デフォルト表紙
市場調査レポート
商品コード
1467825

コンピュータ支援エンジニアリング市場レポート:タイプ別、展開タイプ別、最終用途産業別、地域別、2024~2032年

Computer-Aided Engineering Market Report by Type (Finite Element Analysis, Computational Fluid Dynamics, Multibody Dynamics, Optimization & Simulation), Deployment Type, End-Use Industry, and Region 2024-2032

出版日: | 発行: IMARC | ページ情報: 英文 136 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.58円
コンピュータ支援エンジニアリング市場レポート:タイプ別、展開タイプ別、最終用途産業別、地域別、2024~2032年
出版日: 2024年04月08日
発行: IMARC
ページ情報: 英文 136 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界のコンピュータ支援エンジニアリング市場規模は、2023年に102億米ドルに達しました。今後、IMARC Groupは、2024~2032年にかけて9.10%の成長率(CAGR)を示し、2032年までに229億米ドルに達すると予測しています。シミュレーションベースの設計に対する需要の高まり、複雑なシステムのシミュレーションと解析に対するニーズの高まり、コスト削減と物理的プロトタイプの必要性への注目の高まりなどが、市場を推進する主要要因となっています。

コンピュータ支援エンジニアリング(CAE)は、現代のエンジニアリング・プロセスに不可欠な要素です。CAEは、製品やシステムの設計、解析、最適化においてエンジニアを支援するために設計された、幅広いコンピュータベースのツールや技術で構成されています。これにより、エンジニアは十分な情報に基づいた意思決定や予測を行うことができます。また、プロトタイプの仮想テスト、構造的完全性の評価、流体力学の解析、その他の重要な評価を行うことができ、製品開発サイクルにおける時間とリソースの節約につながります。プロセスの初期段階で設計の欠陥や性能を特定することが容易になるため、CAEの需要は世界中で高まっています。

現在、製品の品質と信頼性を高めるためにCAEの採用が増加していることが、市場の成長に寄与しています。これに伴い、設計を最適化し、コストを削減し、エンジニアリングプロジェクト全体の成功を確実にするCAEの採用が増加しており、市場の成長を強化しています。さらに、安全性の向上、排出ガスの削減、燃費の改善を目的とした自動車セグメントでのCAE需要の高まりが、市場の成長を後押ししています。さらに、さまざまなセグメントで環境に優しい製品の開発が進んでいることも、業界の投資家に有利な成長機会をもたらしています。さらに、バッテリーの性能や車両の空気力学を解析するためのCAEツールの採用が増加していることも、市場の成長を支えています。これとは別に、製造業における自動化とデータ交換への注目の高まりが、市場の成長を後押ししています。

コンピュータ支援エンジニアリング市場の動向と促進要因:

複雑なシステムのシミュレーションと解析ニーズの高まり

最新製品の複雑化に伴うCAE採用の増加が、市場の成長を後押ししています。自動車、家電製品、産業機械など、さまざまな産業には複雑な設計と複数の統合システムが存在します。CAEツールを使用することで、エンジニアはこれらの複雑なシステムを包括的にシミュレーションし、解析することができます。これに伴い、構造的完全性、熱性能、流体力学などの要素を評価することができ、開発プロセスの初期段階で潜在的な設計上の欠陥を特定するのに役立ちます。この機能は時間を節約するだけでなく、コストのかかるエラーやリコールの可能性を低減します。さらに、いくつかのセグメントでは、革新的で差別化された製品を生み出す必要性が高まっています。

物理的なプロトタイプの必要性を減らすことへの注目の高まり

物理的なプロトタイプの必要性を減らすことへの注目が高まっているため、CAEの採用が増加しており、市場の成長に寄与しています。これに伴い、CAEツールは製品開発におけるコストと時間を大幅に削減します。従来、物理的なプロトタイプの作成とテストには多くの時間とコストがかかっていました。これとは別に、CAEはこれらのプロセスを仮想シミュレーションに置き換えたり補ったりすることで、物理的なプロトタイプの必要性を低減します。エンジニアは、迅速かつ低コストで何度も設計を繰り返し、性能と効率のために製品設計を最適化することができます。さらに、新興企業や中小企業など、予算が限られている業界では、この費用対効果が特に重要です。

高まるシミュレーションベース設計の需要

さまざまな業界でシミュレーションベースの設計に対する需要が高まっており、市場の展望は明るいです。これは、CAEツールを使用してさまざまな条件下で製品の挙動をシミュレーションし、そのシミュレーションに基づいて設計を改良するものです。これに伴い、エンジニアは物理的なプロトタイプを作成する前に問題を予測し、対処することができるため、製品全体の品質と性能の向上に役立ちます。これとは別に、シミュレーションベースの設計は、航空宇宙や医療など、安全性や信頼性が重視される産業において特に有益です。実際のシナリオをシミュレートし、ストレステストを行うことで、エンジニアは製品が厳しい品質・安全基準を満たしていることを確認することができ、これが市場の成長を支えています。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査目的
  • 利害関係者
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 イントロダクション

  • 概要
  • 主要産業動向

第5章 コンピュータ支援エンジニアリングの世界市場

  • 市場概要
  • 市場実績
  • COVID-19の影響
  • 市場予測

第6章 市場内訳:タイプ別

  • 有限要素解析(FEA)
  • 数値流体力学(CFD)
  • マルチボディ力学
  • 最適化とシミュレーション

第7章 市場内訳:展開タイプ別

  • オンプレミス
  • クラウド型

第8章 市場内訳:最終用途産業別

  • 自動車
  • 防衛・航空宇宙
  • エレクトロニクス
  • 医療機器
  • 産業機器
  • その他

第9章 市場内訳:地域別

  • 北米
    • 米国
    • カナダ
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • 韓国
    • オーストラリア
    • インドネシア
    • その他
  • 欧州
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ロシア
    • その他
  • ラテンアメリカ
    • ブラジル
    • メキシコ
    • その他
  • 中東・アフリカ
    • 市場動向
    • 市場内訳:国別
    • 市場予測

第10章 SWOT分析

  • 概要
  • 強み
  • 弱み
  • 機会
  • 脅威

第11章 バリューチェーン分析

第12章 ポーターのファイブフォース分析

  • 概要
  • 買い手の交渉力
  • 供給企業の交渉力
  • 競合の程度
  • 新規参入業者の脅威
  • 代替品の脅威

第13章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • Altair Engineering Inc.
    • Ansys Inc.
    • Aspen Technology Inc.
    • Autodesk Inc.
    • BenQ Asia Pacific Corp.
    • Bentley Systems Inc.
    • Casio Computer Co. Ltd.
    • Dassault Systemes
    • ESI Group
    • Exa Corporation
    • Mentor Graphics Corporation
    • MSC Software Corporation
    • NUMECA International
    • Seiko Epson Corporation
    • Siemens Digital Industries Software
図表

List of Figures

  • Figure 1: Global: Computer-Aided Engineering Market: Major Drivers and Challenges
  • Figure 2: Global: Computer-Aided Engineering Market: Sales Value (in Billion US$), 2018-2023
  • Figure 3: Global: Computer-Aided Engineering Market: Breakup by Type (in %), 2023
  • Figure 4: Global: Computer-Aided Engineering Market: Breakup by Deployment Type (in %), 2023
  • Figure 5: Global: Computer-Aided Engineering Market: Breakup by End-Use Industry (in %), 2023
  • Figure 6: Global: Computer-Aided Engineering Market: Breakup by Region (in %), 2023
  • Figure 7: Global: Computer-Aided Engineering Market Forecast: Sales Value (in Billion US$), 2024-2032
  • Figure 8: Global: Computer-Aided Engineering (Finite Element Analysis) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 9: Global: Computer-Aided Engineering (Finite Element Analysis) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 10: Global: Computer-Aided Engineering (Computational Fluid Dynamics) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 11: Global: Computer-Aided Engineering (Computational Fluid Dynamics) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 12: Global: Computer-Aided Engineering (Multibody Dynamics) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 13: Global: Computer-Aided Engineering (Multibody Dynamics) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 14: Global: Computer-Aided Engineering (Optimization & Simulation) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 15: Global: Computer-Aided Engineering (Optimization & Simulation) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 16: Global: Computer-Aided Engineering (On-premises) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 17: Global: Computer-Aided Engineering (On-premises) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 18: Global: Computer-Aided Engineering (Cloud-based) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 19: Global: Computer-Aided Engineering (Cloud-based) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 20: Global: Computer-Aided Engineering (Automotive) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 21: Global: Computer-Aided Engineering (Automotive) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 22: Global: Computer-Aided Engineering (Defense & Aerospace) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 23: Global: Computer-Aided Engineering (Defense & Aerospace) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 24: Global: Computer-Aided Engineering (Electronics) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 25: Global: Computer-Aided Engineering (Electronics) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 26: Global: Computer-Aided Engineering (Medical Devices) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 27: Global: Computer-Aided Engineering (Medical Devices) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 28: Global: Computer-Aided Engineering (Industrial Equipment) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 29: Global: Computer-Aided Engineering (Industrial Equipment) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 30: Global: Computer-Aided Engineering (Others) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 31: Global: Computer-Aided Engineering (Others) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 32: North America: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 33: North America: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 34: United States: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 35: United States: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 36: Canada: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 37: Canada: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 38: Asia Pacific: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 39: Asia Pacific: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 40: China: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 41: China: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 42: Japan: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 43: Japan: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 44: India: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 45: India: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 46: South Korea: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 47: South Korea: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 48: Australia: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 49: Australia: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 50: Indonesia: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 51: Indonesia: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 52: Others: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 53: Others: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 54: Europe: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 55: Europe: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 56: Germany: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 57: Germany: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 58: France: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 59: France: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 60: United Kingdom: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 61: United Kingdom: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 62: Italy: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 63: Italy: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 64: Spain: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 65: Spain: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 66: Russia: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 67: Russia: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 68: Others: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 69: Others: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 70: Latin America: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 71: Latin America: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 72: Brazil: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 73: Brazil: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 74: Mexico: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 75: Mexico: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 76: Others: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 77: Others: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 78: Middle East and Africa: Computer-Aided Engineering Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 79: Middle East and Africa: Computer-Aided Engineering Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 80: Global: Computer-Aided Engineering Industry: SWOT Analysis
  • Figure 81: Global: Computer-Aided Engineering Industry: Value Chain Analysis
  • Figure 82: Global: Computer-Aided Engineering Industry: Porter's Five Forces Analysis

List of Tables

  • Table 1: Global: Computer-Aided Engineering Market: Key Industry Highlights, 2023 and 2032
  • Table 2: Global: Computer-Aided Engineering Market Forecast: Breakup by Type (in Million US$), 2024-2032
  • Table 3: Global: Computer-Aided Engineering Market Forecast: Breakup by Deployment Type (in Million US$), 2024-2032
  • Table 4: Global: Computer-Aided Engineering Market Forecast: Breakup by End-Use Industry (in Million US$), 2024-2032
  • Table 5: Global: Computer-Aided Engineering Market Forecast: Breakup by Region (in Million US$), 2024-2032
  • Table 6: Global: Computer-Aided Engineering Market: Competitive Structure
  • Table 7: Global: Computer-Aided Engineering Market: Key Players
目次
Product Code: SR112024A1993

The global computer-aided engineering market size reached US$ 10.2 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 22.9 Billion by 2032, exhibiting a growth rate (CAGR) of 9.10% during 2024-2032. The growing demand for simulation-based design, rising need to simulate and analyze complex systems, and increasing focus to reduce costs and the need for physical prototypes are some of the major factors propelling the market.

Computer-aided engineering (CAE) is an integral component of modern engineering processes. It comprises a wide range of computer-based tools and techniques that are designed to assist engineers in the design, analysis, and optimization of products and systems. It allows engineers to make informed decisions and predictions. It also enables engineers to virtually test prototypes, assess structural integrity, analyze fluid dynamics, and perform other critical evaluations, which saves time and resources in the product development cycle. As it facilitates the identification of design flaws and performance early in the process, the demand for CAE is increasing worldwide.

At present, the rising adoption of CAE to enhance product quality and reliability is contributing to the growth of the market. In line with this, the increasing employment of CAE, as it optimizes designs, reduces costs, and ensures the overall success of engineering projects, is strengthening the growth of the market. Moreover, the rising demand for CAE in the automotive sector to enhance safety, reduce emissions, and improve fuel efficiency is bolstering the growth of the market. In addition, the increasing development of eco-friendly products in various sectors is offering lucrative growth opportunities to industry investors. Furthermore, the rising adoption of CAE tools for analyzing battery performance and vehicle aerodynamics is supporting the growth of the market. Apart from this, the increasing focus on automation and data exchange in manufacturing is propelling the growth of the market.

Computer-Aided Engineering Market Trends/Drivers:

Rising need to simulate and analyze complex systems

The rising adoption of CAE due to the increasing complexities in modern products is bolstering the growth of the market. Various industries, such as automobiles, consumer electronics, and industrial machinery, have intricate designs and multiple integrated systems. CAE tools enable engineers to simulate and analyze these complex systems comprehensively. In line with this, it can evaluate factors like structural integrity, thermal performance, and fluid dynamics, that assist in identifying potential design flaws early in the development process. This capability not only saves time but also reduces the likelihood of costly errors and recalls. Additionally, there is an increase in the need to create innovative and differentiated products in several sectors.

Increasing focus to reduce the need for physical prototypes

The rising adoption of CAE due to the increasing focus on reducing the need for physical prototypes is contributing to the growth of the market. In line with this, CAE tools offer significant cost and time savings in product development. Traditionally, physical prototyping and testing consume a lot of time and money. Apart from this, CAE replaces or supplements these processes with virtual simulations that reduce the need for physical prototypes. Engineers can conduct numerous design iterations quickly and inexpensively and optimize product designs for performance and efficiency. In addition, this cost-effectiveness is particularly crucial for industries with tight budgets, such as startups and small-to-medium enterprises.

Growing demand for simulation-based design

The growing demand for simulation-based design across various industries is offering a positive market outlook. It involves using CAE tools to simulate product behavior under various conditions and refine designs based on these simulations. In line with this, it allows engineers to predict and address issues before physical prototypes are built that, benefit in improving overall product quality and performance. Apart from this, simulation-based design is especially beneficial in industries where safety and reliability are concerned, such as aerospace and healthcare. By simulating real-world scenarios and stress testing, engineers can ensure that products meet stringent quality and safety standards, which is supporting the growth of the market.

Computer-Aided Engineering Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the market report, along with forecasts at the global, regional and country levels from 2024-2032. Our report has categorized the market based on type, deployment type and end-use industry.

Breakup by Type:

Finite Element Analysis (FEA)

Computational Fluid Dynamics (CFD)

Multibody Dynamics

Optimization & Simulation

Finite element analysis (FEA) represents the largest market segment

The report has provided a detailed breakup and analysis of the market based on the type. This includes finite element analysis (FEA), computational fluid dynamics (CFD), multibody dynamics, and optimization and simulation. According to the report, finite element analysis (FEA) represented the largest segment. Finite element analysis (FEA) is a widely used simulation technique in CAE. It involves dividing complex structures or systems into smaller, finite elements or components, and then analyzing the behavior of these elements under different conditions. This method is invaluable for understanding how materials and structures respond to forces, heat, vibrations, and other physical effects. FEA plays a critical role in industries, such as aerospace, automotive, civil engineering, and manufacturing. It enables engineers to simulate real-world scenarios, assess stress distribution, predict failure points, and optimize designs for improved performance and safety.

Breakup by Deployment Type:

On-premises

Cloud-based

On-premises account for the majority of the market share

The report has provided a detailed breakup and analysis of the market based on the deployment type. This includes on-premises and cloud-based. According to the report, on-premises represented the largest segment. On-premises deployment refers to the installation and operation of CAE software and infrastructure within the physical data centers or servers of an organization. In this setup, the software and hardware are maintained and managed directly by the information technology (IT) team of an organization. It provides organizations with greater control and customization options over their CAE environment, allowing them to tailor it to their specific needs and security requirements. Additionally, it can be suitable for industries or organizations with strict data privacy and compliance regulations, as they can maintain data within their own controlled environment.

Breakup by End-Use Industry:

Automotive

Defense & Aerospace

Electronics

Medical Devices

Industrial Equipment

Others

Automotive holds the biggest market share

The report has provided a detailed breakup and analysis of the market based on the end-use industry. This includes automotive, defense and aerospace, electronics, medical devices, industrial equipment, and others. According to the report, automotive represented the largest segment. CAE tools are widely used by automotive manufacturers and suppliers for various purposes. It assists in designing and optimizing vehicle components and systems. Engineers use CAE to simulate and analyze factors like structural integrity, crashworthiness, aerodynamics, and thermal performance. These simulations enable them to enhance vehicle safety, reduce weight, improve fuel efficiency, and meet regulatory standards. Moreover, CAE aids in the development of electric and autonomous vehicles. It plays a crucial role in analyzing battery performance, optimizing electric drivetrains, and simulating autonomous driving scenarios.

Breakup by Region:

North America

United States

Canada

Asia Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

North America exhibits a clear dominance, accounting for the largest computer-aided engineering market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

North America held the biggest market share due to the increasing number of CAE software developers and technology companies. Apart from this, the rising development of advanced CAE solutions is contributing to the growth of the market in the region. In line with this, the increasing focus on automation in several industries is propelling the growth of the market. Besides this, the rising preference to ensure product quality is bolstering the growth of the market in the North America region.

Competitive Landscape:

Major players are investing in research and development (R&D) activities to enhance their software offerings. They are working on improving user interfaces, adding new features, and optimizing algorithms to make their tools more powerful, user-friendly, and efficient. In addition, many companies are integrating their software with emerging technologies, such as artificial intelligence (AI) and machine learning (ML), to enable predictive modeling, automation of repetitive tasks, and more accurate simulations. Besides this, major manufacturers are focusing more on cloud-based solutions that allow users to access their software and perform simulations from anywhere with an internet connection to offer enhanced scalability and flexibility to users.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Altair Engineering Inc.

Ansys Inc.

Aspen Technology Inc.

Autodesk Inc.

BenQ Asia Pacific Corp.

Bentley Systems Inc.

Casio Computer Co. Ltd.

Dassault Systemes

ESI Group

Exa Corporation

Mentor Graphics Corporation

MSC Software Corporation

NUMECA International

Seiko Epson Corporation

Siemens Digital Industries Software

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

Recent Developments:

In 2022, Altair, a global leader in computational science and artificial intelligence (AI), acquired Concept Engineering, the leading provider of electronic system visualization software, to accelerate the development, manufacture, and service of complex electrical and electronic systems.

In February 2022, Ansys announced a strategic collaboration with Amazon Web Services, Inc. (AWS), to provide a browser-based, location-independent solution for Ansys customers. It allows customers to manage and advance their complete computer-aided engineering (CAE), advanced electronic design automation (EDA), and computer-aided design (CAD) product development in the cloud by leveraging scale, flexibility, and elasticity.

In July 2023, Siemens digital industries software expanded its strategic collaboration agreement (SCA) with Amazon Web Services (AWS) to focus on helping mutual integrated circuit (IC) and electronics design customers leverage AWS's advanced cloud services to shorten design cycles, optimize engineering resources and boost verification coverage.

Key Questions Answered in This Report

  • 1. What was the size of the global computer-aided engineering market in 2023?
  • 2. What is the expected growth rate of the global computer-aided engineering market during 2024-2032?
  • 3. What are the key factors driving the global computer-aided engineering market?
  • 4. What has been the impact of COVID-19 on the global computer-aided engineering market?
  • 5. What is the breakup of the global computer-aided engineering market based on the type?
  • 6. What is the breakup of the global computer-aided engineering market based on the deployment type?
  • 7. What is the breakup of the global computer-aided engineering market based on the end-use industry?
  • 8. What are the key regions in the global computer-aided engineering market?
  • 9. Who are the key players/companies in the global computer-aided engineering market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Computer-Aided Engineering Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Type

  • 6.1 Finite Element Analysis (FEA)
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Computational Fluid Dynamics (CFD)
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Multibody Dynamics
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Optimization & Simulation
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast

7 Market Breakup by Deployment Type

  • 7.1 On-premises
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Cloud-based
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by End-Use Industry

  • 8.1 Automotive
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Defense & Aerospace
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Electronics
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Medical Devices
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Industrial Equipment
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 Others
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Competitive Landscape

  • 13.1 Market Structure
  • 13.2 Key Players
  • 13.3 Profiles of Key Players
    • 13.3.1 Altair Engineering Inc.
      • 13.3.1.1 Company Overview
      • 13.3.1.2 Product Portfolio
      • 13.3.1.3 Financials
    • 13.3.2 Ansys Inc.
      • 13.3.2.1 Company Overview
      • 13.3.2.2 Product Portfolio
      • 13.3.2.3 Financials
      • 13.3.2.4 SWOT Analysis
    • 13.3.3 Aspen Technology Inc.
      • 13.3.3.1 Company Overview
      • 13.3.3.2 Product Portfolio
      • 13.3.3.3 Financials
      • 13.3.3.4 SWOT Analysis
    • 13.3.4 Autodesk Inc.
      • 13.3.4.1 Company Overview
      • 13.3.4.2 Product Portfolio
      • 13.3.4.3 Financials
      • 13.3.4.4 SWOT Analysis
    • 13.3.5 BenQ Asia Pacific Corp.
      • 13.3.5.1 Company Overview
      • 13.3.5.2 Product Portfolio
    • 13.3.6 Bentley Systems Inc.
      • 13.3.6.1 Company Overview
      • 13.3.6.2 Product Portfolio
    • 13.3.7 Casio Computer Co. Ltd.
      • 13.3.7.1 Company Overview
      • 13.3.7.2 Product Portfolio
      • 13.3.7.3 Financials
      • 13.3.7.4 SWOT Analysis
    • 13.3.8 Dassault Systemes
      • 13.3.8.1 Company Overview
      • 13.3.8.2 Product Portfolio
      • 13.3.8.3 Financials
      • 13.3.8.4 SWOT Analysis
    • 13.3.9 ESI Group
      • 13.3.9.1 Company Overview
      • 13.3.9.2 Product Portfolio
      • 13.3.9.3 Financials
      • 13.3.9.4 SWOT Analysis
    • 13.3.10 Exa Corporation
      • 13.3.10.1 Company Overview
      • 13.3.10.2 Product Portfolio
    • 13.3.11 Mentor Graphics Corporation
      • 13.3.11.1 Company Overview
      • 13.3.11.2 Product Portfolio
      • 13.3.11.3 SWOT Analysis
    • 13.3.12 MSC Software Corporation
      • 13.3.12.1 Company Overview
      • 13.3.12.2 Product Portfolio
    • 13.3.13 NUMECA International
      • 13.3.13.1 Company Overview
      • 13.3.13.2 Product Portfolio
      • 13.3.13.3 Financials
    • 13.3.14 Seiko Epson Corporation
      • 13.3.14.1 Company Overview
      • 13.3.14.2 Product Portfolio
      • 13.3.14.3 Financials
      • 13.3.14.4 SWOT Analysis
    • 13.3.15 Siemens Digital Industries Software
      • 13.3.15.1 Company Overview
      • 13.3.15.2 Product Portfolio