 | 8億2,019万米ドル |
推定年 2025 | 8億9,031万米ドル |
予測年 2030 | 13億6,910万米ドル |
CAGR(%) | 8.91% |
エネルギー・ハーベスティング・システムの進化は、技術主導の今日の世界において極めて重要なテーマとなっています。持続可能な電源と、より効率的なエネルギー管理へのニーズが高まる中、この分野のイノベーションは、様々なアプリケーションに電力を供給するための有望なソリューションを提供しています。従来のバッテリーや有線電源への依存を減らすため、組織が代替エネルギー方法を模索する中、エネルギー・ハーベスティングの概念は、ダイナミックで多面的な分野へと発展しています。
近年、電子部品やスマート素材の進歩により、周囲のエネルギーを取り込むデバイスの飛躍的な進歩に拍車がかかっています。このため、小規模な民生用電子機器から堅牢な産業用システムまで、幅広い用途をターゲットとした研究活動や産業投資が活発化しています。改善されたエネルギー貯蔵ソリューション、統合された電力管理、および高度なセンサー技術の融合は、持続可能性と高性能が融合する領域の舞台を整えました。
さまざまな分野の組織が、こうした新技術を活用することで環境問題に対処できるだけでなく、運用の信頼性を向上させ、メンテナンス・コストを削減できることをますます認識するようになっています。低電力エレクトロニクスの進歩と相まって、デバイスの小型化が継続的に推進され、エネルギー自律化の新時代を後押ししています。エネルギー・ハーベスティング・システムが普及するにつれて、各要素がどのように全体的なフレームワークに貢献し、エネルギー管理とスマート・パワー・ソリューションの将来を形成しているかを理解することが不可欠です。
エネルギーハーベスティングの情勢を形成する変革的シフト
近年、エネルギーハーベスティングを取り巻く環境は、従来の電力管理のパラダイムに変革をもたらしつつあります。世界のエネルギー需要の高まりと、環境に優しい技術へのシフトの高まりに対応して、複数の要因がこの分野の技術革新を加速させるように収束してきました。
第一に、半導体技術の急速な進歩により、一貫性のない周囲電源と現代の電子機器が要求する安定供給との間のエネルギーギャップを埋めることができる、高効率の電源管理集積回路が開発されました。この進歩は、デバイス寿命の延長が期待されるだけでなく、可変負荷条件下での高密度エネルギー貯蔵をサポートするエネルギー貯蔵デバイスに関連する研究への多大な投資と並行して行われてきました。一方、市場の要求の進化は、非従来型のエネルギー源からエネルギーを取り込むスマート素材や新しい変換技術の普及を後押ししています。
第二に、モノのインターネット(IoT)やウェアラブル技術における新たなアプリケーションには、エネルギー効率と持続可能性の両方を最適化するソリューションが必要です。デバイスの相互接続がますます進む時代において、設計者やエンジニアは、従来の充電やバッテリー交換の枠を超えた革新を余儀なくされています。この新しい現実は、部品アーキテクチャ、プロセス統合、デバイス効率の再考を促しています。その結果、学際的な研究と戦略的な産業界の協力が融合し、堅牢で汎用性の高いエネルギーハーベスティングシステムへの道が開かれつつあります。
最後に、より広範な環境と規制の圧力が、企業に従来のエネルギー戦略の見直しを迫っています。このシフトは、効率的であるだけでなく、急速に変化する技術環境に適応可能なソリューションの候補のケースを強化しています。全体として、エネルギー・ハーベスティング市場はパラダイム・シフトを経験しており、技術と材料における変革的イノベーションが従来のエネルギー物語を再構築しています。
市場インテリジェンスを牽引する主要セグメンテーションの洞察
市場セグメンテーションに関する深い洞察は、エネルギーハーベスティング領域内の複雑な階層を明らかにし、新たな動向と潜在的な機会に関する包括的な視点を提供します。主要なセグメンテーションはコンポーネントに基づいており、エネルギー貯蔵デバイス、パワーマネージメント集積回路、トランスデューサーが含まれます。エネルギー貯蔵デバイスは、リチウムイオン電池とスーパーキャパシタに分けられ、それぞれがエネルギー密度と急速な充放電サイクルのバランスを取る上で極めて重要な役割を果たしています。物理エネルギーを電気エネルギーに変換するトランスデューサーは、圧電素子と熱電変換器によって分析され、それぞれが機械エネルギーと熱エネルギーの抽出に影響を与えます。
もう一つの重要なセグメンテーションは、光エネルギーハーベスティング、RF(無線周波数)エネルギーハーベスティング、熱エネルギーハーベスティング、振動エネルギーハーベスティングを含む技術によって定義されます。これらの技術様式は、太陽光発電装置によって取り込まれる屋外や屋内の光から、工業作業によって生み出される機械的振動と並んで、どこにでも存在する周囲の無線周波数や周囲の熱を利用することまで、様々なシナリオに対応しています。
さらに素材別に分類することで、効率的なエネルギー変換を促進する基盤となる選択が明らかになります。これには、セラミック、結晶、ポリマーの探求が含まれます。具体的には、チタン酸バリウムやチタン酸ジルコン酸鉛のようなセラミックスは高い誘電特性を提供し、石英やトルマリンのような結晶はより安定した予測可能なエネルギー変換ダイナミクスを提供します。さらに、ポリ乳酸やポリフッ化ビニリデンなどのポリマーは、特にフレキシブルな用途において、エネルギーの変換方法に多様性をもたらします。
エンドユーザー別のセグメンテーションを総合的に見ると、自動車・輸送、建築・インフラ、家電、ヘルスケア・医療、工業・製造など、幅広い用途があることがわかる。このようなセグメンテーションは、特注の設計戦略がいかに分野固有の課題に対処できるかを浮き彫りにし、その結果、個々の市場ニーズに合致したカスタマイズされたエネルギー・ソリューションを促進します。これらのセグメンテーションの洞察は、ニッチ市場とより広範な産業動向の両方に光を当てることで、戦略的意思決定の指針となります。
The Energy Harvesting System Market was valued at USD 820.19 million in 2024 and is projected to grow to USD 890.31 million in 2025, with a CAGR of 8.91%, reaching USD 1,369.10 million by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 820.19 million |
Estimated Year [2025] | USD 890.31 million |
Forecast Year [2030] | USD 1,369.10 million |
CAGR (%) | 8.91% |
The evolution of energy harvesting systems has become a crucial topic in today's technology-driven world. With the increasing need for sustainable power sources and more efficient energy management, innovations in this space offer promising solutions for powering a variety of applications. As organizations search for alternative energy methods to reduce reliance on conventional batteries and wired power sources, the energy harvesting concept has evolved into a dynamic, multifaceted discipline.
In recent years, advancements in electronic components and smart materials have spurred breakthroughs in devices that capture ambient energy. This has led to a proliferation of research efforts and industrial investments targeting applications ranging from small-scale consumer electronics to robust industrial systems. The convergence of improved energy storage solutions, integrated power management, and advanced sensor technologies has set the stage for a domain where sustainability and high performance meet.
Organizations across various sectors are increasingly aware that leveraging these emerging technologies not only addresses environmental concerns but also improves operational reliability and decreases maintenance costs. The continuous push for device miniaturization, coupled with advancements in low-power electronics, has helped phase in a new era of energy autonomy. As energy harvesting systems gain traction, it is vital to understand how each element contributes to the overall framework, shaping the future of energy management and smart power solutions.
Transformative Shifts Reshaping the Energy Harvesting Landscape
Recent years have witnessed transformative shifts in the energy harvesting landscape that are revolutionizing traditional power management paradigms. In response to escalating global energy demands and an increasing shift toward eco-friendly technologies, multiple factors have converged to accelerate innovation in this field.
Firstly, rapid advancements in semiconductor technology have led to the development of highly efficient power management integrated circuits capable of bridging the energy gap between inconsistent ambient sources and the steady supply demanded by modern electronics. This progress has been paralleled by significant investments in research related to energy storage devices that not only hold promise for prolonging device lifespans but also support high-density energy storage under variable load conditions. Meanwhile, evolving market demands have driven the proliferation of smart materials and novel conversion technologies that capture energy from unconventional sources.
Secondly, emerging applications in the Internet of Things (IoT) and wearable technologies necessitate solutions that optimize both energy efficiency and sustainability. In an era where devices are becoming increasingly interconnected, designers and engineers are compelled to innovate beyond the boundaries of traditional charging and battery replacement. This new reality is prompting a rethinking of component architecture, process integration, and device efficiency. The resultant blend of interdisciplinary research and strategic industry collaborations is paving the way for energy harvesting systems that are both robust and versatile.
Finally, broader environmental and regulatory pressures are compelling companies to rethink conventional energy strategies. This shift is strengthening the case for candidate solutions that are not only efficient but also adaptable to rapidly changing technological landscapes. Overall, the energy harvesting market is experiencing a paradigm shift, as transformative innovation in technology and materials is rewiring the conventional energy narrative.
Key Segmentation Insights Driving Market Intelligence
Deep insights into market segmentation reveal intricate layers within the energy harvesting domain, offering a comprehensive perspective on emerging trends and potential opportunities. A primary segmentation aspect is based on components, which encompasses energy storage devices, power management integrated circuits, and transducers. Energy storage devices are dissected further into lithium-ion batteries and supercapacitors, each playing a pivotal role in achieving balance between energy density and rapid charge-discharge cycles. Transducers, which are tasked with converting physical energy into electrical energy, are analyzed through piezoelectric elements and thermoelectric converters, each impacting the extraction of mechanical and thermal energy respectively.
Another significant segmentation is defined by technology including light energy harvesting, RF (radio frequency) energy harvesting, thermal energy harvesting, and vibration energy harvesting. These technological modalities cater to a variety of scenarios - ranging from outdoor and indoor light captured by photovoltaic devices to harnessing the ubiquitous presence of ambient radio frequencies and ambient heat, alongside the mechanical vibrations produced by industrial operations.
Further segmentation by material illuminates the underpinning choices that drive efficient energy conversion. This involves an exploration of ceramics, crystals, and polymers. Specifically, ceramics such as barium titanate and lead zirconate titanate provide high dielectric properties, while crystals like quartz and tourmaline offer more stable and predictable energy conversion dynamics. Additionally, polymers, inclusive of materials like polylactic acid and polyvinylidene fluoride, add versatility in how energy is transduced, particularly in flexible applications.
A comprehensive look into segmentation by end-user reveals a broad array of market applications including automotive and transportation, building and infrastructure, consumer electronics, healthcare and medical, and industrial and manufacturing. Such segmentation highlights how bespoke design strategies can address sector-specific challenges, thus fostering customized energy solutions that align with individual market needs. Together, these segmentation insights guide strategic decision-making by shedding light on both niche markets and broader industrial trends.
Based on Component, market is studied across Energy Storage Devices, Power Management Integrated Circuits, and Transducers. The Energy Storage Devices is further studied across Lithium-Ion Batteries and Supercapacitors. The Transducers is further studied across Piezoelectric Transducers and Thermoelectric Transducers.
Based on Technology, market is studied across Light Energy Harvesting, RF Energy Harvesting, Thermal Energy Harvesting, and Vibration Energy Harvesting.
Based on Material, market is studied across Ceramics, Crystals, and Polymers. The Ceramics is further studied across Barium Titanate and Lead Zirconate Titanate. The Crystals is further studied across Quartz and Tourmaline. The Polymers is further studied across Polylactic Acid and Polyvinylidene Fluoride.
Based on End-User, market is studied across Automotive & Transportation, Building & Infrastructure, Consumer Electronics, Healthcare & Medical, and Industrial & Manufacturing.
Regional Dynamics Fueling Global Energy Growth
Global regions exhibit distinct characteristics and drive momentum in the energy harvesting market in different ways. Across the Americas, technological innovation and a strong focus on sustainable development are creating an environment that actively supports research, development, and early adoption of energy harvesting technologies. Organizations in this region benefit from a collaborative ecosystem where academic, industrial, and governmental initiatives converge to propel energy innovation.
In the Europe, Middle East & Africa region, a blend of mature regulatory frameworks and aggressive sustainability targets underpins market expansion. Initiatives driven by policy changes and environmental incentives are critical drivers for the adoption of advanced energy systems. Investments in smart infrastructure and energy-conscious urban developments accelerate applications spanning everything from building efficiency improvements to industrial automation. Moreover, this region's commitment to reducing carbon footprints is a catalyst for embracing innovative energy harvesting solutions that can seamlessly integrate into diverse sectors.
The Asia-Pacific region stands out for its rapid economic growth, increasing urbanization, and high consumer demand for smart technologies. Here, the dynamic interplay between high-tech manufacturing, massive scale production, and intensifying R&D activities results in a competitive landscape that continually pushes the envelope of energy harvesting efficiency. As markets in this region mature, energy harvesting technologies are increasingly being tailored to meet the specific needs of urban transportation, consumer electronics, and large-scale industrial applications.
These regional insights not only offer a glimpse into how different geographical areas adapt and adopt energy solutions but also present opportunities for cross-border partnerships and market expansion strategies that tap into diverse economic and technological strengths.
Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.
Prominent Companies Steering Technological Advancements
Several companies are at the forefront of technological advancements in the energy harvesting market, spearheading innovation through a combination of dedicated research, strategic acquisitions, and groundbreaking product developments. Industry leaders such as ABB Ltd. and Analog Devices, Inc. are leveraging their diverse expertise to drive efficiency and expand the applications of energy harvesting systems. Meanwhile, major players like Asahi Kasei Corporation and Assa Abloy AB bring a wealth of experience in materials engineering and integrated security solutions, enhancing product reliability and performance.
Pioneering efforts by firms like Bionic Power Inc. and Cymbet Corporation are laying the groundwork for next-generation energy storage solutions that push the boundaries of power density and operational longevity. Companies such as Cypress Semiconductor Corporation by Infineon Technologies AG and e-peas SA have also made significant strides in embedded energy management, providing integrated systems that seamlessly balance power consumption with energy replenishment. Additionally, organizations like EnOcean GmbH and Epishine AB are prominent for their focus on self-powered sensor networks and wireless energy architectures.
Everactive, Inc. and Fujitsu Limited are notable for their innovations in micro-energy harvesting components that cater to a rapidly expanding market. Other influential companies such as G24 Power Limited and INFRGY LLC are actively engaged in refining system-level integrations to better harness ambient energy. With contributions from Microchip Technology Inc., Mide Technology Corp. by Hutchinson Corporation, and several other industry players including Nexperia, NXP Semiconductors N.V, ONiO AS, and Panasonic Corporation, the competitive landscape is marked by continuous advancement.
Furthermore, power electronics specialists like Powercast Corporation, Qorvo, Inc., Renesas Electronics Corporation, Ricoh Company, Ltd., and Samsung Electronics Co., Ltd. are pushing forward with innovations that enhance system efficiency across various applications. With Semiconductor Components Industries, LLC, Silicon Laboratories, Inc., Sony Semiconductor Solutions Group, STMicroelectronics N.V., Texas Instruments Incorporated, and Trameto Limited rounding out the roster of key innovators, it becomes evident that a diverse spectrum of companies is collaboratively shaping the market's future.
The report delves into recent significant developments in the Energy Harvesting System Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Analog Devices, Inc., Asahi Kasei Corporation, Assa Abloy AB, Bionic Power Inc., Cymbet Corporation, Cypress Semiconductor Corporation by Infineon Technologies AG, e-peas SA, EnOcean GmbH, Epishine AB, Everactive, Inc., Fujitsu Limited, G24 Power Limited, INFRGY LLC, Microchip Technology Inc., Mide Technology Corp. by Hutchinson Corporation, Nexperia, NXP Semiconductors N.V, ONiO AS, Panasonic Corporation, Powercast Corporation, Qorvo, Inc., Renesas Electronics Corporation, Ricoh Company, Ltd., Samsung Electronics Co., Ltd., Semiconductor Components Industries, LLC, Silicon Laboratories, Inc., Sony Semiconductor Solutions Group, STMicroelectronics N.V., Texas Instruments Incorporated, and Trameto Limited. Actionable Recommendations for Leading Industry Innovations
Leaders in the energy harvesting space are encouraged to actively monitor market segmentation trends and invest in cross-disciplinary research to harness new technological advancements. It is crucial to allocate resources towards the development of state-of-the-art energy storage and conversion components while forging strategic partnerships with material scientists and technology innovators. Emphasizing collaborative projects, integrating smart grid technologies, and staying abreast of evolving regulatory frameworks are key strategies that can fortify market positioning in this competitive landscape.
Investment in modular and scalable system designs will enable companies to rapidly customize solutions for different regional and end-user applications. Fostering a culture of continuous innovation by leveraging global best practices and insights from market leaders can further catalyze growth and long-term success in the market.
Conclusion: Charting the Future of Energy Harvesting
The energy harvesting market stands at a critical juncture where innovation, sustainability, and cross-market collaboration combine to create exceptional opportunities for stakeholders. With technological advances and strategic segmentation insights, the market's future is poised to deliver breakthroughs that enhance efficiency, foster sustainable practices, and redefine energy autonomy across diverse sectors.
This evolving landscape demands proactive engagement and sustained investment in research and technological development, paving the way for a resilient future in which energy harvesting systems play a central role.