デフォルト表紙
市場調査レポート
商品コード
1540884

フォトニック集積回路の市場レポート:部品、原材料、集積度、用途、地域別、2024~2032年

Photonic Integrated Circuit Market Report by Component, Raw Material (Indium Phosphide, Gallium Arsenide, Lithium Niobate, Silicon, Silica-on-Silicon), Integration, Application, and Region 2024-2032


出版日
発行
IMARC
ページ情報
英文 135 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=151.20円
フォトニック集積回路の市場レポート:部品、原材料、集積度、用途、地域別、2024~2032年
出版日: 2024年08月10日
発行: IMARC
ページ情報: 英文 135 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界のフォトニック集積回路の市場規模は2023年に116億米ドルに達しました。今後、IMARC Groupは、市場は2032年までに515億米ドルに達し、2024~2032年の間に17.67%の成長率(CAGR)を示すと予測しています。クラウドコンピューティングとデータ記憶装置の産業拡大、医療画像、診断、光学センシングにおける製品用途の普及、ライダーシステムの需要増加、海底と衛星光通信ネットワークの成長が市場を後押しする要因の一部です。

フォトニック集積回路(PIC)は、フォトニクスの原理を利用して様々な光部品をシングルチップに集積する画期的な技術です。電子集積回路(IC)のように、PICは複数の機能を単一のプラットフォームに統合します。しかし、電気信号の代わりに光子(光)を操作し伝送することで、通信、データ通信、そしてそれ以上の用途に対応します。PICにはいくつかの利点があります。PICは非常に効率的で、従来の電子回路よりも少ない消費電力で、高帯域幅での高速データ伝送を可能にします。さらに、PICは本質的に電磁干渉を受けにくく、信号を劣化させることなく長距離のデータ伝送が可能です。これらの特徴は、高速で信頼性の高いデータ伝送が重要な5Gネットワークのような新興技術において特に価値があります。さらにPICは、個々の光子の操作が不可欠な量子コンピューティングやセンシングのような新興セグメントで極めて重要な役割を果たしています。そのコンパクトなサイズとスケーラビリティにより、小型化と性能向上を目指す産業において、PICはますます不可欠なものとなっています。技術の進歩に伴い、より速く、より効率的で、より安全な情報交換を求める高まる需要にソリューションを提供することで、データの処理・伝送方法に革命を起こす準備が整っています。

世界市場の主要原動力は、特に通信とデータセンターにおける、より高速なデータ伝送速度に対する需要の高まりです。これに伴い、5Gネットワークの急速な拡大と6Gへの移行が迫っており、前例のないデータ負荷と通信速度を処理するためにフォトニクスの統合が必要となり、PICの採用がさらに加速しています。さらに、量子コンピューティングや量子通信のような最先端技術の出現は、個々の光子を操作・制御するPICに大きく依存しており、これらのセグメントにおける画期的な進歩を可能にしています。さらに、PICの製造技術の拡大性と費用対効果により、これらのデバイスは医療から自動車に至るまで、より幅広い産業や用途でますます利用しやすくなっています。エネルギー消費量や発熱量の削減といったフォトニクスの環境面での利点は、持続可能性を求める世界の動きと合致しており、産業界が環境に優しいソリューションを求める中、市場の成長を牽引しています。

フォトニック集積回路の市場傾向/促進要因:

防衛セグメントの拡大

拡大する防衛セグメントは、市場に多くの機会を提供しています。現代の軍事作戦は、通信、監視、精密照準のための先端技術にますます依存しています。PICはこれらの能力を強化する上で極めて重要な役割を果たしています。軍事では、安全で高速なデータ伝送が極めて重要です。PICは、従来の電子システムよりも広帯域、低遅延、強化されたセキュリティを提供する光通信システムを可能にします。これは、機密情報を伝送し、作戦の有効性を維持するために不可欠です。さらに、レーザーベースの兵器や指向性エネルギーシステムの開発には、光信号の精密な制御が必要です。PICは、目標指定や脅威への対抗措置といった用途のために、レーザービームの操作と管理を可能にします。さらに、多くの場合PICをベースとするフォトニックセンサーは、高解像度イメージング、赤外線センシング、ライダー機能を提供することにより、状況認識を向上させる。これらの技術は、監視、偵察、脅威の検知に不可欠です。加えて、PICのコンパクトなサイズと統合能力は、無人航空機(UAV)や兵士が装着する装備品など、スペースが限られている防衛用途で特に重宝されます。世界の防衛機関がその能力を近代化するにつれて、PICのような先進的なフォトニック技術に対する需要は増加の一途をたどっており、PICは防衛システムの重要な部品であり、市場拡大の主要な原動力となっています。

フォトニクスの急速な技術進歩

フォトニクスの急速な技術進歩は市場に好影響を与えています。これらの進歩は、光をベースとした技術を使ったデータ処理、通信、センシングに関して可能なことの限界を絶えず押し広げています。フォトニクスは高速光通信システムの開発を可能にし、5G、データセンター、長距離光ファイバーなどの用途で増え続けるデータ伝送の需要に不可欠です。PICは、さまざまなフォトニクス部品を集積する能力によって、こうした高速データ転送を容易にします。製造技術の進歩により、PICの小型化と効率化が進んでいます。この小型化は、モバイル機器、生体医療機器、航空宇宙技術など、限られたスペースでの応用に不可欠です。さらに、フォトニクスは、量子コンピューティング、量子通信、LiDARのような新技術の要でもあります。PICは、これらの最先端セグメントにおける光子の操作と制御の中心的存在です。フォトニクスの進歩は、環境モニタリング、医療、セキュリティ・用途において、より高感度で正確な光センサーの実現につながっています。フォトニクスの技術革新が進むにつれて、PICの多用途性と効率性がさまざまな産業の原動力となり、光ベースの技術における持続的な成長とさらなるブレークスルーのために市場を位置づけています。

データセンターの急速な拡大

データセンターの急速な拡大が市場成長の原動力となっています。デジタル化が進む中、データセンターはクラウド・コンピューティング、ストレージ、インターネットサービスのバックボーンであり、高速でエネルギー効率に優れ、スケーラブルなソリューションが求められています。データセンターは大量の情報を処理するため、光速のデータ伝送を必要とします。PICはデータセンター内とデータセンター間の高速光通信を可能にし、待ち時間を短縮して全体的なパフォーマンスを向上させます。データ・センターのエネルギー消費は重大な関心事です。PICは電子部品に比べて消費電力が少ないため、データセンターがエネルギー効率目標を達成し、運用コストを削減するのに役立ちます。データセンターが増大するデータ需要に対応するため、PICは拡大可能なソリューションを記載しています。PICはコンパクトなため、既存のデータセンター・インフラに効率的に統合することができます。PICを使用したフォトニック相互接続は、データセンター内のサーバー、スイッチ、ルーターの接続、データフローの合理化、ボトルネックの削減に不可欠です。デジタルサービスとクラウド・コンピューティングの絶え間ない拡大に伴い、効率的で高性能なデータセンターへの需要は衰えることがありません。PICはこの変革の最前線にあり、データセンターの成長と最適化を促進し、結果として市場を牽引しています。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査の目的
  • ステークホルダー
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 イントロダクション

  • 概要
  • 主要業界動向

第5章 世界のフォトニック集積回路市場

  • 市場概要
  • 市場実績
  • COVID-19の影響
  • 市場予測

第6章 市場内訳:部品別

  • レーザー
  • マルチプレクサ/デマルチプレクサ
  • 光増幅器
  • 変調器
  • 減衰器
  • 検出器

第7章 市場内訳:原材料別

  • リン化インジウム(InP)
  • ガリウムヒ素(GaAs)
  • ニオブ酸リチウム(LiNbO3)
  • シリコン
  • シリカオンシリコン

第8章 市場内訳:集積度別

  • モノリシック
  • ハイブリッド
  • モジュール

第9章 市場内訳:用途別

  • 光ファイバー通信
  • 光ファイバーセンサー
  • バイオメディカル
  • 量子コンピューティング

第10章 市場内訳:地域別

  • 北米
    • 米国
    • カナダ
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • 韓国
    • オーストラリア
    • インドネシア
    • その他
  • 欧州
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ロシア
    • その他
  • ラテンアメリカ
    • ブラジル
    • メキシコ
    • その他
  • 中東・アフリカ
    • 市場動向
    • 市場内訳:国別
    • 市場予測

第11章 SWOT分析

  • 概要
  • 強み
  • 弱み
  • 機会
  • 脅威

第12章 バリューチェーン分析

第13章 ポーターのファイブフォース分析

  • 概要
  • 買い手の交渉力
  • 供給企業の交渉力
  • 競合の程度
  • 新規参入業者の脅威
  • 代替品の脅威

第14章 価格分析

第15章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • Broadcom Inc.
    • ColorChip Ltd.
    • Hamamatsu Photonics K.K.
    • II-VI Incorporated
    • Infinera Corporation
    • Intel Corporation
    • LioniX International
    • POET Technologies
    • VLC Photonics S.L.(Hitachi Ltd.)
図表

List of Figures

  • Figure 1: Global: Photonic Integrated Circuit Market: Major Drivers and Challenges
  • Figure 2: Global: Photonic Integrated Circuit Market: Sales Value (in Billion US$), 2018-2023
  • Figure 3: Global: Photonic Integrated Circuit Market Forecast: Sales Value (in Billion US$), 2024-2032
  • Figure 4: Global: Photonic Integrated Circuit Market: Breakup by Component (in %), 2023
  • Figure 5: Global: Photonic Integrated Circuit Market: Breakup by Raw Material (in %), 2023
  • Figure 6: Global: Photonic Integrated Circuit Market: Breakup by Integration (in %), 2023
  • Figure 7: Global: Photonic Integrated Circuit Market: Breakup by Application (in %), 2023
  • Figure 8: Global: Photonic Integrated Circuit Market: Breakup by Region (in %), 2023
  • Figure 9: Global: Photonic Integrated Circuit (Lasers) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 10: Global: Photonic Integrated Circuit (Lasers) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 11: Global: Photonic Integrated Circuit (MUX/DEMUX) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 12: Global: Photonic Integrated Circuit (MUX/DEMUX) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 13: Global: Photonic Integrated Circuit (Optical Amplifiers) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 14: Global: Photonic Integrated Circuit (Optical Amplifiers) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 15: Global: Photonic Integrated Circuit (Modulators) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 16: Global: Photonic Integrated Circuit (Modulators) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 17: Global: Photonic Integrated Circuit (Attenuators) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 18: Global: Photonic Integrated Circuit (Attenuators) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 19: Global: Photonic Integrated Circuit (Detectors) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 20: Global: Photonic Integrated Circuit (Detectors) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 21: Global: Photonic Integrated Circuit (Indium Phosphide (InP)) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 22: Global: Photonic Integrated Circuit (Indium Phosphide (InP)) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 23: Global: Photonic Integrated Circuit (Gallium Arsenide (GaAs)) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 24: Global: Photonic Integrated Circuit (Gallium Arsenide (GaAs)) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 25: Global: Photonic Integrated Circuit (Lithium Niobate (LiNbO3)) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 26: Global: Photonic Integrated Circuit (Lithium Niobate (LiNbO3)) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 27: Global: Photonic Integrated Circuit (Silicon) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 28: Global: Photonic Integrated Circuit (Silicon) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 29: Global: Photonic Integrated Circuit (Silica-on-Silicon) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 30: Global: Photonic Integrated Circuit (Silica-on-Silicon) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 31: Global: Photonic Integrated Circuit (Monolithic Integration) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 32: Global: Photonic Integrated Circuit (Monolithic Integration) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 33: Global: Photonic Integrated Circuit (Hybrid Integration) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 34: Global: Photonic Integrated Circuit (Hybrid Integration) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 35: Global: Photonic Integrated Circuit (Module Integration) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 36: Global: Photonic Integrated Circuit (Module Integration) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 37: Global: Photonic Integrated Circuit (Optical Fiber Communication) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 38: Global: Photonic Integrated Circuit (Optical Fiber Communication) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 39: Global: Photonic Integrated Circuit (Optical Fiber Sensor) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 40: Global: Photonic Integrated Circuit (Optical Fiber Sensor) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 41: Global: Photonic Integrated Circuit (Biomedical) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 42: Global: Photonic Integrated Circuit (Biomedical) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 43: Global: Photonic Integrated Circuit (Quantum Computing) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 44: Global: Photonic Integrated Circuit (Quantum Computing) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 45: North America: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 46: North America: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 47: United States: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 48: United States: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 49: Canada: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 50: Canada: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 51: Asia-Pacific: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 52: Asia-Pacific: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 53: China: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 54: China: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 55: Japan: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 56: Japan: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 57: India: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 58: India: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 59: South Korea: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 60: South Korea: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 61: Australia: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 62: Australia: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 63: Indonesia: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 64: Indonesia: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 65: Others: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 66: Others: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 67: Europe: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 68: Europe: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 69: Germany: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 70: Germany: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 71: France: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 72: France: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 73: United Kingdom: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 74: United Kingdom: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 75: Italy: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 76: Italy: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 77: Spain: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 78: Spain: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 79: Russia: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 80: Russia: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 81: Others: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 82: Others: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 83: Latin America: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 84: Latin America: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 85: Brazil: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 86: Brazil: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 87: Mexico: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 88: Mexico: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 89: Others: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 90: Others: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 91: Middle East and Africa: Photonic Integrated Circuit Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 92: Middle East and Africa: Photonic Integrated Circuit Market: Breakup by Country (in %), 2023
  • Figure 93: Middle East and Africa: Photonic Integrated Circuit Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 94: Global: Photonic Integrated Circuit Industry: SWOT Analysis
  • Figure 95: Global: Photonic Integrated Circuit Industry: Value Chain Analysis
  • Figure 96: Global: Photonic Integrated Circuit Industry: Porter's Five Forces Analysis

List of Tables

  • Table 1: Global: Photonic Integrated Circuit Market: Key Industry Highlights, 2023 and 2032
  • Table 2: Global: Photonic Integrated Circuit Market Forecast: Breakup by Component (in Million US$), 2024-2032
  • Table 3: Global: Photonic Integrated Circuit Market Forecast: Breakup by Raw Material (in Million US$), 2024-2032
  • Table 4: Global: Photonic Integrated Circuit Market Forecast: Breakup by Integration (in Million US$), 2024-2032
  • Table 5: Global: Photonic Integrated Circuit Market Forecast: Breakup by Application (in Million US$), 2024-2032
  • Table 6: Global: Photonic Integrated Circuit Market Forecast: Breakup by Region (in Million US$), 2024-2032
  • Table 7: Global: Photonic Integrated Circuit Market: Competitive Structure
  • Table 8: Global: Photonic Integrated Circuit Market: Key Players
目次
Product Code: SR112024A5809

The global photonic integrated circuit market size reached US$ 11.6 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 51.5 Billion by 2032, exhibiting a growth rate (CAGR) of 17.67% during 2024-2032. The expanding cloud computing and data storage industry, the widespread product applications in medical imaging, diagnostics, and optical sensing, the increasing demand for Lidar systems, and the growth of undersea and satellite optical communication networks are some of the factors propelling the market.

A photonic integrated circuit (PIC) is a groundbreaking technology that harnesses photonics principles to integrate various optical components onto a single chip. Like electronic integrated circuits (ICs), PICs consolidate multiple functions onto a single platform. Still, instead of electrical signals, they manipulate and transmit photons (light) for telecommunications, data communication, and beyond applications. They offer several advantages. They are highly efficient, enabling rapid data transmission at high bandwidths while consuming less power than traditional electronic circuits. Additionally, PICs are inherently immune to electromagnetic interference and can transmit data over longer distances without signal degradation. These features are particularly valuable in emerging technologies like 5G networks, where fast and reliable data transmission is critical. Moreover, PICs play a pivotal role in emerging fields like quantum computing and sensing, where manipulating individual photons is essential. Their compact size and scalability make them increasingly essential in industries aiming for miniaturization and increased performance. As technology advances, they are poised to revolutionize how we process and transmit data, offering solutions to the ever-growing demand for faster, more efficient, and more secure information exchange.

The global market is majorly driven by the increasing demand for higher data transmission rates, particularly in telecommunications and data centers. In line with this, the rapid expansion of 5G networks and the looming transition to 6G require the integration of photonics to handle unprecedented data loads and communication speeds, further fueling the adoption of PICs. Furthermore, the emergence of cutting-edge technologies like quantum computing and quantum communication relies heavily on PICs to manipulate and control individual photons, enabling groundbreaking advancements in these fields. Besides, PIC manufacturing techniques' scalability and cost-effectiveness make these devices increasingly accessible to a broader range of industries and applications, from healthcare to automotive. The environmental advantages of photonics, such as reduced energy consumption and heat generation, align with the global push for sustainability, driving the market's growth as industries seek eco-friendly solutions.

Photonic Integrated Circuit Market Trends/Drivers:

Expanding defense sector

The expanding defense sector is offering numerous opportunities for the market. Modern military operations increasingly rely on advanced technology for communication, surveillance, and precision targeting. PICs play a pivotal role in enhancing these capabilities. In the military, secure and high-speed data transmission is crucial. PICs enable optical communication systems that offer greater bandwidth, lower latency, and enhanced security compared to traditional electronic systems. This is vital for transmitting sensitive information and maintaining operational effectiveness. Furthermore, the development of laser-based weaponry and directed energy systems requires precise control of optical signals. PICs enable the manipulation and management of laser beams for applications like target designation and countermeasures against threats. Moreover, the photonic sensors, often based on PICs, enhance situational awareness by providing high-resolution imaging, infrared sensing, and Lidar capabilities. These technologies are essential for surveillance, reconnaissance, and threat detection. Besides, PICs' compact size and integration capabilities are especially valuable in defense applications where space is limited, such as in unmanned aerial vehicles (UAVs) and soldier-worn equipment. As defense agencies worldwide modernize their capabilities, the demand for advanced photonic technologies like PICs continues to grow, making them a critical component of defense systems and a key driver for the market's expansion.

Rapid technological advancements in photonics

Rapid technological advancements in photonics are favorably impacting the market. These advancements continually push the boundaries of what is possible regarding data processing, communication, and sensing using light-based technologies. Photonics has enabled the development of high-speed optical communication systems, essential for the ever-increasing demand for data transmission in applications like 5G, data centers, and long-distance fiber optics. PICs facilitate these high data rates with their ability to integrate various photonic components. Advancements in manufacturing techniques have led to smaller and more efficient PICs. This miniaturization is essential for limited space applications like mobile devices, biomedical devices, and aerospace technology. Furthermore, photonics is a cornerstone of emerging technologies like quantum computing, quantum communication, and LiDAR. PICs are central in manipulating and controlling photons in these cutting-edge fields. Photonics advancements have led to more sensitive and accurate optical sensors in environmental monitoring, healthcare, and security applications. As technological innovations continue to emerge in photonics, the versatility and efficiency of PICs make them a driving force in various industries, positioning the market for sustained growth and further breakthroughs in light-based technologies.

Rapid expansion of data centers

The rapid expansion of data centers is fueling the market growth. In an increasingly digital world, data centers are the backbone of cloud computing, storage, and internet services, demanding high-speed, energy-efficient, and scalable solutions, all enriched by PICs. Data centers require lightning-fast data transmission to handle massive volumes of information. PICs enable high-speed optical communication within and between data centers, reducing latency and improving overall performance. The energy consumption of data centers is a significant concern. PICs consume less power than their electronic counterparts, helping data centers achieve energy efficiency goals and reduce operational costs. As data centers grow to meet escalating data demands, PICs provide a scalable solution. Their compact nature allows for efficient integration into existing data center infrastructures. Photonic interconnects using PICs are essential for connecting servers, switches, and routers within data centers, streamlining data flow, and reducing bottlenecks. With the relentless expansion of digital services and cloud computing, the demand for efficient, high-performance data centers remains unabated. PICs are at the forefront of this transformation, facilitating the growth and optimization of data centers and, consequently, driving the market.

Photonic Integrated Circuit Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the global photonic integrated circuit market report, along with forecasts at the global, regional and country levels for 2024-2032. Our report has categorized the market based on component, raw material, integration, and application.

Breakup by Component:

Lasers

MUX/DEMUX

Optical Amplifiers

Modulators

Attenuators

Detectors

Lasers dominates the market

The report has provided a detailed breakup and analysis of the market based on the component. This includes lasers, MUX/DEMUX, optical amplifiers, modulators, attenuators, and detectors. According to the report, lasers represented the largest segment.

Lasers are fundamental components within PICs, and their role is pivotal in various applications across industries. They are integral to optical communication systems, where PICs play a vital role. The demand for high-speed data transmission, especially in 5G networks, data centers, and long-haul fiber optics, drives the need for more efficient and compact lasers within PICs. They are used in various sensing applications, including LiDAR for autonomous vehicles, environmental monitoring, and industrial processes. As these technologies advance, PICs incorporating lasers become increasingly essential for precision and reliability.

Furthermore, lasers play a crucial role in medical applications, such as diagnostics, surgery, and imaging. PICs that integrate lasers offer miniaturized and cost-effective solutions, promoting their adoption in the healthcare sector. They are used for targeting, range finding, and communications in defense and aerospace applications. The development of more compact and efficient laser sources through PICs enhances these capabilities. They are fundamental to quantum computing and quantum communication. PICs with lasers enable the manipulation of photons for quantum information processing.

Breakup by Raw Material:

Indium Phosphide (InP)

Gallium Arsenide (GaAs)

Lithium Niobate (LiNbO3)

Silicon

Silica-on-Silicon

Indium phosphide (InP) dominates the market

The report has provided a detailed breakup and analysis of the market based on the raw material. This includes indium phosphide (InP), gallium arsenide (GaAs), lithium niobate (LiNbO3), silicon, and silica-on-silicon. According to the report, indium phosphide (InP) represented the largest segment.

Indium Phosphide (InP) is a pivotal raw material driving the growth of the photonic integrated circuit (PIC) market. Known for its exceptional optical and electronic properties, InP is a foundation for manufacturing high-performance PICs. Its wide bandgap, high electron mobility, and compatibility with optical and electronic components make it a preferred choice for creating PICs that excel in optical communication, sensing, and computing applications.

InP-based PICs enable faster data transmission, higher bandwidths, and improved energy efficiency, making them crucial for emerging technologies like 5G networks, data centers, LiDAR systems, and quantum computing. As demand for advanced optical solutions continues to rise, the utilization of InP as a raw material underscores its significance in the development of cutting-edge PICs. It contributes substantially to the market's growth and innovation.

Breakup by Integration:

Monolithic Integration

Hybrid Integration

Module Integration

Monolithic integration dominates the market

The report has provided a detailed breakup and analysis of the market based on the integration. This includes monolithic integration, hybrid integration, and module integration. According to the report, monolithic integration represented the largest segment.

Monolithic integration is a pivotal category shaping the market. This approach integrates all optical components, such as lasers, waveguides, and detectors, onto a single semiconductor substrate. Monolithic integration offers several key advantages, including compact size, high performance, and cost-effectiveness.

PICs developed through monolithic integration can achieve superior levels of integration and efficiency, making them ideal for applications where space, power, and precision are critical, such as data centers, telecommunications networks, and optical sensing devices. This approach simplifies manufacturing processes, reduces the risk of alignment errors, and enables the creation of highly customized and specialized PICs tailored to specific applications. As the demand for smaller, faster, and more efficient photonic solutions grows, monolithic integration remains a driving force in advancing PIC technology and expanding its presence across various industries.

Breakup by Application:

Optical Fiber Communication

Optical Fiber Sensor

Biomedical

Quantum Computing

Optical fiber communication dominates the market

The report has provided a detailed breakup and analysis of the market based on the application. This includes optical fiber communication, optical fiber sensor, biomedical, and quantum computing. According to the report, optical fiber communication represented the largest segment.

Optical fiber communication is one of the primary applications propelling the growth of the photonic integrated circuit (PIC) market. PICs find extensive use in optical fiber communication systems, serving as the backbone for high-speed data transmission, internet connectivity, and telecommunication networks. PICs enable more efficient and cost-effective optical communication solutions by integrating optical components like lasers, modulators, detectors, and waveguides onto a single chip. They enhance data rates, reduce power consumption, and facilitate the management of complex optical signals.

With the continuous expansion of data traffic and the need for faster and more reliable communication, the demand for PICs in optical fiber communication remains robust. As technologies like 5G and beyond evolve, PICs are instrumental in meeting the growing demands for high-capacity and low-latency optical communication networks, solidifying their role as a key driver of market growth in this critical application domain.

Breakup by Region:

North America

United States

Canada

Asia-Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

North America exhibits a clear dominance, accounting for the largest market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

North America serves as a prominent region driving the market. With its growing technology sector and robust investments in research and development, it is at the forefront of PIC innovation and adoption. The region boasts a strong presence of leading PIC companies, research institutions, and universities focused on advancing photonic technologies. PICs find wide-ranging applications here, particularly in data centers, telecommunications networks, aerospace, and healthcare.

Furthermore, the growing demand for high-speed internet, data analytics, and emerging technologies like 5G and quantum computing fuels the adoption of PICs. Besides, government initiatives and investments in infrastructure development bolster the expansion of optical communication networks, driving the need for more efficient and advanced PIC solutions. As a result, North America plays a pivotal role in shaping the global PIC market and remains a dynamic hub for innovation and market growth in this domain.

Competitive Landscape:

Top companies are strengthening market growth through several strategic initiatives. They invest heavily in research and development, constantly pushing the boundaries of PIC technology. They innovate by developing new materials, manufacturing processes, and design methodologies, leading to improved performance, reduced costs, and expanded applications. Furthermore, these companies offer a wide range of PIC products catering to diverse industries such as telecommunications, data centers, healthcare, and aerospace. This diversification expands the market's reach and addresses various customer needs. Collaboration with industry giants, academic institutions, and research organizations enhances the development and adoption of PIC technology. These partnerships foster innovation and market growth. Moreover, the top companies often have a global presence, with sales and manufacturing operations in key markets. This global footprint facilitates market penetration and ensures timely delivery to customers worldwide. Besides, they actively engage in educational initiatives, helping raise awareness about the benefits and applications of PICs. This outreach contributes to market education and fosters demand. These companies provide customized solutions and consultancy services, tailoring PIC designs to meet specific customer requirements, further expanding their market influence. Additionally, the leading companies adhere to stringent quality standards and certifications, instilling trust in their products' reliability and performance.

The report has provided a comprehensive analysis of the competitive landscape in the photonic integrated circuit market. Detailed profiles of all major companies have also been provided.

Broadcom Inc.

ColorChip Ltd.

Hamamatsu Photonics K.K.

II-VI Incorporated

Infinera Corporation

Intel Corporation

LioniX International

POET Technologies

VLC Photonics S.L. (Hitachi Ltd.).

Recent Developments:

In August 2023, Broadcom Inc. announced the availability of the industry's most secure and highest density Gen 7 64G Fibre Channel Director- the 512-port and 256-port Brocade X7 Directors.

In August 2023, Hamamatsu Photonics KK introduced TOKUSPEC 1.3.0, an improved software tool version exclusively crafted for its mini-spectrometers.

In September 2022, II-VI Incorporated introduced an ultrahigh-resolution telemetry module, or optical channel monitor (UHR-OCM).

Key Questions Answered in This Report

  • 1. How big is the global photonic integrated circuit market?
  • 2. What is the expected growth rate of the global photonic integrated circuit market during 2024-2032?
  • 3. What are the key factors driving the global photonic integrated circuit market?
  • 4. What has been the impact of COVID-19 on the global photonic integrated circuit market?
  • 5. What is the breakup of the global photonic integrated circuit market based on the component?
  • 6. What is the breakup of the global photonic integrated circuit market based on the raw material?
  • 7. What is the breakup of the global photonic integrated circuit market based on the integration?
  • 8. What is the breakup of the global photonic integrated circuit market based on the application?
  • 9. What are the key regions in the global photonic integrated circuit market?
  • 10. Who are the key players/companies in the global photonic integrated circuit market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Photonic Integrated Circuit Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Component

  • 6.1 Lasers
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 MUX/DEMUX
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Optical Amplifiers
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Modulators
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Attenuators
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast
  • 6.6 Detectors
    • 6.6.1 Market Trends
    • 6.6.2 Market Forecast

7 Market Breakup by Raw Material

  • 7.1 Indium Phosphide (InP)
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Gallium Arsenide (GaAs)
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Lithium Niobate (LiNbO3)
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Silicon
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Silica-on-Silicon
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast

8 Market Breakup by Integration

  • 8.1 Monolithic Integration
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Hybrid Integration
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Module Integration
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast

9 Market Breakup by Application

  • 9.1 Optical Fiber Communication
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Optical Fiber Sensor
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Biomedical
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Quantum Computing
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 United States
      • 10.1.1.1 Market Trends
      • 10.1.1.2 Market Forecast
    • 10.1.2 Canada
      • 10.1.2.1 Market Trends
      • 10.1.2.2 Market Forecast
  • 10.2 Asia-Pacific
    • 10.2.1 China
      • 10.2.1.1 Market Trends
      • 10.2.1.2 Market Forecast
    • 10.2.2 Japan
      • 10.2.2.1 Market Trends
      • 10.2.2.2 Market Forecast
    • 10.2.3 India
      • 10.2.3.1 Market Trends
      • 10.2.3.2 Market Forecast
    • 10.2.4 South Korea
      • 10.2.4.1 Market Trends
      • 10.2.4.2 Market Forecast
    • 10.2.5 Australia
      • 10.2.5.1 Market Trends
      • 10.2.5.2 Market Forecast
    • 10.2.6 Indonesia
      • 10.2.6.1 Market Trends
      • 10.2.6.2 Market Forecast
    • 10.2.7 Others
      • 10.2.7.1 Market Trends
      • 10.2.7.2 Market Forecast
  • 10.3 Europe
    • 10.3.1 Germany
      • 10.3.1.1 Market Trends
      • 10.3.1.2 Market Forecast
    • 10.3.2 France
      • 10.3.2.1 Market Trends
      • 10.3.2.2 Market Forecast
    • 10.3.3 United Kingdom
      • 10.3.3.1 Market Trends
      • 10.3.3.2 Market Forecast
    • 10.3.4 Italy
      • 10.3.4.1 Market Trends
      • 10.3.4.2 Market Forecast
    • 10.3.5 Spain
      • 10.3.5.1 Market Trends
      • 10.3.5.2 Market Forecast
    • 10.3.6 Russia
      • 10.3.6.1 Market Trends
      • 10.3.6.2 Market Forecast
    • 10.3.7 Others
      • 10.3.7.1 Market Trends
      • 10.3.7.2 Market Forecast
  • 10.4 Latin America
    • 10.4.1 Brazil
      • 10.4.1.1 Market Trends
      • 10.4.1.2 Market Forecast
    • 10.4.2 Mexico
      • 10.4.2.1 Market Trends
      • 10.4.2.2 Market Forecast
    • 10.4.3 Others
      • 10.4.3.1 Market Trends
      • 10.4.3.2 Market Forecast
  • 10.5 Middle East and Africa
    • 10.5.1 Market Trends
    • 10.5.2 Market Breakup by Country
    • 10.5.3 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 Broadcom Inc.
      • 15.3.1.1 Company Overview
      • 15.3.1.2 Product Portfolio
      • 15.3.1.3 Financials
      • 15.3.1.4 SWOT Analysis
    • 15.3.2 ColorChip Ltd.
      • 15.3.2.1 Company Overview
      • 15.3.2.2 Product Portfolio
    • 15.3.3 Hamamatsu Photonics K.K.
      • 15.3.3.1 Company Overview
      • 15.3.3.2 Product Portfolio
      • 15.3.3.3 Financials
    • 15.3.4 II-VI Incorporated
      • 15.3.4.1 Company Overview
      • 15.3.4.2 Product Portfolio
      • 15.3.4.3 Financials
    • 15.3.5 Infinera Corporation
      • 15.3.5.1 Company Overview
      • 15.3.5.2 Product Portfolio
      • 15.3.5.3 Financials
    • 15.3.6 Intel Corporation
      • 15.3.6.1 Company Overview
      • 15.3.6.2 Product Portfolio
      • 15.3.6.3 Financials
      • 15.3.6.4 SWOT Analysis
    • 15.3.7 LioniX International
      • 15.3.7.1 Company Overview
      • 15.3.7.2 Product Portfolio
    • 15.3.8 POET Technologies
      • 15.3.8.1 Company Overview
      • 15.3.8.2 Product Portfolio
      • 15.3.8.3 Financials
    • 15.3.9 VLC Photonics S.L. (Hitachi Ltd.)
      • 15.3.9.1 Company Overview
      • 15.3.9.2 Product Portfolio