![]() |
市場調査レポート
商品コード
1722685
酸化セリウムナノ粒子市場レポート:形態、合成方法、用途、地域別 2025-2033年Cerium Oxide Nanoparticles Market Report by Form, Synthesis Method, Application, and Region 2025-2033 |
||||||
カスタマイズ可能
|
酸化セリウムナノ粒子市場レポート:形態、合成方法、用途、地域別 2025-2033年 |
出版日: 2025年05月01日
発行: IMARC
ページ情報: 英文 137 Pages
納期: 2~3営業日
|
世界の酸化セリウムナノ粒子市場規模は、2024年に10億9,280万米ドルに達しました。今後、IMARC Groupは、市場は2033年までに42億140万米ドルに達し、2025年から2033年にかけて15.33%の成長率(CAGR)を示すと予測しています。市場成長を促進する要因としては、自動車産業からの製品需要の増加、再生可能エネルギー分野の拡大、ヘルスケア分野の進歩、触媒や浄水用途の研究開発活動などが挙げられます。
酸化セリウムナノ粒子は、セリアナノ粒子またはナノセリアとしても知られ、通常1~100ナノメートルの酸化セリウムの微粒子を指します。化学式CeO2で表される酸化セリウムは、様々な産業で汎用的に広く使用されている化合物です。ナノスケールでは、酸化セリウムはバルクの形態とは異なる性質と特性を示します。酸化セリウムナノ粒子は、ユニークな触媒特性、光学特性、電気特性を持っており、様々な用途に利用されています。その高い表面積と酸素貯蔵能力により、自動車触媒や環境浄化プロセスなど、様々な化学反応の優れた触媒となります。さらに、セリア・ナノ粒子は卓越した酸化還元挙動を示し、燃料電池、センサー、エネルギー貯蔵システムでの利用を可能にしています。
酸化セリウムナノ粒子の需要を促進する主な要因の一つは、そのユニークな電気的・光学的特性によるエレクトロニクスと光学の進歩です。これらのナノ粒子は、導電性ペースト、光学コーティング、センサーの製造に使用されています。電子機器、ディスプレイ、センサーの急速な開発により、酸化セリウムナノ粒子の需要は大きな成長が見込まれています。これに加えて、酸化セリウムナノ粒子の新たな用途の開拓と特性向上のための継続的な研究開発が需要を牽引しています。市場開拓者は酸化セリウムナノ粒子の環境浄化、触媒作用、水質浄化などの分野における潜在的な用途を探るために研究開発活動に投資しており、これが市場の明るい見通しを生み出しています。
自動車産業における需要の高まり
酸化セリウムナノ粒子の世界の需要の主な原動力の一つは自動車産業です。世界各国の政府による排ガス規制の強化により、自動車メーカーは有害な排ガスを削減する技術への投資を余儀なくされています。酸化セリウムナノ粒子は触媒コンバーターに使用され、自動車の排気ガスから汚染物質を削減する重要な役割を果たしています。これらのナノ粒子は触媒として機能し、一酸化炭素、窒素酸化物、炭化水素などの有害ガスの有害でない物質への変換を促進します。高い酸素貯蔵能力や酸化還元挙動といった酸化セリウムナノ粒子のユニークな特性は、触媒コンバーターの効率向上に効果的です。新興国を中心に自動車産業が拡大を続ける中、触媒材料としての酸化セリウムナノ粒子の需要は大きく伸びると予測されます。
エネルギー貯蔵における用途の増加
再生可能エネルギーへの世界のシフトと効率的なエネルギー貯蔵システムの必要性が、酸化セリウムナノ粒子の需要を促進しています。再生可能エネルギー発電の増加に伴い、高度なバッテリー技術への需要が高まっています。酸化セリウムナノ粒子は、リチウムイオン電池の性能と寿命を向上させるために使用されています。これらのナノ粒子は、電池材料の安定性を高め、副反応を低減し、充放電効率を向上させます。さらに、酸化セリウムナノ粒子は電極の劣化や容量損失などの問題を緩和し、電池の全体的なエネルギー貯蔵能力を向上させます。電気自動車の普及が進み、グリッド規模のエネルギー貯蔵ソリューションの必要性が高まっているため、エネルギー貯蔵分野における酸化セリウムナノ粒子の需要は大幅な成長が見込まれています。
バイオメディカルアプリケーションへの関心の高まり
酸化セリウムナノ粒子は、そのユニークな抗酸化特性により、生物医学分野で大きな関心を集めています。これらのナノ粒子には、活性酸素種(ROS)を消去し、細胞を酸化ストレスから保護する能力があります。その結果、ドラッグ・デリバリー・システム、がん治療、神経変性疾患治療への応用に大きな可能性を秘めています。ドラッグデリバリーでは、酸化セリウムナノ粒子は、標的を定めて薬物を放出制御するキャリアとして機能し、治療効果を高めることができます。また、がん治療においても、がん細胞の破壊を助け、健康な組織へのダメージを最小限に抑えることができ、有望な結果を示しています。さらに調査では、酸化セリウムナノ粒子が神経保護特性を持ち、アルツハイマー病やパーキンソン病などの神経変性疾患における酸化的損傷を緩和する可能性があることが示されています。ヘルスケアの進歩への注目の高まりとナノメディシン応用の絶え間ない探求が、バイオメディカル分野での酸化セリウムナノ粒子の需要に拍車をかけています。
The global cerium oxide nanoparticles market size reached USD 1,092.8 Million in 2024. Looking forward, IMARC Group expects the market to reach USD 4,201.4 Million by 2033, exhibiting a growth rate (CAGR) of 15.33% during 2025-2033. Some of the factors driving the market growth include the rising product demand from the automotive industry, expanding renewable energy sector, advancements in the healthcare sector, and R&D activities in catalysis and water purification applications.
Cerium oxide nanoparticles, also known as ceria nanoparticles or nanoceria, refer to tiny particles of cerium oxide with dimensions typically ranging from 1 to 100 nanometers. Cerium oxide, with the chemical formula CeO2, is a versatile and widely used compound in various industries. At the nanoscale, cerium oxide exhibits distinct properties and characteristics compared to its bulk form. Cerium oxide nanoparticles possess unique catalytic, optical, and electrical properties, making them valuable in several applications. Their high surface area and oxygen storage capacity make them excellent catalysts for various chemical reactions, including automotive catalysis and environmental remediation processes. Additionally, ceria nanoparticles demonstrate exceptional redox behavior, enabling their utilization in fuel cells, sensors, and energy storage systems.
One of the major factors driving the demand for cerium oxide nanoparticles represents the advancements in electronics and optics due to their unique electrical and optical properties. These nanoparticles are used in the production of conductive pastes, optical coatings, and sensors. With the rapid development of electronic devices, displays, and sensors, the demand for cerium oxide nanoparticles is expected to witness significant growth. In addition to this, the continuous research and development efforts to explore new applications and improve the properties of cerium oxide nanoparticles are driving their demand. Market players are investing in research and development activities to explore the potential uses of cerium oxide nanoparticles in fields such as environmental remediation, catalysis, and water purification, which, in turn, is creating a positive market outlook.
Growing demand in the automotive industry
One of the primary drivers of the global demand for cerium oxide nanoparticles is the automotive industry. Stricter emission regulations imposed by governments worldwide have compelled automakers to invest in technologies that reduce harmful emissions. Cerium oxide nanoparticles are used in catalytic converters, which play a crucial role in reducing pollutants from vehicle exhaust gases. These nanoparticles act as catalysts, promoting the conversion of harmful gases like carbon monoxide, nitrogen oxides, and hydrocarbons into less harmful substances. The unique properties of cerium oxide nanoparticles, such as high oxygen storage capacity and redox behavior, make them effective in enhancing catalytic converter efficiency. As the automotive industry continues to expand, particularly in emerging economies, the demand for cerium oxide nanoparticles as a catalyst material is projected to grow significantly.
Increasing applications in energy storage
The global shift toward renewable energy sources and the need for efficient energy storage systems have fueled the demand for cerium oxide nanoparticles. As renewable energy generation increases, the demand for advanced battery technologies is growing. Cerium oxide nanoparticles are used in lithium-ion batteries to improve their performance and lifespan. These nanoparticles enhance the stability of battery materials, reduce side reactions, and improve the charge/discharge efficiency. Additionally, cerium oxide nanoparticles can mitigate issues like electrode degradation and capacity loss, thereby enhancing the overall energy storage capabilities of batteries. With the rising adoption of electric vehicles and the need for grid-scale energy storage solutions, the demand for cerium oxide nanoparticles in the energy storage sector is anticipated to witness substantial growth.
Growing interest in biomedical applications
Cerium oxide nanoparticles have garnered significant interest in the biomedical field due to their unique antioxidant properties. These nanoparticles have the ability to scavenge reactive oxygen species (ROS) and protect cells from oxidative stress. As a result, they hold great potential for applications in drug delivery systems, cancer treatment, and neurodegenerative disease therapy. In drug delivery, cerium oxide nanoparticles can act as carriers for targeted and controlled drug release, enhancing therapeutic outcomes. They have also demonstrated promising results in cancer treatment, where they can aid in the destruction of cancer cells and minimize damage to healthy tissues. Furthermore, research has shown that cerium oxide nanoparticles possess neuroprotective properties and can potentially mitigate oxidative damage in neurodegenerative diseases such as Alzheimer's and Parkinson's. The increasing focus on healthcare advancements and the continuous exploration of nanomedicine applications have fueled the demand for cerium oxide nanoparticles in the biomedical sector.
Dispersion represents the leading form
Cerium oxide nanoparticles in the form of dispersions refer to a stable suspension of nanoparticles in a liquid medium. These dispersions offer advantages such as ease of handling, uniform distribution of nanoparticles, and compatibility with various applications. They are commonly used in industries such as automotive, electronics, and biomedical. Dispersion-based cerium oxide nanoparticles find applications in catalysts, coatings, polishing agents, fuel additives, and as an ingredient in various formulations. The dispersion form allows for precise control over the concentration and particle size, enabling tailored solutions for specific applications.
On the other hand, cerium oxide nanoparticles in the powder form refer to dry, fine particles of cerium oxide. This form is commonly used in applications where the nanoparticles need to be incorporated into solid materials or formulations. Cerium oxide nanopowders are employed in industries such as energy storage, optics, ceramics, and electronics.
Traditional synthesis methods involve well-established and widely-used techniques for producing cerium oxide nanoparticles. These methods include precipitation, sol-gel, thermal decomposition, hydrothermal synthesis, and other chemical synthesis routes. Traditional synthesis methods often involve the use of organic solvents, chemical reagents, and high temperatures. They offer precise control over the particle size, morphology, and composition of the nanoparticles. These methods have been extensively studied and optimized, leading to consistent production and reliable quality of cerium oxide nanoparticles.
Green synthesis methods, also known as environmentally friendly or sustainable synthesis methods, involve the use of eco-friendly and renewable resources to produce cerium oxide nanoparticles. These methods aim to minimize the environmental impact and reduce the use of hazardous substances typically associated with traditional synthesis methods. Green synthesis methods may utilize biological agents such as bacteria, fungi, algae, or plant extracts as reducing and stabilizing agents for the synthesis process.
Energy storage applications dominate the market
In the energy storage segment, cerium oxide nanoparticles enhance the performance and longevity of batteries by improving their stability, charge/discharge efficiency, and cycle life. Cerium oxide nanoparticles are used in lithium-ion batteries, supercapacitors, and other energy storage devices, addressing the growing demand for efficient and reliable energy storage solutions in sectors such as automotive, renewable energy, and electronics.
Cerium oxide nanoparticles also find extensive use as polishing agents in industries such as optics, glass manufacturing, and precision engineering. The unique properties of these nanoparticles, including their high hardness, fine particle size, and chemical reactivity, enable them to achieve high-quality finishes and precise surface polishing. In addition to this, these nanoparticles are utilized in the personal care industry for various applications. They are incorporated into cosmetic formulations, skincare products, and sunscreen formulations due to their antioxidant properties and UV-absorbing capabilities.
North America exhibits a clear dominance, accounting for the largest cerium oxide nanoparticles market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.
North America is the leading market for cerium oxide nanoparticles since the region has a robust automotive industry. The stringent emission regulations in North America drive the demand for advanced catalyst materials, where cerium oxide nanoparticles play a crucial role in reducing harmful exhaust emissions. Additionally, North America exhibits strong growth in the energy storage sector, including electric vehicles and renewable energy technologies, which further boosts the demand for cerium oxide nanoparticles in lithium-ion batteries and other energy storage applications. Furthermore, the presence of well-established research institutions, technological advancements, and the increasing focus on nanotechnology research and development contribute to the market dominance of North America in the cerium oxide nanoparticles industry.
The key players in the cerium oxide nanoparticles market have been driving innovation through various strategies to enhance product performance and expand their market presence. One notable innovation is the development of surface functionalization techniques. These techniques involve modifying the surface properties of cerium oxide nanoparticles to improve their compatibility with specific applications, such as targeted drug delivery or enhancing catalytic activity. Furthermore, key players have been investing in research and development to explore novel applications of cerium oxide nanoparticles, such as in environmental remediation, water purification, and advanced electronics.