![]() |
市場調査レポート
商品コード
1677243
バイオテクノロジーにおける人工知能市場:コンポーネント、技術、組織規模、用途分野、エンドユーザー、展開モード別 - 2025年~2030年の世界予測Artificial Intelligence in Biotechnology Market by Component, Technology, Organization Size, Application Area, End-User, Deployment Mode - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
バイオテクノロジーにおける人工知能市場:コンポーネント、技術、組織規模、用途分野、エンドユーザー、展開モード別 - 2025年~2030年の世界予測 |
出版日: 2025年03月09日
発行: 360iResearch
ページ情報: 英文 181 Pages
納期: 即日から翌営業日
|
バイオテクノロジーにおける人工知能市場は、2024年に31億8,000万米ドルと評価され、2025年には36億5,000万米ドル、CAGR16.17%で成長し、2030年には78億2,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年 2024 | 31億8,000万米ドル |
推定年 2025 | 36億5,000万米ドル |
予測年 2030 | 78億2,000万米ドル |
CAGR(%) | 16.17% |
人工知能(AI)は、バイオテクノロジー分野における変革の要として急速に台頭しています。近年、AIを搭載したツールは実験的な技術からイノベーションの不可欠な推進力へと進化し、研究者や企業は同様に、複雑な生物学的プロセスをかつてない精度で探求できるようになりました。このようなテクノロジーと生物学の融合は、創薬を加速し、診断精度を向上させるだけでなく、研究手法を合理化し、業務効率を高めています。
バイオテクノロジーにおけるAI革命は、ゲノミクス、プロテオミクス、臨床記録から得られる膨大なデータセットと複雑なアルゴリズムのシームレスな統合によって特徴付けられます。組織は現在、高度な機械学習モデルやディープラーニング技術を活用して、結果を予測し、プロセスを最適化し、手作業による調査によって課せられていた従来の障壁を減らしています。業界が進化するにつれ、意思決定者は、急速な技術の進歩がもたらす刺激的な可能性と固有の課題の両方に対処しなければならないです。本レポートでは、現在の状況を詳細に調査し、バイオテクノロジー領域における研究開発および商業化の再定義においてAIが果たす極めて重要な役割に焦点を当てています。
新たなソリューションへの継続的な投資とAI技術の積極的な活用により、この分野は臨床とオペレーションの両パラダイムにおける根本的なシフトを示す見込みです。このイノベーションの新時代を乗り切る中で、AIとバイオテクノロジーの効果的な統合はもはやオプションではなく、持続的な成長と競争上の優位性を確保するための重要な必須事項であることがますます明らかになっています。
変革のシフト:AIによるバイオテクノロジーの再定義
ここ数年、バイオテクノロジーを取り巻く環境は、AIの進歩によって劇的かつ変革的な変化を遂げています。企業や研究機関は、従来の手法から大きく脱却し、大規模な生物学的データを管理・解釈するデジタルツールを導入しています。AIの役割は、創薬プロセスの加速化から臨床的意思決定の強化まで多岐にわたり、より迅速なターンアラウンドタイムと患者転帰の改善を可能にしています。
この変革は、ニューラル・ネットワーク、コンピュータ・ビジョン、ディープ・ラーニング、ロボティック・プロセス・オートメーションなどの技術革新により、バイオテクノロジー企業の分析能力が再定義された、アルゴリズム・アプローチのブレークスルーによるところが大きいです。研究開発にAIを導入することで、膨大な遺伝子、分子、臨床データを実用的な洞察に変え、新たな次元のデータインテリジェンスが誕生します。テクノロジーの進化は、単にプロセスを効率化するだけでなく、初期段階の研究から販売後のサービス提供に至るまで、バイオテクノロジー事業の青写真を根本的に描き直しています。
さらに、ヘルスケアにおける複雑な課題への俊敏性の必要性が、AIの導入を加速させています。企業は現在、予測分析、自動診断、個別化医療戦略をサポートする多面的なプラットフォームを統合しています。AIが進歩するたびに飛躍的な進歩を遂げ、かつては推測の域を出ないと考えられていた新たな応用分野やパラダイムへの道が開かれています。このシフトは競合の境界を再定義し、患者ケア、調査精度、業界全体の有効性を変革する可能性を秘めた画期的な進歩の舞台を整えつつあります。
主要セグメントに関する洞察市場力学と機会を読み解く
バイオテクノロジーにおけるAI市場は、技術面および業務面の広範な側面を反映する多次元的なセグメンテーションの枠組みによって解剖されます。構成要素に基づく分析から、市場はサービスとソリューションという2つの主要部門にわたって調査されていることが明らかになりました。サービスには、コンサルティング、インプリメンテーション、ポストセールスおよびメンテナンスサービス、トレーニングと教育といった専門的な機能が含まれ、ソリューション部門は、革新的なアプリケーションを推進するプラットフォームとソフトウェアに重点を置いて分析されています。
テクノロジーという切り口で市場を詳しく見ると、コンピューター・ビジョン、ディープラーニング、機械学習、自然言語処理、ニューラルネットワーク、ロボティック・プロセス・オートメーションなどの分野が堅調であることがわかる。この技術的多様性は、大企業のダイナミックな環境と中小企業の機敏なオペレーションを区別する、組織規模に基づくセグメンテーションによって補完されています。このようなセグメンテーションはさらに、農業バイオテクノロジー、臨床試験、診断、ゲノム解析、個別化医療、精密医療、研究開発においてAI主導の改善からバイオテクノロジーが恩恵を受けている応用分野にも及んでいます。
さらに、農業機関、バイオテクノロジー企業、ヘルスケアプロバイダー、製薬会社、革新の先駆者である研究機関や学術機関など、エンドユーザーセグメンテーションを調査することで、さらなる洞察が明らかになります。さらに、導入形態のセグメンテーションでは、クラウド、ハイブリッド、オンプレミスの各ソリューションの戦略的重要性が強調されています。この包括的で微妙なセグメンテーションの枠組みは、市場動向の根底を解明するだけでなく、将来の投資と協力の機が熟した分野を特定するのにも役立ちます。
The Artificial Intelligence in Biotechnology Market was valued at USD 3.18 billion in 2024 and is projected to grow to USD 3.65 billion in 2025, with a CAGR of 16.17%, reaching USD 7.82 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 3.18 billion |
Estimated Year [2025] | USD 3.65 billion |
Forecast Year [2030] | USD 7.82 billion |
CAGR (%) | 16.17% |
Artificial Intelligence (AI) is rapidly emerging as a cornerstone of transformative change in the biotechnology sector. In recent years, AI-powered tools have evolved from experimental technologies into essential drivers of innovation, enabling researchers and companies alike to explore complex biological processes with unprecedented precision. This fusion of technology and biology is not only accelerating drug discovery and improving diagnostic accuracy, but it is also streamlining research methodologies and enhancing operational efficiencies.
The AI revolution in biotechnology is marked by the seamless integration of complex algorithms with massive datasets derived from genomics, proteomics, and clinical records. Organizations now leverage advanced machine learning models and deep learning techniques to predict outcomes, optimize processes, and reduce the traditional barriers imposed by manual research. As the industry evolves, decision-makers must contend with both the exciting potential and the inherent challenges posed by rapid technological advancements. This report offers a detailed exploration of the current landscape, highlighting the pivotal role that AI plays in redefining research, development, and commercialization within the biotech realm.
Through continuous investment in new solutions and the proactive application of AI technologies, the sector is poised to witness radical shifts in both clinical and operational paradigms. As we navigate this new era of innovation, it becomes increasingly clear that the effective integration of AI and biotechnology is no longer optional but rather a critical imperative for sustained growth and competitive advantage.
Transformative Shifts: Redefining Biotechnology with AI
Over the past few years, the biotechnology landscape has undergone dramatic and transformative shifts driven by AI advancements. Companies and research institutions are seeing a significant departure from traditional methodologies, embracing digital tools that manage and interpret large-scale biological data. AI's role spans from accelerating drug discovery processes to enhancing clinical decision-making, enabling faster turnaround times and improved patient outcomes.
This transformation can be largely attributed to breakthroughs in algorithmic approaches, where innovations in neural networks, computer vision, deep learning, and robotic process automation have redefined the analytical capabilities of biotech firms. The infusion of AI into research and development unleashes new dimensions of data intelligence, turning vast repositories of genetic, molecular, and clinical data into actionable insights. The evolution in technology is not just making processes more efficient-it is fundamentally redrawing the blueprint of biotechnology operations, from early-stage research through to post-sales service delivery.
Furthermore, the need for agility in addressing complex challenges in healthcare has accelerated the adoption of AI. Companies are now integrating multifaceted platforms that support predictive analytics, automated diagnostics, and personalized medicine strategies. Each advancement with AI represents a leap forward, paving the way for novel application areas and paradigms that were once considered speculative. This shift is redefining competitive boundaries and setting the stage for groundbreaking advancements that have the potential to transform patient care, research accuracy, and overall industry efficacy.
Key Segmentation Insights: Decoding Market Dynamics and Opportunities
The market for AI in biotechnology is dissected through a multidimensional segmentation framework that reflects the broad spectrum of technological and operational dimensions. An analysis based on component reveals that the market is studied across two primary divisions: services and solutions. In this context, the services include specialized functions such as consulting, implementation, post-sales and maintenance services, and training and education, while the solutions segment is analyzed further with an emphasis on platforms and software that drive innovative applications.
A closer look at the market through the lens of technology indicates a robust performance in areas including computer vision, deep learning, machine learning, natural language processing, neural networks, and robotic process automation. This technological diversity is complemented by segmentation based on organization size, which distinguishes between the dynamic environment of large enterprises and the agile operations of small and medium enterprises. Such segmentation further extends to application areas where biotechnology is benefiting from AI-driven improvements in agricultural biotechnology, clinical trials, diagnostics, genomics analysis, personalized medicine, precision medicine, and research and development.
Additional insights are uncovered by examining the end-user segmentation, which spans agricultural institutes, biotechnology firms, healthcare providers, pharmaceutical companies, as well as research and academic institutions that are pioneering innovation. Moreover, the deployment mode segmentation highlights the strategic importance of cloud, hybrid, and on-premises solutions. This comprehensive and nuanced segmentation framework not only elucidates underlying market trends but also helps identify areas ripe for future investment and collaboration.
Based on Component, market is studied across Services and Solutions. The Services is further studied across Consulting, Implementation, Post-Sales & Maintenance Services, and Training & Education Services. The Solutions is further studied across Platform and Software.
Based on Technology, market is studied across Computer Vision, Deep Learning, Machine Learning, Natural Language Processing, Neural Networks, and Robotic Process Automation.
Based on Organization Size, market is studied across Large Enterprises and Small & Medium Enterprises.
Based on Application Area, market is studied across Agriculture Biotechnology, Clinical Trials, Diagnostics, Genomics Analysis, Personalized Medicine, Precision Medicine, and Research & Development.
Based on End-User, market is studied across Agricultural Institutes, Biotechnology Firms, Healthcare Providers, Pharmaceutical Companies, and Research & Academic Institutions.
Based on Deployment Mode, market is studied across Cloud, Hybrid, and On-Premises.
Regional Dynamics: Spotlight on Americas, EMEA, and Asia-Pacific Markets
Regional trends play a pivotal role in shaping the landscape of AI in biotechnology. Across the Americas, innovation is driven by a mature ecosystem of research institutions and an active venture capital presence that collectively foster rapid technological adoption. Robust regulatory frameworks and intensive investments in health technology further bolster the integration of AI into biological research and healthcare applications.
The region encompassing Europe, the Middle East, and Africa (EMEA) is also witnessing significant momentum. Here, the collaborative focus on public-private partnerships and comprehensive policy initiatives supports a broad array of research and development activities, facilitating the deployment of AI solutions. Initiatives in these regions embrace a fusion of historical expertise and cutting-edge technology, thereby enabling a proactive response to both clinical and agricultural challenges.
In the Asia-Pacific region, the explosive growth of digital health innovations coupled with increased healthcare infrastructure investments is carving out a distinct competitive edge. This region is rapidly becoming a hub for technological advancements and research-driven collaborations, as governments and private players invest heavily in modernizing their biotechnology sectors. Collectively, these regional insights illustrate the varying degrees of maturity and potential across global markets, underscoring the importance of a tailored approach to capitalizing on regional strengths and addressing local challenges.
Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.
Industry Leaders Shaping AI-Driven Biotechnology Innovation
A host of pioneering companies are at the forefront of leveraging AI to revolutionize biotechnology. Among these, notable innovators include Atomwise, Inc., which utilizes sophisticated algorithms for drug discovery, and BenevolentAI, Ltd., known for its groundbreaking approaches in harnessing big data. BERG Health, LLC has made significant strides in integrating AI with metabolic insights, while Cytel, Inc. and CytoReason, Ltd. are focusing on refining the analytics and modeling aspects of clinical trials.
Deep Genomics, Inc. and Envisagenics, Inc. are recognized for their contributions to genomics analysis and biomarker discovery, and Exscientia, plc is redefining drug design through precise algorithmic modeling. Genialis, Inc. and GNS Healthcare, Inc. continue to set the benchmark for computational tools that drive personalized healthcare solutions. Equally influential are Insitro, Inc. and NuMedii, Inc., whose innovative approaches are accelerating the roadmap toward precision medicine through the integration of AI in research.
Other key players such as Owkin, Inc., PathAI, Inc., and Recursion Pharmaceuticals, Inc. are expanding the capabilities of AI in diagnostics and treatment optimization. Tempus Labs, Inc. and TwoXAR Pharmaceuticals, Inc. stand out for their adept use of AI in clinical research, while Valo Health, LLC, Verge Genomics, Inc., and Zymergen, Inc. have successfully blended innovative technological platforms with traditional biotechnological processes. These companies not only exemplify leadership in their respective niches but also reflect the dynamic, competitive landscape that is increasingly driven by AI-centric innovations.
The report delves into recent significant developments in the Artificial Intelligence in Biotechnology Market, highlighting leading vendors and their innovative profiles. These include Atomwise, Inc., BenevolentAI, Ltd., BERG Health, LLC, Cytel, Inc., CytoReason, Ltd., Deep Genomics, Inc., Envisagenics, Inc., Exscientia, plc, Genialis, Inc., GNS Healthcare, Inc., Insitro, Inc., NuMedii, Inc., Owkin, Inc., PathAI, Inc., Recursion Pharmaceuticals, Inc., Tempus Labs, Inc., TwoXAR Pharmaceuticals, Inc., Valo Health, LLC, Verge Genomics, Inc., and Zymergen, Inc.. Strategic Action Plan: Recommendations for a Competitive Edge
For those seeking to secure a position at the forefront of biotechnology innovation, it is imperative to conceive a strategic action plan grounded in actionable insights and clear objectives. Industry leaders are encouraged to invest robustly in emerging AI technologies, prioritizing the enhancement of research and operational capacities. Strategic partnerships and collaborations with technology providers can further accelerate the adoption of sophisticated AI models, ensuring that organizations remain agile in a highly competitive market.
Further expansion should involve the integration of scalable digital platforms that can harness the full potential of data analytics. Embracing cloud, hybrid, or on-premises solutions depending on organizational needs ensures resilience and customized performance. Proactivity in adopting comprehensive training and education programs is crucial; these initiatives not only elevate internal capabilities but also facilitate smoother transitions during the digital transformation journey.
Organizations must also focus on developing a responsive and adaptive corporate culture that readily embraces change. This involves nurturing a cross-disciplinary workforce that can bridge traditional biotechnology expertise with advanced computational techniques. Monitoring and adapting to regulatory developments is equally vital, helping to mitigate potential compliance challenges while capitalizing on emerging market opportunities. Ultimately, a well-orchestrated strategy will enable firms to harness AI's transformative power, driving both innovation and sustainable competitive advantage.
Conclusion: Advancing Biotechnology Through AI Excellence
In summary, the fusion of artificial intelligence with biotechnology is catalyzing a paradigm shift that promises to redefine research methodologies, clinical practices, and overall operational frameworks in the industry. The insights derived from detailed segmentation and regional analysis underscore the multifaceted benefits of integrating sophisticated AI solutions across all layers of operation. The ever-expanding capabilities of technologies such as deep learning, neural networks, and robotic process automation continue to propel the industry forward, delivering robust improvements in efficacy, accuracy, and speed.
As the market evolves, the strategic alignment between technological innovation and biotechnological expertise becomes increasingly critical. Organizations now face a competitive landscape that rewards agility, foresight, and strategic investment in state-of-the-art AI-driven tools. By embracing these insights and integrating best practices, industry players can foster an environment ripe for innovation and sustainable advancement. The continuous evolution of AI technologies represents not just a trend, but a fundamental shift in the way biotechnology will operate in the years to come.
The strategic synthesis of technology and tradition offers organizations a unique opportunity to redefine their operations and achieve new heights in research and clinical excellence. This transformation, marked by a relentless pursuit of innovation, will undoubtedly carve the path to breakthroughs that have the potential to save lives and elevate global health standards.