![]() |
市場調査レポート
商品コード
1701812
化合物半導体市場:タイプ別、製品別、堆積技術別、用途別、地域別、2025-2033年Compound Semiconductor Market Report by Type, Product, Deposition Technology, Application, and Region 2025-2033 |
||||||
カスタマイズ可能
|
化合物半導体市場:タイプ別、製品別、堆積技術別、用途別、地域別、2025-2033年 |
出版日: 2025年04月01日
発行: IMARC
ページ情報: 英文 139 Pages
納期: 2~3営業日
|
化合物半導体市場の世界市場規模は2024年に1,228億米ドルに達しました。今後、IMARC Groupは、2033年には1,770億米ドルに達し、2025~2033年の成長率(CAGR)は4.1%になると予測しています。高速エレクトロニクス、5G通信、省電力デバイスのニーズ、自動車の進歩、LED照明の採用、IoTや再生可能エネルギー技術などの新興アプリケーションが市場成長を後押ししています。
化合物半導体は、周期表の異なるグループに属する2つ以上の元素から構成される半導体材料の一種です。単一の元素からなるシリコンやゲルマニウムなどの元素半導体とは異なり、化合物半導体は異なる元素を組み合わせて独自の電子特性を持つ結晶構造を形成します。これらの材料は、優れた電子移動度、広いエネルギーバンドギャップ、高周波デバイス、オプトエレクトロニクス、電力増幅器などの特定の用途における性能向上などの利点を提供します。一般的な化合物半導体には、ガリウムヒ素(GaAs)、リン化インジウム(InP)、窒化ガリウム(GaN)などがあり、それぞれ調整可能な特性により特定の機能に合わせて調整されています。
高速・高周波通信システムへの需要の高まりと5Gネットワークの急速な進化が化合物半導体の必要性に拍車をかけ、主に市場成長を牽引しています。これに伴い、ハイパワー、高周波アプリケーションで優れた性能を発揮する窒化ガリウム(GaN)とヒ化ガリウム(GaAs)の需要が高まっており、市場拡大の明るい見通しが生まれています。さらに、エネルギー効率の高いソリューションが注目されるようになったことで、パワーエレクトロニクスへの化合物半導体の採用が進み、市場の成長を後押ししています。これに加えて、発光ダイオード(LED)、レーザー、光検出器を含むオプトエレクトロニクスの用途拡大が、もう一つの重要な成長促進要因として作用しています。リン化インジウム(InP)などの化合物半導体は、データ通信、センシング、イメージング技術の進歩を促進し、市場成長を後押ししています。さらに、ユニークな特性を持つ化合物半導体がさまざまな産業分野で受け入れられ、イノベーションを促進していることも、市場の成長に寄与しています。
高周波通信と5Gネットワーク
高速・大容量通信システムの需要急増は、化合物半導体の極めて重要な原動力となっています。世界が5Gネットワークの展開に移行する中、化合物半導体は高周波で効率的に動作する能力により不可欠であり、市場拡大の有利な機会を提示しています。さらに、窒化ガリウム(GaN)やヒ化ガリウム(GaAs)などの化合物半導体が、固有の特性により高周波性能に苦戦するシリコンを含む従来の元素半導体よりも好まれるようになったことも、市場拡大の一助となっています。さらに、高い電子移動度と強力な電力処理能力により、5G基地局、レーダーシステム、衛星通信機器でのGaNの採用が増加していることも、市場の成長を強化しています。
パワーエレクトロニクスとエネルギー効率
エネルギー効率重視の高まりと再生可能エネルギー源の推進が、パワーエレクトロニクスにおける化合物半導体の採用に拍車をかけ、市場成長を促進しています。シリコンベースの半導体は、高温・高電圧用途では限界があります。しかし、炭化ケイ素(SiC)などの材料は熱伝導性と市場内訳電圧に優れ、より効率的なエネルギー変換と電力損失の低減を可能にするため、市場の成長を促進しています。これと同時に、エネルギー消費を最小限に抑え、持続可能性を高めるために、電気自動車(EV)、ソーラーインバーター、産業用モータードライブでSiCの使用が増加していることも、化合物半導体の成長促進に寄与しています。
オプトエレクトロニクスとフォトニクスの進歩
オプトエレクトロニクスの進化は、リン化インジウム(InP)を含む化合物半導体の触媒となってきました。InPベースのデバイスは卓越した光学特性を持ち、高速データ通信からセンサーや画像技術に至るまで幅広い用途に適しています。このほか、InPベースのレーザーと光検出器は、光通信システム、データセンター、LiDAR(光検出と測距)などの新技術に不可欠なコンポーネントであり、需要を押し上げています。これに加えて、化合物半導体はLEDや固体照明ソリューションの開発で重要な役割を果たしており、さまざまな分野でエネルギー効率の高い照明オプションを推進しています。
The global compound semiconductor market size reached USD 122.8 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 177.0 Billion by 2033, exhibiting a growth rate (CAGR) of 4.1% during 2025-2033. The need for high-speed electronics, 5G communication, and power-efficient devices, automotive advancements, LED lighting adoption, and emerging applications, including IoT and renewable energy technologies, are propelling the market growth.
A compound semiconductor is a type of semiconductor material composed of two or more elements from different groups in the periodic table. Unlike elemental semiconductors such as silicon or germanium, which consist of a single element, compound semiconductors combine distinct elements to form a crystalline structure with unique electronic properties. These materials offer advantages such as superior electron mobility, wider energy bandgaps, and enhanced performance in specific applications, including high-frequency devices, optoelectronics, and power amplifiers. Some of the common compound semiconductors include gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN), each tailored for specific functions due to their tunable properties.
The escalating demand for high-speed, high-frequency communication systems and the rapid evolution of 5G networks have spurred the need for compound semiconductors, primarily driving the market growth. In line with this, the rising demand for gallium nitride (GaN) and gallium arsenide (GaAs), which offer superior performance in high-power, high-frequency applications is creating a positive outlook for market expansion. Moreover, the growing prominence of energy-efficient solutions has driven the adoption of compound semiconductors in power electronics, bolstering the market growth. In addition to this, the expanding applications of optoelectronics, encompassing light emitting diodes (LEDs), lasers, and photodetectors, are acting as another significant growth-inducing driver. Compound semiconductors, such as indium phosphide (InP), facilitate advancements in data communication, sensing, and imaging technologies, thereby favoring the market growth. Furthermore, the rising acceptance of these materials across various industrial verticals, owing to their unique properties, fostering innovations is contributing to the market's growth.
High-frequency communication and 5G networks
The surge in demand for high-speed, high-capacity communication systems has been a pivotal driver for compound semiconductors. As the world transitions towards the deployment of 5G networks, these semiconductors are essential due to their ability to operate efficiently at high frequencies, presenting lucrative opportunities for market expansion. Additionally, the shifting preference for compound semiconductors, such as gallium nitride (GaN) and gallium arsenide (GaAs), over traditional elemental semiconductors, including silicon that struggle with high-frequency performance due to their intrinsic properties, is aiding in market expansion. Furthermore, the rising employment of GaN in 5G base stations, radar systems, and satellite communication equipment due to its high electron mobility and robust power handling capabilities is strengthening the market growth.
Power electronics and energy efficiency
The surging emphasis on energy efficiency and the drive towards renewable energy sources has spurred the adoption of compound semiconductors in power electronics, fueling the market growth. Silicon-based semiconductors have limitations in high-temperature and high-voltage applications. However, materials such as silicon carbide (SiC) offer superior thermal conductivity and breakdown voltage, enabling more efficient energy conversion and reduced power losses, which is propelling the market forward. Concurrent with this, the increasing use of SiC in electric vehicles (EVs), solar inverters, and industrial motor drives to minimize energy consumption and enhance sustainability is contributing to the bolstering growth of the compound semiconductor.
Optoelectronics and photonics advancements
The evolution of optoelectronics has been a catalyst for compound semiconductors, including indium phosphide (InP). InP-based devices have exceptional optical properties, making them suitable for applications ranging from high-speed data communication to sensors and imaging technologies, which, in turn, is creating a positive outlook for market expansion. Besides this, InP-based lasers and photodetectors are essential components in optical communication systems, data centers, and emerging technologies such as LiDAR (light detection and ranging), boosting their demand. In addition to this, compound semiconductors play a vital role in the development of LEDs and solid-state lighting solutions, driving energy-efficient lighting options across various sectors.
III-V compound semiconductor dominates the market
The demand for III-V compound semiconductors, including gallium nitride (GaN), gallium phosphide, gallium arsenide (GaAs), indium phosphide (InP), and indium antimonide, is propelled by their unique material properties that enable breakthroughs in niche applications. GaN's exceptional power handling capabilities are driving innovations in high-power electronics, RF amplifiers, and 5G infrastructure. GaAs' high electron mobility supports high-speed devices for wireless communication and aerospace applications, thereby impelling the market growth. Moreover, InP's superior optical properties make it vital for high-speed optical \communication systems, while InSb finds use in infrared detectors for thermal imaging. This demand underscores the pivotal role of III-V compound semiconductors in pushing the boundaries of performance in specialized domains.
Power semiconductor holds the largest share in the market
The surging demand for power compound semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), due to their transformative impact on energy efficiency and power electronics is one of the main drivers of the market. Additionally, SiC's high thermal conductivity and breakdown voltage enhance energy conversion in electric vehicles, renewable energy systems, and industrial equipment. GaN's high electron mobility enables compact and efficient power supplies, contributing to smaller form factors in consumer electronics and electric vehicle charging systems. As industries seek enhanced performance, reduced energy losses, and greater power density, power compound semiconductors have emerged as crucial enablers, propelling their adoption across a spectrum of applications, aiding in market expansion.
Chemical vapor deposition dominates the market
Chemical vapor deposition (CVD) represents the biggest deposition technology in the compound semiconductor market due to several key factors. CVD offers exceptional uniformity and precision in depositing thin film materials, essential for high-quality compound semiconductors, which, in turn, is driving the market growth. Moreover, it supports a wide range of materials and is compatible with various substrates, making it a highly versatile method. Besides this, CVD's scalability and efficiency in mass production make it an attractive option for manufacturers, fulfilling the demand for compound semiconductors in various applications such as electronics, optoelectronics, and photovoltaics.
IT and telecom holds the largest share in the market
The utilization of compound semiconductors in the IT and telecom sector is propelled by their capacity to meet the escalating demand for high-speed data transmission, networking, and wireless communication. These materials, such as gallium nitride (GaN) and indium phosphide (InP), enable the creation of high-frequency, high-efficiency devices critical for 5G infrastructure, satellite communication, and broadband expansion, fueling their adoption across various applications across the IT and telecom industry. GaN's superior power handling characteristics enhance the performance of RF amplifiers and base stations, while InP's exceptional optical properties drive advancements in optical communication systems. As the sector continues to seek faster and more reliable connectivity, compound semiconductors play an integral role in enabling the next era of information exchange and digital transformation.
Asia Pacific exhibits a clear dominance, accounting for the largest compound semiconductor market share.
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, Asia Pacific accounted for the largest market share.
The Asia Pacific compound semiconductor market is experiencing significant propulsion due to the region's robust manufacturing capabilities, rapid technological advancements, and burgeoning demand for cutting-edge electronics. Countries such as South Korea, Taiwan, China, and Japan have emerged as semiconductor powerhouses, fostering a competitive landscape for compound semiconductor production. In addition to this, the region's focus on consumer electronics, 5G network expansion, and automotive innovations is driving the adoption of compound semiconductors in applications ranging from high-frequency communication devices to power electronics. Additionally, strategic government initiatives and investments in research and development are bolstering the Asia Pacific's position as a key driver in shaping the global compound semiconductor market.
The competitive landscape of the global compound semiconductor market is marked by a dynamic interplay of established players and emerging contenders, fueled by technological advancements and market demands. Key industry leaders hold substantial market shares, leveraging their expertise in research, development, and manufacturing to offer a diverse range of compound semiconductor solutions. Moreover, collaborations and strategic acquisitions amplify their capabilities, expanding their product portfolios. At the same time, emerging companies are making strides in providing advanced deposition and manufacturing equipment critical for compound semiconductor production. The market's growth is also driven by the convergence of industries such as telecommunications, automotive, and energy, prompting traditional semiconductor giants to enter the domain, intensifying competition.