![]() |
市場調査レポート
商品コード
1561454
3D細胞培養市場レポート:製品、用途、エンドユーザー、地域別、2024年~2032年3D Cell Culture Market Report by Product, Application, End User, and Region 2024-2032 |
||||||
カスタマイズ可能
|
3D細胞培養市場レポート:製品、用途、エンドユーザー、地域別、2024年~2032年 |
出版日: 2024年09月10日
発行: IMARC
ページ情報: 英文 136 Pages
納期: 2~3営業日
|
3D細胞培養市場の世界市場規模は、2023年に23億2,320万米ドルに達しました。今後、IMARC Groupは、市場は2032年までに74億1,870万米ドルに達し、2024-2032年の成長率(CAGR)は13.4%を示すと予測しています。がん診断のための3D組織工学モデルに対する需要の高まり、気道および気液界面オルガノイドに対するニーズの高まり、in vivoモデル系を必要とする研究における利用の増加が、市場を牽引する主な要因のいくつかを表しています。
3D細胞培養は、細胞が3次元的に増殖し、周囲の細胞外フレームワークと相互作用することを可能にする培養環境です。細胞をプレート上の平坦な単層で培養する従来の2D細胞培養とは対照的です。ハイドロゲルや不活性マトリックスなどの支持足場内で培養し、あらゆる方向への増殖を可能にします。細胞がクラスターやスフェロイドに自己組織化するためには、低接着性プレート、マイクロパターン表面、ハンギングドロップなど、足場を用いない方法に依存します。マイクロチップのチャンバー内で行われ、細胞全体に栄養分やその他の化学物質を運び、分配するための液体の流れを可能にします。二次元細胞培養に比べ、組織内の細胞が存在する実際の微小環境をより正確に表現しています。3D細胞培養は、その追加的な次元性によりin vivoでの細胞応答をより反映するため、3D細胞培養の需要は世界中で高まっています。
現在、in vivoモデル系を必要とする研究において、3D培養は臓器の典型的な形態や微細構造を忠実に模倣することができるため、3D細胞培養の利用が増加しており、市場の成長を支える重要な要因の一つとなっています。これに加えて、世界中の大衆の間で、がんやその他の臨床疾患を診断するための3D組織工学モデルの採用が増加しています。これは、体内組織や臓器に対する外来薬の影響を分析するための3D細胞培養の需要の増加とともに、有利な市場見通しを提供しています。加えて、3D細胞培養は2D技術と比べてシンプルで安価なin vitro腫瘍-宿主環境であるため、需要の高まりが市場の成長を後押ししています。さらに、呼吸器疾患に関する調査のために3Dモデルの利用が増加しており、業界の投資家に有利な成長機会を提供しています。これとは別に、抗ウイルス薬の開発と発見、実験的ウイルス学プラットフォーム、免疫反応の研究のために、気道と気液界面オルガノイドの需要が増加しています。このことは、新製品の発売や生物学研究における3Dプロトコルの幅広い応用と相まって、市場の成長を強化しています。
The global 3D cell culture market size reached US$ 2,323.2 Million in 2023. Looking forward, IMARC Group expects the market to reach US$ 7,418.7 Million by 2032, exhibiting a growth rate (CAGR) of 13.4% during 2024-2032. The growing demand for 3D tissue-engineered models to diagnose cancer, rising need for airway and air-liquid interface organoids, and increasing utilization in studies that require in vivo model systems represent some of the key factors driving the market.
3D cell culture is a culture environment that enables cells to grow and interact with surrounding extracellular frameworks in three dimensions. It is a contrast to traditional 2D cell cultures wherein cells are grown in a flat monolayer on a plate. It can be cultured within supporting scaffolds, such as hydrogels and inert matrices, to allow growth in all directions. It relies on scaffold-free methods, such as low-adhesion plates, micropatterned surfaces, and hanging drops, for allowing cells to self-assemble into clusters or spheroids. It is performed within the chambers of a microchip that allows the flow of liquid to transport and distribute nutrients or other chemicals throughout the cells. It represents more accurately the actual microenvironment wherein cells reside in tissues compared to 2D cell culture. As it is more reflective of in vivo cellular responses due to the additional dimensionality of 3D cultures, the demand for 3D cell culture is rising across the globe.
At present, the increasing utilization of 3D cell culture in studies that require in vivo model systems, as 3D cultures can closely mimic a typical morphology and microarchitecture of organs, represents one of the key factors supporting the growth of the market. Besides this, there is a rise in the employment of 3D tissue-engineered models to diagnose cancer and other clinical disorders among the masses around the world. This, along with the growing demand for 3D cell culture to analyze the effects of a foreign drug over body tissues and organs, is offering a favorable market outlook. In addition, the rising demand for 3D cell culture, as it is a simple and inexpensive in vitro tumor-host environment compared to 2D techniques, is propelling the growth of the market. Moreover, the increasing usage of 3D models for performing research about respiratory diseases is offering lucrative growth opportunities to industry investors. Apart from this, there is an increase in the demand for airway and air-liquid interface organoids to develop and discover antiviral drugs and as experimental virology platforms and study the immune responses. This, coupled with the launch of new products and wide applications of 3D protocols in biological research, is strengthening the growth of the market.
IMARC Group provides an analysis of the key trends in each sub-segment of the global 3D cell culture market report, along with forecasts at the global, regional and country level from 2024-2032. Our report has categorized the market based on product, application and end user.
The report has provided a detailed breakup and analysis of the 3D cell culture market based on the product. This includes scaffold-based platforms, scaffold-free platforms, microchips, bioreactors, and others. According to the report, scaffold-based platforms represented the largest segment.
A detailed breakup and analysis of the 3D cell culture market based on the application has also been provided in the report. This includes cancer research, stem cell research, drug discovery, regenerative medicine, and others. According to the report, cancer research accounted for the largest market share.
A detailed breakup and analysis of the 3D cell culture market based on the end user has also been provided in the report. This includes biotechnology and pharmaceutical companies, contract research laboratories, academic institutes, and others. According to the report, biotechnology and pharmaceutical companies accounted for the largest market share.
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America (the United States and Canada) was the largest market for 3D cell culture. Some of the factors driving the North America 3D cell culture market included the government funding for the development of advanced 3D cell culture models, high healthcare spending, the presence of a large number of universities and research organizations, etc.
The report has also provided a comprehensive analysis of the competitive landscape in the global 3D cell culture market. Competitive analysis such as market structure, market share by key players, player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided. Some of the companies covered include 3D Biotek LLC, Advanced Biomatrix Inc., Avantor Inc., CN Bio Innovations Limited, Corning Incorporated, Emulate Inc., InSphero AG, Lonza Group AG, Merck KGaA, Promocell GmbH, Synthecon Inc, Thermo Fisher Scientific Inc., etc. Kindly note that this only represents a partial list of companies, and the complete list has been provided in the report.