デフォルト表紙
市場調査レポート
商品コード
1423016

数値流体力学市場レポート:展開モデル、エンドユーザー、地域別、2024年~2032年

Computational Fluid Dynamics Market Report by Deployment Model, End-User, and Region 2024-2032

出版日: | 発行: IMARC | ページ情報: 英文 149 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.86円
数値流体力学市場レポート:展開モデル、エンドユーザー、地域別、2024年~2032年
出版日: 2024年01月30日
発行: IMARC
ページ情報: 英文 149 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の数値流体力学(CFD)市場規模は、2023年に24億7,200万米ドルに達しました。今後、IMARC Groupは、2024年から2032年にかけての成長率(CAGR)は7.1%を示し、2032年には46億5,680万米ドルに達すると予測しています。同市場は、効率的な製品設計と最適化に対する需要の高まり、環境問題と持続可能な実践の必要性に対する大衆の意識の高まり、ハイパフォーマンスコンピューティング(HPC)とクラウドベースのソリューションの進歩などを背景に、緩やかな成長を遂げています。

数値流体力学市場の分析:

市場の成長と規模効率的な製品設計と最適化の需要の増加、製造コスト削減の必要性により、市場は緩やかな成長を遂げています。

技術の進歩:高性能コンピューティングやクラウドベースのソリューションなど、CFDソフトウェアやハードウェアの進歩により、シミュレーション機能が強化されています。これにより、より複雑で正確なシミュレーションが可能になり、市場の成長をさらに後押ししています。

産業への応用:CFDは、航空宇宙、自動車、エネルギー、ヘルスケアなど、さまざまな産業で広く利用されています。設計の最適化、製品性能の向上、開発期間の短縮に重要な役割を果たしています。

地域別動向:北米は、航空宇宙や自動車などの産業で強い存在感を示しており、市場をリードしています。しかし、アジア太平洋地域は急速な工業化を背景に、急成長市場として浮上しています。

競合情勢:同市場は、主要企業がM&A(合併・買収)や世界展開に注力する激しい競争が特徴です。また、イノベーションとサービス提供の拡大にも注力しています。

課題と機会:CFDシミュレーションの複雑さや熟練した専門家の必要性などの課題に直面する一方で、再生可能エネルギーやバイオテクノロジーなどの新興産業におけるCFD採用の増加という機会にも遭遇しています。

将来の展望数値流体力学市場の将来は、産業界が効率性と持続可能性を重視していることから、有望視されています。人工知能(AI)の統合により、CFDは製品開発と最適化において不可欠なツールとなっています。

数値流体力学市場の動向:

効率的な製品設計と最適化の需要

製品設計と最適化プロセスを効率化するために、CFDシミュレーションへの依存度が高まっています。CFDを利用することで、企業はプロトタイプを仮想的にテストして改良することができ、コストのかかる物理的なテストや実験の必要性を減らすことができます。これにより、製品開発サイクルが加速されるだけでなく、より効率的でコスト効果の高い設計が可能になります。めまぐるしく変化するビジネス環境において、企業が競争力を維持するためには、設計を迅速に反復し、改良できることが重要な利点となります。CFDは、エンジニアや設計者が流体の流れや熱伝導などの物理現象を詳細に解析することを可能にし、より性能の高い製品を生み出すことにつながります。さらに、持続可能性が重要視される中、CFDはエネルギー効率を最適化し、廃棄物を削減することで、環境に配慮した設計の実現に役立ち、さまざまな産業での採用がさらに進んでいます。

環境問題の高まりと持続可能性への取り組み

環境問題に対する大衆の意識の高まりと、持続可能な実践の必要性は、良好な市場見通しをもたらしています。企業は、環境フットプリントを削減し、厳しい規制を遵守する必要に迫られています。CFDは、さまざまなプロセスにおける流体力学の解析と最適化を可能にすることで、こうした目標の達成に極めて重要な役割を果たしています。CFDシミュレーションは、エネルギー効率の高いシステムの設計、排出量の最小化、資源利用の最適化において、産業界を支援しています。CFDは、各企業が市場競争力を維持しながら、環境に配慮した意思決定を行う上で役立っています。

ハイパフォーマンスコンピューティング(HPC)とクラウドベースのソリューションの進歩

コンピューティング技術の継続的な進歩が市場の成長を後押ししています。ハイパフォーマンス・コンピューティング(HPC)クラスターとクラウドベースのソリューションは、複雑なシミュレーションをより身近で効率的なものにしています。HPCクラスターは膨大な計算能力を提供するため、エンジニアや研究者は大規模なCFDシミュレーションを短時間で実行できます。これにより、設計と最適化のプロセスが加速され、より多くの反復と精度の向上が可能になります。さらに、HPCを使用することで、従来は実用的でなかった非常に複雑な実世界のシナリオのシミュレーションが可能になります。クラウドベースのCFDソリューションは、スケーラビリティと柔軟性を提供します。企業はクラウドリソースを活用することで、大規模なオンプレミスインフラを必要とせずにシミュレーションを行うことができます。これは、初期費用を削減し、従量課金制で強力なコンピューティングリソースを利用できるため、中小企業や新興企業にとって特に有益です。

多様な業界におけるCFDアプリケーションの拡大

CFDが広く採用されるようになった背景には、幅広い産業分野での汎用性があります。CFDシミュレーションはもはや一部の専門分野に限定されるものではなく、多くの分野で応用されています。航空宇宙産業では、CFDは空力解析に使用され、燃費効率と安全性の高い航空機の設計につながっています。自動車製造では、エンジン性能や車両の空力特性を最適化し、排出ガスの削減や燃費の向上に役立っています。エネルギー分野では、より効率的なタービンの設計、燃焼プロセスの強化、エネルギー生産の最適化にCFDが活用されています。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査目的
  • 利害関係者
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 イントロダクション

  • 概要
  • 主要産業動向

第5章 世界の数値流体力学市場

  • 市場概要
  • 市場実績
  • COVID-19の影響
  • 市場内訳:導入モデル別
  • 市場内訳:エンドユーザー別
  • 市場内訳:地域別
  • 市場予測

第6章 市場内訳:展開モデル別

  • クラウドベースモデル
    • 市場動向
    • 市場予測
  • オンプレミスモデル
    • 市場動向
    • 市場予測

第7章 市場内訳:エンドユーザー別

  • 自動車
    • 市場動向
    • 市場予測
  • 航空宇宙・防衛
    • 市場動向
    • 市場予測
  • 電気・電子
    • 市場動向
    • 市場予測
  • 産業機械
    • 市場動向
    • 市場予測
  • エネルギー
    • 市場動向
    • 市場予測
  • 素材・化学加工
    • 市場動向
    • 市場予測
  • その他
    • 市場動向
    • 市場予測

第8章 市場内訳:地域別

  • 欧州
    • 市場動向
    • 市場予測
  • アジア太平洋
    • 市場動向
    • 市場予測
  • 北米
    • 市場動向
    • 市場予測
  • 中東・アフリカ
    • 市場動向
    • 市場予測
  • ラテンアメリカ
    • 市場動向
    • 市場予測

第9章 SWOT分析

  • 概要
  • 強み
  • 弱み
  • 機会
  • 脅威

第10章 バリューチェーン分析

第11章 ポーターのファイブフォース分析

  • 概要
  • 買い手の交渉力
  • 供給企業の交渉力
  • 競合の程度
  • 新規参入業者の脅威
  • 代替品の脅威

第12章 価格分析

第13章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • Ansys Inc.
    • Dassault Systemes
    • COMSOL AB
    • Siemens
    • Autodesk
    • The MathWorks, Inc.
図表

List of Figures

  • Figure 1: Global: Computational Fluid Dynamics Market: Major Drivers and Challenges
  • Figure 2: Global: Computational Fluid Dynamics Market: Sales Value (in Million US$), 2018-2023
  • Figure 3: Global: Computational Fluid Dynamics Market: Breakup by Deployment Model (in %), 2023
  • Figure 4: Global: Computational Fluid Dynamics Market: Breakup by End-User (in %), 2023
  • Figure 5: Global: Computational Fluid Dynamics Market: Breakup by Region (in %), 2023
  • Figure 6: Global: Computational Fluid Dynamics Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 7: Global: Computational Fluid Dynamics Industry: SWOT Analysis
  • Figure 8: Global: Computational Fluid Dynamics Industry: Value Chain Analysis
  • Figure 9: Global: Computational Fluid Dynamics Industry: Porter's Five Forces Analysis
  • Figure 10: Global: Computational Fluid Dynamics (Cloud-Based Model) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 11: Global: Computational Fluid Dynamics (Cloud-Based Model) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 12: Global: Computational Fluid Dynamics (On-Premises Model) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 13: Global: Computational Fluid Dynamics (On-Premises Model) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 14: Global: Computational Fluid Dynamics (Automotive) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 15: Global: Computational Fluid Dynamics (Automotive) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 16: Global: Computational Fluid Dynamics (Aerospace and Defense) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 17: Global: Computational Fluid Dynamics (Aerospace and Defense) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 18: Global: Computational Fluid Dynamics (Electrical and Electronics) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 19: Global: Computational Fluid Dynamics (Electrical and Electronics) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 20: Global: Computational Fluid Dynamics (Industrial Machinery) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 21: Global: Computational Fluid Dynamics (Industrial Machinery) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 22: Global: Computational Fluid Dynamics (Energy) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 23: Global: Computational Fluid Dynamics (Energy) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 24: Global: Computational Fluid Dynamics (Material and Chemical Processing) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 25: Global: Computational Fluid Dynamics (Material and Chemical Processing) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 26: Global: Computational Fluid Dynamics (Other End-Users) Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 27: Global: Computational Fluid Dynamics (Other End-Users) Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 28: Europe: Computational Fluid Dynamics Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 29: Europe: Computational Fluid Dynamics Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 30: Asia Pacific: Computational Fluid Dynamics Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 31: Asia Pacific: Computational Fluid Dynamics Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 32: North America: Computational Fluid Dynamics Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 33: North America: Computational Fluid Dynamics Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 34: Middle East and Africa: Computational Fluid Dynamics Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 35: Middle East and Africa: Computational Fluid Dynamics Market Forecast: Sales Value (in Million US$), 2024-2032
  • Figure 36: Latin America: Computational Fluid Dynamics Market: Sales Value (in Million US$), 2018 & 2023
  • Figure 37: Latin America: Computational Fluid Dynamics Market Forecast: Sales Value (in Million US$), 2024-2032

List of Tables

  • Table 1: Global: Computational Fluid Dynamics Market: Key Industry Highlights, 2023 and 2032
  • Table 2: Global: Computational Fluid Dynamics Market Forecast: Breakup by Deployment Model (in Million US$), 2024-2032
  • Table 3: Global: Computational Fluid Dynamics Market Forecast: Breakup by End-User (in Million US$), 2024-2032
  • Table 4: Global: Computational Fluid Dynamics Market Forecast: Breakup by Region (in Million US$), 2024-2032
  • Table 5: Global: Computational Fluid Dynamics Market Structure
  • Table 6: Global: Computational Fluid Dynamics Market: Key Players
目次
Product Code: SR112024A1354

Abstract

The global computational fluid dynamics (CFD) market size reached US$ 2,472.0 Million in 2023. Looking forward, IMARC Group expects the market to reach US$ 4,656.8 Million by 2032, exhibiting a growth rate (CAGR) of 7.1% during 2024-2032. The market is experiencing moderate growth driven by the growing demand for efficient product design and optimization, rising awareness among the masses about environmental issues and the need for sustainable practices, and advancements in high-performance computing (HPC) and cloud-based solutions.

Computational Fluid Dynamics Market Analysis:

Market Growth and Size: The market is witnessing moderate growth, driven by the increasing demand for efficient product design and optimization, along with the need for reducing manufacturing costs.

Technological Advancements: Advancements in CFD software and hardware, including high-performance computing and cloud-based solutions, are enhancing simulation capabilities. This enables more complex and accurate simulations, further propelling the market growth.

Industry Applications: CFD is widely used in various industries, including aerospace, automotive, energy, and healthcare. It plays a crucial role in optimizing designs, improving product performance, and reducing development time.

Geographical Trends: North America leads the market, driven by its strong presence in industries like aerospace and automotive. However, Asia Pacific is emerging as a fast-growing market, driven by rapid industrialization.

Competitive Landscape: The market is characterized by intense competition with key players focusing on mergers and acquisitions (M&A) and expanding their global footprint. They are also focusing on innovation and expanding service offerings.

Challenges and Opportunities: While the market faces challenges, such as the complexity of CFD simulations and the need for skilled professionals, it also encounters opportunities in the increasing adoption of CFD in emerging industries like renewable energy and biotechnology.

Future Outlook: The future of the computational fluid dynamics market looks promising, with industries emphasizing on efficiency and sustainability. The integration of artificial intelligence (AI) is making CFD an indispensable tool in product development and optimization.

Computational Fluid Dynamics Market Trends:

Demand for efficient product design and optimization

Industries are increasingly relying on CFD simulations to streamline product design and optimization processes. With CFD, companies can virtually test and refine prototypes, reducing the need for costly physical testing and experimentation. This not only accelerates product development cycles but also results in more efficient and cost-effective designs. As companies are striving to remain competitive in the fast-paced business environment, the ability to quickly iterate and refine designs is a crucial advantage. CFD enables engineers and designers to analyze fluid flow, heat transfer, and other physical phenomena in intricate detail, leading to better-performing products. Moreover, as sustainability is becoming a priority, CFD helps in creating environment-friendly designs by optimizing energy efficiency and reducing waste, further increasing its adoption in various industries.

Rising environmental concerns and sustainability initiatives

The growing awareness among the masses about environmental issues and the need for sustainable practices are offering a favorable market outlook. Companies are under increasing pressure to reduce their environmental footprint and comply with stringent regulations. CFD plays a pivotal role in achieving these goals by enabling the analysis and optimization of fluid dynamics in various processes. CFD simulations assist industries in designing energy-efficient systems, minimizing emissions, and optimizing resource utilization. CFD is helping companies in making environment conscious decisions while maintaining competitiveness in their respective markets.

Advances in high-performance computing (HPC) and cloud-based solutions

The continuous advancement of computing technology is impelling the growth of the market. High-performance computing (HPC) clusters and cloud-based solutions are making complex simulations more accessible and efficient. HPC clusters offer immense computational power, enabling engineers and researchers to run large-scale CFD simulations with faster turnaround times. This accelerates the design and optimization processes, allowing for more iterations and improved accuracy. Furthermore, HPC allows for the simulation of highly complex, real-world scenarios that were previously impractical. Cloud-based CFD solutions offer scalability and flexibility. Companies can leverage cloud resources to perform simulations without the need for extensive on-premises infrastructure. This is especially beneficial for smaller businesses and startups, as it reduces upfront costs and provides access to powerful computing resources on a pay-as-you-go basis.

Expansion of CFD applications across diverse industries

The widespread adoption of CFD can be attributed to its versatility across a wide range of industries. CFD simulations are no longer limited to a few specialized sectors as they find applications in numerous fields. In the aerospace industry, CFD is used for aerodynamic analysis, leading to more fuel-efficient and safer aircraft designs. In automotive manufacturing, it aids in optimizing engine performance and vehicle aerodynamics, reducing emissions and enhancing fuel efficiency. The energy sector utilizes CFD to design more efficient turbines, enhance combustion processes, and optimize energy production.

Computational Fluid Dynamics Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global and regional levels for 2024-2032. Our report has categorized the market based on deployment model and end-user.

Breakup by Deployment Model:

Cloud-Based Model

On-Premises Model

On-premises accounts for the majority of the market share

The report has provided a detailed breakup and analysis of the market based on the deployment model. This includes cloud-based model and on-premises model. According to the report, on-premises represented the largest segment due to its long-established presence and the preference of certain industries for maintaining complete control over their computational resources. On-premises CFD deployments are favored by organizations with stringent data security and compliance requirements. These businesses appreciate the ability to manage their hardware, software, and data in-house, ensuring complete customization and autonomy over their CFD simulations.

The cloud-based deployment model in the computational fluid dynamics market is witnessing significant growth in recent years. This segment offers the advantage of scalability, flexibility, and cost-efficiency. Organizations opt for cloud-based CFD solutions to access powerful computational resources without the need for heavy on-premises infrastructure investments. Furthermore, the cloud-based model allows for remote collaboration and easy updates, making it a preferred choice for businesses seeking agility in their CFD simulations.

Breakup by End-User:

Automotive

Aerospace and Defense

Electrical and Electronics

Industrial Machinery

Energy

Material and Chemical Processing

Others

Aerospace and defense hold the largest share in the industry

A detailed breakup and analysis of the market based on the end-user have also been provided in the report. This includes automotive, aerospace and defense, electrical and electronics, industrial machinery, energy, material and chemical processing, and others. According to the report, aerospace and defense accounted for the largest market share.

The aerospace and defense sector relies heavily on CFD simulations to optimize aerodynamics, analyze structural integrity, and enhance overall performance of aircraft and defense systems. CFD plays a pivotal role in reducing development time and costs while ensuring safety and efficiency in aerospace and defense applications, making it an indispensable tool for manufacturers and research institutions in this sector.

The automotive industry is another significant segment in the CFD market. Automotive companies utilize CFD simulations to fine-tune vehicle designs, improve fuel efficiency, and enhance safety features. CFD aids in analyzing airflow, combustion processes, and vehicle crash simulations, leading to the development of more fuel-efficient and safer automobiles.

In the electrical and electronics sector, CFD is employed to optimize thermal management and airflow within electronic components and devices. It assists in preventing overheating issues, ensuring the reliability and longevity of electronics. This segment is growing as electronic devices become increasingly complex and compact, necessitating precise thermal analysis.

The industrial machinery sector benefits from CFD simulations to enhance the design and performance of heavy machinery and equipment. CFD helps in optimizing fluid flow, reducing energy consumption, and improving the overall efficiency of industrial processes. This segment finds value in CFD for applications in various manufacturing and industrial settings.

The energy sector, encompassing areas, such as power generation and renewable energy, also relies on CFD to improve efficiency and reduce environmental impacts. CFD aids in the design of more efficient turbines, heat exchangers, and combustion processes, contributing to sustainable energy production and conservation.

Breakup by Region:

Europe

Asia Pacific

North America

Middle East and Africa

Latin America

North America leads the market, accounting for the largest computational fluid dynamics market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include Europe, Asia Pacific, North America, the Middle East and Africa, and Latin America. According to the report, North America accounted for the largest market share due to a robust presence of key players, significant investments in research and development (R&D) activities, and a high adoption rate of CFD solutions across various industries. The increasing utilization of CFD for applications in aerospace, automotive, energy, and other sectors is propelling the market growth. The growing focus on technological innovation and the need for advanced simulation tools is offering a favorable market outlook.

Europe is another prominent region in the CFD market, characterized by a strong presence of aerospace, automotive, and industrial manufacturing sectors. European countries like Germany, the United Kingdom, and France have a long history of using CFD for engineering design and optimization. The commitment of the region to sustainability and environmental concerns are driving CFD adoption in energy and environmental applications.

The Asia Pacific region is experiencing rapid growth in the CFD market due to the expansion of industries, such as automotive, electronics, and energy. Countries like China, Japan, and India are investing heavily in CFD technologies to enhance product development and manufacturing processes. Additionally, the burgeoning aerospace sector in the region is catalyzing the demand for CFD solutions.

The Middle East and Africa region exhibit a growing interest in CFD, particularly in sectors, such as oil and gas, construction, and infrastructure. The need for efficient resource management and environmental considerations is driving the adoption of CFD simulations in these industries. While it may not be the largest segment, it presents opportunities for CFD providers to expand their presence in this emerging market.

Latin America is gradually embracing CFD solutions, with countries like Brazil and Mexico showing interest in industries, such as automotive and aerospace. The growth of manufacturing and energy sectors in the region is expected to contribute to the increasing adoption of CFD tools.

Leading Key Players in the Computational Fluid Dynamics Industry:

Key players in the market are continually innovating to enhance their offerings. They are investing in research and development (R&D) activities to introduce advanced CFD software that offers greater accuracy, faster simulations, and improved user interfaces. These companies are also focusing on expanding their consumer base by offering cloud based CFD solutions to cater to a wider range of industries and users. Additionally, key players are forming strategic partnerships and collaborations with industry-specific companies to provide specialized CFD solutions for sectors like aerospace, automotive, and energy. Overall, their efforts are focusing on delivering more efficient, accessible, and customizable CFD tools to meet the evolving needs of diverse markets.

The market research report has provided a comprehensive analysis of the competitive landscape. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Ansys Inc.

Dassault Systemes

COMSOL AB

Siemens

Autodesk

The MathWorks, Inc.

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

Latest News:

January 26, 2023: Ansys Inc. announced the release of Ansys 2023 R1, their latest simulation software suite. It includes several enhancements for CFD simulations, improving accuracy and efficiency in fluid dynamics analysis. With the newly launched Ansys 2023 R1, engineers can simulate more complex products faster than ever via new cloud options and optimized use of multiple graphics processing units (GPUs). The new release also amplifies the benefits of simulation by supporting collaborative, model-based systems engineering (MBSE) workflows.

March 2, 2020: Siemens announced its latest release of Simcenter™ STAR-CCM+™ software to enhance its CFD software with AI-driven capabilities for more accurate simulations. The latest release also includes automatic coupled solver control for reduced set up time while improving convergence speed and the first ever collaborative virtual reality (VR) feature of the company in a CFD code for enhanced team collaboration on simulation results. The latest release of Simcenter STAR-CCM+ includes major enhancements to improve simulation time and accuracy as well as enhance collaboration, giving consumers a comprehensive digital twin to help drive highly predictive simulations.

Key Questions Answered in This Report

  • 1. What was the size of the global computational fluid dynamics market in 2023?
  • 2. What is the expected growth rate of the global computational fluid dynamics market during 2024-2032?
  • 3. What are the key factors driving the global computational fluid dynamics market?
  • 4. What has been the impact of COVID-19 on the global computational fluid dynamics market?
  • 5. What is the breakup of the global computational fluid dynamics market based on the deployment model?
  • 6. What is the breakup of the global computational fluid dynamics market based on the end-user?
  • 7. What are the key regions in the global computational fluid dynamics market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Computational Fluid Dynamics Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Breakup by Deployment Model
  • 5.5 Market Breakup by End-User
  • 5.6 Market Breakup by Region
  • 5.7 Market Forecast

6 Market Breakup by Deployment Model

  • 6.1 Cloud-Based Model
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 On-Premises Model
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast

7 Market Breakup by End-User

  • 7.1 Automotive
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Aerospace and Defense
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Electrical and Electronics
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Industrial Machinery
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Energy
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Material and Chemical Processing
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast
  • 7.7 Others
    • 7.7.1 Market Trends
    • 7.7.2 Market Forecast

8 Market Breakup by Region

  • 8.1 Europe
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Asia Pacific
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 North America
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Middle East and Africa
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Latin America
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast

9 SWOT Analysis

  • 9.1 Overview
  • 9.2 Strengths
  • 9.3 Weaknesses
  • 9.4 Opportunities
  • 9.5 Threats

10 Value Chain Analysis

11 Porters Five Forces Analysis

  • 11.1 Overview
  • 11.2 Bargaining Power of Buyers
  • 11.3 Bargaining Power of Suppliers
  • 11.4 Degree of Competition
  • 11.5 Threat of New Entrants
  • 11.6 Threat of Substitutes

12 Price Analysis

13 Competitive Landscape

  • 13.1 Market Structure
  • 13.2 Key Players
  • 13.3 Profiles of Key Players
    • 13.3.1 Ansys Inc.
    • 13.3.2 Dassault Systemes
    • 13.3.3 COMSOL AB
    • 13.3.4 Siemens
    • 13.3.5 Autodesk
    • 13.3.6 The MathWorks, Inc.